
Predictive maintenance in a fleet management
system: the Navarchos case⋆

Apostolos Giannoulidis1, Anna-Valentini Michailidou2, Theodoros
Toliopoulos1,2, Ioannis Constantinou2, and Anastasios Gounaris1

1 Aristotle University of Thessaloniki, Thessaloniki, Greece
{agiannous,tatoliop,gounaria}@csd.auth.gr

2 Istognosis Ltd., Nicosia, Cyprus
valentina@navarchos.com,ioannis@istognosis.com

Abstract. This work presents a state-of-the-art predictive maintenance
(PdM) framework, which is tailored to demanding cases, where infor-
mation is dynamic and partial, and non-supervised solutions should be
applied. Moreover, it discusses and aims to demonstrate the application
of this framework to the Navarchos Fleet Management System (FMS).

1 Introduction

Fleet Management Systems (FMS) play a pivotal role in maintaining the oper-
ational safety and efficiency of vehicle fleets, especially in the face of escalating
fleet sizes. A critical responsibility within this domain is the meticulous schedul-
ing of vehicle maintenance, aimed at averting potential failures that not only
endanger driver safety but also disrupt vehicle uptime. As we navigate the land-
scape of Industry 4.0, the integration of Predictive Maintenance (PdM) emerges
as a crucial paradigm shift for enhancing FMS capabilities.

Traditionally, many FMS rely on Diagnostic Trouble Codes (DTCs) sourced
from original equipment manufacturers (OEMs) as a primary means of iden-
tifying and addressing vehicle issues. These codes, emanating from the engine
control unit (ECU), serve to pinpoint faulty behavior based on predefined rules
applied to sensor data. However, a main limitations of this approach is that se-
rious vehicle failures evade detection through DTCs, highlighting a need for a
more proactive and comprehensive solution. Furthermore, while DTCs excel at
detecting malfunctions, their primary focus contrasts with the broader scope of
PdM, which not only identifies existing issues but anticipates potential failures.

In a FMS, PdM constitutes a holistic end-to-end application encompassing
data collection, pre-processing, storage, and the generation of predictive alarms
within a dynamic streaming environment. Implementing such a solution com-
prises many challenges, including the dynamic nature of vehicle operations, in-
sufficient information about past services and repairs, and the absence of readily

⋆ The research is funded under the programme of social cohesion “THALIA 2021-2027”
co-funded by the European Union, through Research and Innovation Foundation.



2 A. Giannoulidis et al.

available expert guidance. The intricacies of these challenges underscore the com-
plexity involved in establishing a robust PdM framework for FMSs. In this work,
we delve into the application of PdM in the FMS of Navarchos proposed in [2],
presenting detailed information and insights gained from real-world implemen-
tation. While frameworks like COSMO, as presented in [5], exist for PdM in
vehicles, we distinguish ourselves in several ways. Firstly, our fleet is heteroge-
neous, comprising various vehicle types operating in diverse areas, both urban
and non-urban. Additionally, we address the challenge of partial information con-
cerning the state of vehicles, derived solely from our limited access to a subset
of the vehicles’ service logs. Overall, we aim to contribute valuable perspectives
to the evolving landscape of working PdM systems in fleet management.

Structure. The next section provides the architecture of Navarchos FMS.
Sec. 3 deals with the PdM framework design principles, while Sec. 4 discusses
its implementation. We conclude with the demo description.

2 Navarchos Architecture Overview

The NAVARCHOS AI Fleet Management System (FMS) has been developed as
a cloud-native solution, deployed on a Kubernetes infrastructure directly on bare
metal. This system adopts a microservices architecture, where each Internet of
Things (IoT) subsystem is a distinct, independently deployable service. This ar-
chitecture enables autonomous scaling of each subsystem, significantly enhancing
the system’s overall scalability, simplifying updates to individual components,
and allowing for the selection of the most appropriate technology for each sub-
system based on its unique requirements.

