
Parameter-free Streaming Distance-based
Outlier Detection

Apostolos Giannoulidis
Aristotle University of Thessaloniki

Thessaloniki, Greece
agiannous@csd.auth.gr

Nikodimos Nikolaidis
Atlantis Engineering
Thessaloniki, Greece

nikolaidis@atlantis-engineering.com

Anastasios Gounaris
Aristotle University of Thessaloniki

Thessaloniki, Greece
gounaria@csd.auth.gr

Abstract—Dealing with anomaly detection in streaming data
using distance-based techniques suffers from sensitivity to the
input parameters. To solve this problem, we propose a parameter-
free self-tuning solution, which can decide optimized parameters
on the fly. Our technique achieves better or equal performance
with traditional distance-based solutions even when these have
been fine-tuned.

Index Terms—distance-based outlier detection, data streams

I. INTRODUCTION

Distance-based outlier detection is a particularly popular
family of techniques for data anomalies [1]–[3] and one of
its strongest advantages is that lends itself to efficient imple-
mentations for data streams [4]–[15]. Informally, it employs
two main parameters, k and R along with a distance function.
Any object (a.k.a. data point) for which less than k other data
points are within distance R is considered an outlier.

These two values, namely k and R, are the two main input
parameters and the performance of distance-based techniques
is highly dependent on them, given also the curse of di-
mensionality, which is existent in multidimensional settings,
like multivariate time series. Running multiple combinations
of k and R, e.g., [14], [16] does not solve the problem
of auto-configuring the parameters despite the performance
penalty it incurs. Moreover, any self-tuning solutions, to be
applicable for data streams in an online manner, need to
require no training and usage of historical data. To deal with
the aforementioned challenges, we propose a parameter-free
self-tuning distance-based outlier detection method that can
outperform distance-based techniques even after the latter are
fine-tuned.

Related Work. A review on autoML for anomaly detection
is conducted in [17], where, in the case of unsupervised
techniques, it explicitly highlights the need for novel auto-
tuning techniques. A recent work on automatic anomaly de-
tection is presented in [1], where two novel methodologies for
automated anomaly detection are presented; nevertheless, both
of them are not applicable in a streaming setting. Regarding
streaming anomaly detection, there are several methodologies
in the literature. In [15], tree-based techniques such as HST
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and RRCF [18], [19], projection-based techniques such LODA
and xStream [20], [21], along with proximity and density-
based techniques are reviewed and analyzed. Another method
for streaming anomaly detection, called SAND, is proposed in
[22]. SAND tries to find anomalies in univariate time series
by looking into sub-sequences of time series. A common
approach for online settings is the use of distance-based
outlier detection, where anomalies are detected based on the
proximity of data using the concept of time window [23],
[24]. In this case, the need for effective parameter tuning
is aggravated and thus approaches for considering multiple
sets of parameters simultaneously are proposed [14]. Although
multiple parameters provide a broader image regarding outliers
in the data streams, the user still has to decide the anomaly
thresholds. In general, the problem of tuning thresholds in
anomaly detection is not new and has been explored in works
like [25] and [26].

Contribution and Structure. Our contribution lies in the
proposal of a novel technique for automated distance-based
outlier detection, inspired by tuning techniques for anomaly
score thresholds [25]. The proposed solution (i) aims to auto-
tune the selection of the k and R parameters of distance-
based outlier detection, (ii) is tailored to data streams, and (iii)
requires no training at all. Moreover, the solution inherently
adapts to concept drifts, because it continuously refines the pa-
rameters and, in our experiments, achieves higher performance
against the statically fine-tuned solution of classical distance-
based outlier detection. On average, the F1 score when the
objective is to detect an anomaly within a range increases by
2.2X. The complete codebase is available.1

In Sec. II we introduce the definitions and the methodology,
while in Sec. III, we evaluate our technique against a baseline.
We conclude in Sec. IV.

II. DEFINITIONS AND METHODS

Definition 1 (Object neighbors [2], [23]): . Let R > 0 be a
positive threshold. Two data objects pi and pj are neighbors,
if the distance between them according to a defined function
dist() is no larger than R. The function nn(pi, R) denotes
the number of neighbors that a data object pi has, given the
parameter R.

1https://github.com/agiannoul/ADBOD



TABLE I
NOTATION USED IN THIS WORK

Annotation Description
pt A multidimensional data point with timestamp t
w The size of the (sliding) window
s The size of the slide
Wi A set with all the data points in a particular time window
Oi A set with all the outliers in the Wi

dk(pt) The distance of pt from its kth nearest neighbor inside a window
Dk A set of dk(pt) values for all data points in a window
C A set of candidate k parameter values
ci A particular choice for k parameter from C

Rk A set of candidate R parameters for a particular k
rci or rk A particular choice of the R parameter from Rk

µ(Dk) mean of distances in Dk (mean of anomaly scores)
σ(Dk) standard deviation of distances in Dk (standard deviation of anomaly scores)

Definition 2 (Distance-based outlier [2]): Given a set of
points P and the threshold parameters R and k, a point pi ∈ P
is an outlier if the number of its neighbors nn(pi) < k, i.e.,
the number of points pj , j ̸= i for which dist(pi, pj) ≤ R
is less than k. Equivalently, given a set of points P and the
threshold parameters R and k, a point pi ∈ P is an outlier
if its distance from its kth closest neighbor dk(pi) is greater
than R.

To apply distance-based outlier detection over time series
or streaming data, the sliding window concept is employed.
In its main count-based form, only the last w values of the
time series are taken into account and window slides may not
necessarily occur after a new point arrives; the slide length is
defined as s. In general, sliding windows partially overlap on
the time axis. If s = w, we have the specific case of tumbling
windows, whereas values of s > w are rarely considered
because they essentially discard data points from processing.

Given a multivariate time series P = {p0, p1, ..., pn}, where
each data point pt is collected at a specific timestamp t
with pt ∈ Rm (m is the dimensionality of that data), our
task is to report distance-based outliers that correspond to
real anomalies in the data. In continuous outlier detection
over streams, given a window W of length w and slide of
length s, we report distance based outliers for all windows

Wi = {ps∗i, ps∗i+1, . . . , ps∗i+w−1} until w + s ∗ i > n. This
process generalizes to infinite streams and time-based windows
in a straightforward manner. Table I summarizes the notation.

A. Distance-based Outlier Detection (DOD) in Data Streams

By using the concept of sliding window and Definition 2,
we can report outliers for each window slide. To this end, any
exact continuous distance-based outlier can be used [4]–[13],
[15]. These solutions differ in their latency but they report the
same outliers. In a brute-force manner, to detect outliers in
every Wi, the pairwise distances between all data in Wi are
calculated. Based on these distances, we can construct the set
of outliers Oi = {pi ∈ Wi|dk(pi) > R}.

To yield more concise results, post processing across multi-
ple slides is possible following many strategies. For example,
we may report an outlier only in the first window slide it
appears, or if there is at least one window slide where the
corresponding data point is active, or if it is an outlier in all
window slides, to which it belongs.

B. Dynamic K and R (Dyn)

Selecting an optimal k and R parameter combination is not
straightforward and, moreover, in a streaming environment, it
is not realistic to assume that processing historic data, i.e.,
data from past windows, is a practical approach. In addition,
there is no guarantee that a particular choice of parameters will
continue to be appropriate in the future since the behavior of
data may change due to concept drifts. In our solutions, we
tackle these challenges through automatically updating k and
R in each window Wi.

Our novel solution is inspired by techniques to dynamically
set thresholds on anomaly scores, e.g., in demanding predictive
maintenance use cases [25], [27]. We use an objective function
to define the R and k parameters in each window to detect
distance-based outliers. More specifically, in each window
slide, we consider a predefined set of candidate values for
parameter k, C containing natural numbers. For each cj ∈ C,

Fig. 1. Overview of our solution for selecting an optimal k and R combination for each window slide.



we calculate a set of possible R values based on the distances
from the cthj nearest neighbor of all data points in the window,
notated as Dk = {dk(pt),∀pt ∈ Wi}. The candidate values of
R parameters for a specific cj (or k) parameter are denoted as
Rcj = µ(Dcj ) + z ∗ σ(Dcj ), where z belongs to a predefined
range. In our experiments z ∈ [1, 10]. Thus, overall |C| ∗ |z|
pairs of k and R parameters are examined.

Then, leveraging the idea in [25], we select the parameters
according to the following formula, where r

cj
i ∈ Rcj , i =

1, . . . , |z|:(k,R) = argmax
(cj ,r

cj
i )

obj(cj , r
cj
i )

obj(cj , r
cj
i ) =

∆µ(Dcj )/µ(Dcj ) + ∆σ(Dcj )/σ(Dcj )

|Oi|

where, ∆µ(Dck) = µ(Dck) − µ(dk ∈ Dck |dk < r
cj
i ) and

∆σ(Dck) = σ(Dck)− σ(dk ∈ Dck |dk < r
cj
i ).

The main idea is to select the combination of parameters k
and R that incur the greatest decrease in the mean and standard
deviation of distances to the kth nearest neighbor when outliers
are removed, while also penalizing large numbers of outliers.
The intuition behind this is that such a combination better
distinguishes some points (the anomalies) from the remainder
of the window contents. An illustration of that process for a
specific ck in a specific slide is depicted in Figure 1.