Each subsystem, as well as the FMS as a whole, is continuously monitored to
quickly identify and rectify failures, ensuring swift service recovery. The majority
of subsystems communicate over REST/HTTPS with JSON payloads; JSON is
chosen due to its human-readable format. Nevertheless, for critical performance
subsystems like the GPS tracking gateway, which utilize inherently binary pro-
tocols, a binary communication protocol has been implemented to assure high
performance.

Subsystems are deployed in isolated environments, such as containers, tak-
ing full advantage of Kubernetes’ dynamic workload management and advanced
scalability features. This configuration permits the system to dynamically ad-
just resources (either scaling up or down) in near real-time in response to evolv-
ing business needs. Additionally, the system embraces Continuous Integration
(CI) and Continuous Delivery (CD) practices, enabling frequent updates and
maintaining the system’s currency with minimal downtime. The NAVARCHOS
FMS architecture has been meticulously developed, showcasing a comprehensive,
multi-layered approach to fleet management. This system seamlessly integrates
a broad array of functionalities, specifically designed to meet the advanced needs
of modern vehicle tracking, data processing, and analysis. Below is a detailed
overview of the developed subsystems, also presented in Figure 1:



Predictive maintenance in a fleet management system: the Navarchos case 3

Fig. 1. NAVARCHOS FMS architecture

Edge Devices: Installed across the fleet, these devices capture GPS locations
and vehicle diagnostics, ensuring secure data exchange with the cloud.

Vehicle Data Gateway/Hub: Acts as a secure conduit for GPS locations and
vehicle diagnostics data, compatible with a diverse range of vehicle tracking
protocols.

Data Harvester: This subsystem interfaces with various external data sources
(e.g., via APIs) to aggregate, process, and store both real-time and historical
data, such as weather and traffic conditions, within the NAVARCHOS FMS
infrastructure. This capability is vital for generating timely notifications,
alerts, and underpinning business intelligence and analytics.

Context Broker: Serves as the intermediary for sharing context information
between input subsystems (such as the data gateway and data aggregator,
known as context producers) and other subsystems or users (context con-
sumers) who require this information. It accommodates dynamic roles, al-
lowing entities to act as either producers, consumers, or both, and manages
updates as subscribable events.

Stream Processor: Incorporated within the context broker or as an indepen-
dent subsystem, it processes data streams and integrates them with business
processes, enabling real-time responses to recognized events with notifica-
tions and alerts.

Routing Optimizer Microservice: Processes a sequence of GPS locations to
determine the most efficient route, providing detailed turn-by-turn naviga-
tion instructions to optimize travel paths.

Scheduling Optimizer Microservice: Solves the Vehicle Routing Problem
(VRP) by calculating the optimal delivery routes for a fleet of vehicles, con-
sidering various constraints and objectives, and then providing detailed nav-
igation guidelines.

Map-Matching Microservice: Matches recorded geographic coordinates to
a logical representation of the real world, minimizing storage needs for trip
data, facilitating quicker trip visualization, and standardizing geodata for
subsequent analysis.

Reverse Geocoding Microservice: Transforms geographic coordinates back
into readable addresses or place names, simplifying the visualization and
understanding of trip data for users.



4 A. Giannoulidis et al.

Authentication/Authorization Gateway (AAG): Oversees user authenti-
cation, determining access privileges to the NAVARCHOS FMS and identi-
fying which microservices each user is authorized to use.

Business Intelligence and Analytics Machine: Delivers a holistic view of
collected data, enabling informed decision-making and promoting opera-
tional efficiency and cost savings for fleet-based operations.

Data Storage: Guarantees data availability and resilience, featuring automatic
failover and maintenance operations without causing system downtime.

Visualizer: Provides visualization tools for data, analytics, and insights, espe-
cially regarding driver behavior, and supports the management of vehicles,
devices, and user interfaces.

REST API: Makes system data accessible and supports the integration of
NAVARCHOS FMS with other applications, thereby enhancing both inter-
operability and extensibility.

3 Our PdM Solution

Navarchos’s fleet comprises a variety of vehicles operating in different condi-
tions in terms of driving behavior, route types, weather conditions and so on.
The objective of PdM is this context is to detect which vehicles should perform
maintenance tasks (i.e., unscheduled, non-periodic service) to avoid serious dam-
age, based on their operational state derived solely from sensor data and (partial)
past maintenance event recordings. The absence of appropriate and/or adequate
labels and historical data led us to a non-supervised solution upon Parameter
IDs (PIDs) signals 3; DTCs (Diagnostic Trouble Codes)4 are also monitored,
but, after investigation, they cannot serve our purpose. The main rationale is to
detect deviations from the normal operating condition in vehicles; such devia-
tions are interpreted as early signs of a forthcoming damage. In conclusion, the
primary challenge lies in the requirement to offer precise indications for mainte-
nance requirements while safeguarding the trust of drivers and mechanics. This
underscores the need for enhanced precision in our anomaly score-based alarms.
Such alerts serve to notify both drivers and maintenance managers of abnormal
vehicle operation, prompting the necessary inspections.

To address all the aforementioned challenges, we build a PdM framework,
which does not rely on domain expert active involvement, handles the dynamicity
of the operating conditions, and maintains high precision in predicting failures.
This framework consists of three main modules forming a 3-stage pipeline: 1)
transformation of data in a form that highlights behavioral changes, 2) the con-
struction of a normal reference state of a vehicle, and 3) use of a non-supervised
model to produce an anomaly score. Full details and evaluation results are in
[2], and here we present only a summary.

The first module’s objective is to transform the data into a form where
changes related to the failure state of a vehicle are highlighted. The final choice

3 https://en.wikipedia.org/wiki/OBD-II PIDs
4 https://github.com/mytrile/obd-trouble-codes/blob/master/obd-trouble-codes.csv



Predictive maintenance in a fleet management system: the Navarchos case 5

of these steps depends on the variety and volume of the data that our system col-
lects. Key alternatives include delta transformation, correlation between signals,
frequency-domain transformation, histograms, and so on.

The second module deals with constructing a reference state of vehicle’s nor-
mal operating condition and is closely related to the support of non-supervised
solutions. The idea behind this stage is that, based on the normal operation
state of a vehicle despite the existence of noise, we can calculate a deviation of
that vehicle in real-time by comparing its current state to the reference one. The
extraction of such knowledge (i.e., the normal reference profile), depends on the
actual case and characteristics of the problem. In most PdM cases, we expect
that, in general, a failure state is rarer than healthy/normal operation. Different
approaches exist in the literature regarding this step, for example, in [3], the
authors selected the data of an asset in its starting state as healthy, while in [1],
the authors based the selection of healthy data on the concept of the wisdom of
the crowd, i.e., in any given time point, the majority of a bus fleet performing
the same routes is in a good condition.

Finally, the third module concerns the actual detection of abnormal opera-
tional behavior and thus the need for maintenance. Here, a non-supervised model
that leverages the transformed data and the knowledge regarding the reference
data produces a deviation level (a.k.a, an anomaly score) and alarms for each
vehicle in the fleet in a streaming fashion. The choice for such a model can vary,
where any non-supervised model is applicable without excluding supervised ones
if enough trustworthy data have been gathered. Navarchos currently operates in a
non-supervised manner and three well-known representative types of techniques
employed are similarity-based, reconstruction (deep-learning) models, and re-
gression (or forecasting) ones. We note that the performance of a model depends
on many factors, such as the size of the reference data, the underlying hypothe-
sis used by the model to predict anomalies (e.g., proximity-based techniques use
distance, statistic-based techniques use some kind of distribution, where many
different approaches exist in literature).

Framework Instantiation in our FMS. We provide more details about
how the framework above is instantiated within Navarchos FMS to become op-
erational and effective. As previously, more details are in [2]. Regarding the first
stage, the correlation between the raw features is selected, which lets us observe
behavioral changes between two different periods of vehicle operation. Corre-
lation transformation refers to the calculation of the cross-correlation between
the different data features. Using a sliding window over raw data, we calculate
the correlation between the collected signal data. In more detail, if we consider
that the number of the initial data features are fn, after cross-correlation, we
result in a symmetric fn × fn matrix, which can be considered as a vector with
fn∗(fn−1)

2 features. The idea behind this transformation is that different usages
of vehicles may produce similar correlations. For example, we expect that speed
and rpm are positively correlated regardless of whether the vehicle performs ur-
ban or regional rides under different weather conditions, while a difference in the
correlation of two signals may refer to a failure state.



6 A. Giannoulidis et al.

For the second stage, to define a reference state, we use a period of vehicle
operation after maintenance (or standard service), assuming that the vehicle op-
erates normally after such events without seeking more guarantees. Note that
building the reference state based on such events yields a dynamic solution,
where the reference vehicle profile is updated upon known completion of main-
tenance tasks. Moreover, towards being more flexible, the framework allows the
recollection of the reference data upon request, where data from the current
period can be used for reference.

To instantiate the final stage of our framework, we use the Closest Pair
Detection technique, inspired by solutions such as those in [4, 3]. The technique
calculates the deviation of upcoming data by leveraging a healthy reference.
However, instead of producing a single score for each vehicle, the technique
calculates the distance of upcoming data from the reference data, in each feature
separately. So, if the dimensionality of our data, or the number of features is fn,
then the technique produces fn anomaly scores, by computing the minimum
difference between the value of its feature from the values of the same feature
in the reference data. Alarms are produced from violation of the threshold in
any of fn anomaly scores and are accompanied by a description with the feature
that triggered it.

The above methodology relies on appropriate tuning. For setting the thresh-
old for each score, we decided to use the self-tuning thresholding from [3], which
is useful in dynamic environments and, using the same parameters, a different
threshold is calculated for each vehicle.

4 Navarchos PdM Service Implementation

In this section, we present the pipeline and data flow through the system. The
process begins with data collection from GPS tracking devices installed on vehi-
cles. These data undergo parsing and transformation to become suitable input
for the PdM module. This module then processes the input to generate predic-
tions and trigger alarms when necessary. Figure 2 provides an overview of the
pipeline, presenting the technologies employed at each stage and the type of
data being transmitted. In the following sections, we will detail each step of this
process, starting with data parsing, followed by data processing, and concluding
with an overview of the PdM module.

Data Parsing. Vehicles are equipped with edge devices (GPS tracking de-
vices) that monitor and report the status of various vehicle sub-systems in real-
time. Each tracking device utilizes a specific communication protocol to period-
ically exchange data with a server in the form of data packets. These packets
contain information such as device ID, timestamp, location, speed, temperature,
and so on. The tracking device and communication protocol used in this work
is manufactured by Sinocastel5. The transmitted packets are represented in a
hexadecimal format and need to be decoded to extract the information. This

5 https://www.sinocastel.com/



Predictive maintenance in a fleet management system: the Navarchos case 7

Fig. 2. Data flow of NAVARCHOS PdM

decoding is performed by Traccar6, an open-source GPS tracking server that
supports multiple models of GPS tracking devices and protocols, by providing
real-time tracking in fleet management scenarios. Upon receiving a data packet
from a tracking device, Traccar identifies the protocol used, decodes the incoming
data packet, and extracts information such as device ID, timestamp, location,
and several PID signals. These data are then transformed into a human-readable
format, specifically to JSON, and are then sent to an Apache Kafka topic for
further analysis.

Data Processing. To continuously consume vehicle data from the Kafka
topic to which Traccar sends data, a Spring application was developed. More
specifically, a Kafka listener that consumes sensor data related to pressure, speed,
and temperature of the vehicle engine from this topic was implemented. When a
new message arrives, the listener receives it and stores the important information
in a database table; the database we utilized is PostgreSQL with provisions for
the cases where data volumes grow very large. If the message contains all six of
the required PID features without any outliers, based on specified thresholds, it
is also stored in a buffer table. This buffer is used to implement the first stage of
the PdM framework (Section 3), which is the data correlation transformation.
More specifically, the Pearson correlation coefficient between the PID features
is calculated using the last m (m=300) stored signals. This calculation of the
correlation between features takes place every 100 new samples, and the results
are submitted along with the timestamp and vehicle ID to the PdM Module
through an API. In return, the PdM Module for each submitted message returns
a response with the anomaly scores for all features and corresponding thresholds,
an indication for alarms, and a description.

PdM Module. The PdM module essentially implements the second and
third stages of the proposed PdM framework. It is based on a simple commu-
nication scheme, where two functionalities are implemented, namely 1) data
sample collection, and 2) event collection. In both cases, data and events arrive
with two tag values, a vehicle ID, which indicates the vehicle to which the data
or the event is related, and a timestamp. Examples of events are services, DTCs,
and user-defined events. The data sample represents a record with the available
features. When a new event or data sample from a vehicle (or source) arrives,
the system checks if corresponding models exist for that vehicle; if not, it creates

6 https://www.traccar.org/



8 A. Giannoulidis et al.

one. After that, in the case of data samples, the corresponding model before cal-
culating anomaly scores, checks if reference data exist for that source. When no
reference data are available, the PdM module takes care of creating the reference
set from the upcoming data; this will stop when criteria regarding the size of
the reference set are met. When a reference set exists, the method produces the
anomaly scores for all features and returns the decision (along with scores and
thresholds). Finally, the events are used to trigger the reset of the models i(i.e.,
the recalculation of reference data with the new upcoming data) on the fly. To
this end, the models are saved on a separate database, so that, in case of system
failure, to start from their last state.

5 Demo description and Conclusions

The demo will showcase a successful scenario of detecting failures in operating a
vehicle using NAVARCHOS FMS bringing all the aforementioned functionalities
together. The scenario involves a stream of raw data produced by a specific vehi-
cle, emphasizing crucial stages of the data flow, encompassing the computation
of the anomaly score in a streaming fashion, illustrating how this aids in mitigat-
ing upcoming failures. The demo commences with the presentation of upcoming
vehicular raw data while the vehicle is in operation. Subsequently, the next stage
of the data flow reveals the transformation of raw data into a readable format
(JSON), which also encapsulates the signals used for failure prediction. Moving
forward, the results of data collection in batches and the extraction of correla-
tion features are displayed. Lastly, in the concluding part of the scenario, the
anomaly score is computed and presented for each feature as described in Section
3. The analytical results, encompassing raw anomaly scores and a user-friendly
indicator for the vehicle, will be visible as part of NAVARCHOS FMS.

Overall, we present a state-of-the-art PdM framework and an exemplary
instantiation of it to serve the needs of a real-world FMS.

References

1. Fan, Y., Nowaczyk, S., Rögnvaldsson, T.: Evaluation of self-organized approach for
predicting compressor faults in a city bus fleet. INNS Conference on Big Data pp.
447–456 (2015). https://doi.org/https://doi.org/10.1016/j.procs.2015.07.322

2. Giannoulidis, A., Gounaris, A., Constantinou, I.: Exploring unsupervised anomaly
detection for vehicle predictive maintenance with partial information. In: EDBT.
pp. 753–761

3. Giannoulidis, A., Gounaris, A., Nikolaidis, N., Naskos, A., Caljouw, D.: Investigating
thresholding techniques in a real predictive maintenance scenario. SIGKDD Explor.
Newsl. 24(2), 86–95 (dec 2022), https://doi.org/10.1145/3575637.3575651

4. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.J.: Matrix profile goes MAD: variable-
length motif and discord discovery in data series. Data Min. Knowl. Discov. 34(4),
1022–1071 (2020)

5. Rögnvaldsson, T., Nowaczyk, S., Byttner, S., Prytz, R., Svensson, M.: Self-
monitoring for maintenance of vehicle fleets. Data Mining and Knowledge Discovery
32(2), 344–384 (2018). https://doi.org/10.1007/s10618-017-0538-6