An important note is that instead of using the raw distances
of the kth nearest neighbor Dcj to calculate candidate thresh-
olds, it is preferable to apply a min-max normalization on
Dcj since, as k increases, the distances tend to have smaller
proportional differences, which would affect the effectiveness
of the objective function. Finally, we need to account for the
cases in which there are actually no outliers. The objective
function inherently considers some of the points as outliers and
detects the manner in which these are most distinguishable.
This problem was not encountered in dynamic thresholding
works, such as [25], due to the use of historic values; we
differ in that we update parameters in every single slide. To
address the problem of always reporting outliers even if the
Dcj distances do not differ significantly, p is reported as an
outlier iff dk(p)−R

dk(p)
> ϵ, where ϵ is a small constant (in our

experiments, we set it to 0.05).

III. EVALUATION

To evaluate the performance of our Dyn proposal, we
choose the Yahoo Dataset [28], which contains 4 sets of
univariate time series (referred to as A1-A4) with labeled
anomalies, summing in total to 367 time series. On average,
the length of each time series is 1561 and anomalous points
are approximately 0.4% of the total dataset. Since we are
interested in multivariate anomaly detection, we consider sub-
sequences of the time series to perform anomaly detection. So
for each timestamp, we use the last sl (sub-sequence length)
of points as a single vector. We test W values of 200 and
400, while the slide is half the size of W for all experiments.
Furthermore, we test sl values of 2, 10, and a suggested
subsequent length based on auto-correlation, as calculated in
[29]. When sl > 2, we also test feature extraction (e.g., mean,

standard deviation, and so on) from the sub-sequence instead
of analyzing raw data. Finally, we check several values for k
and R parameters (42 combinations in total, in the case of
DOD). Min-max is initially not employed. Full details and
reproducible settings are available in our code repository.

To measure the performance of the techniques, we use
the range-based metrics of recall and precision [30]. More
specifically we adopt the AD1 and AD2 levels as defined in
the Exathlon benchmark [31]. In AD1, we get the maximum
recall value, i.e. 1, if an outlier is detected within an anomaly
range, while AD2 recall is proportional to the relative size
of detected outliers reported during the anomalous periods.
In both cases, the precision is computed as the ratio of the
outliers detected within the anomaly range and all detected
outliers. Due to space limitations, we report only F1 scores.

Comparison against global choices of k and R. Initially,
we pick the parameters for which the median of AD1 F1
and AD2 F1 across all time series is maximized. This allows
us to evaluate the best choice of k and R parameters for
DOD against Dyn. The results are in Figure 2. It is worth
noticing that to achieve the results shown, for Dyn, only 12
different combinations of parameters are examined (since no
k and R have to be defined), while for DOD 504 parameter
combinations are tested.

The results provide evidence that using a constant fine-tuned
choice of k and R for DOD provides worse results than our
auto-tuned Dyn, i.e., our solution is both effective and easy
to employ. The average AD1 F1 increases in the datasets
range from 1.65X to 3.44 (mean 2.2X). For AD2, the average
increase is 1.24X.

Comparison against locally optimal choices of k and
R. We also test the performance of DOD, when, instead of
selecting globally optimal k and R parameters for all time
series in the dataset, we fine-tune the selection of k and R
for each time series individually. The results can be seen in
Figure 3. Dyn is still better in AD1 F1 (1.89X F1 average
increase) and achieves similar performance regarding AD2 F1.
The main difference in this experiment is that Dyn selects an
optimal k and R combination for each window, while DOD
selects a combination that remains constant for the complete
time series, which is problematic in large time series because
it cannot adapt to drifts.

Finally, we note that the achieved results on the Yahoo
dataset are similar to or better than those reported in [29]
in absolute numbers, but no direct comparison can be made.
This provides evidence that distance-based outliers is a suitable
solutions for detecting anomalies in this specific dataset.

Generalization. Extending the experiments above by im-
plementing min-max normalization on the data, we derive
the general remark that the Dyn approach achieves better or
similar results with globally fine-tuned DOD, while only in
one case (when using normalization), DOD achieves better
results. When we fine-tune DOD for each time-series, Dyn
achieves a higher median AD1 F1 score in 41.7% of the
cases and in 45.8% of the cases, the results were similar
(difference less than 0.02 in F1); in only 12.5% of the cases



Fig. 2. Results for fine-tuned parameters on Yahoo Dataset produced by a global k and R combination, which achieves the highest median AD1 and AD2
F1 score respectively. Each mark in (c) and (f) represents one time series from Yahoo Dataset and each mark type denotes a different time series.

Fig. 3. Results when we select best k and R for DOD for each time series separately.

Dyn performed worse.
Regarding execution time, if we use DOD without any

optimization (like MCOD [23] or multi-query flavors [14],
[16]), both techniques have complexity O(|W |2). In Figure
4, we present the runtime in all time series, for different W
and sub-sequence lengths. All the experiments were conducted
on a single machine with 16 GB memory and an Intel core
i5 CPU with 4 cores operating at 3.20GHz. For DOD, the
execution needs to be repeated for each k and R combination
investigated, which is not the case for Dyn.

IV. CONCLUSION AND FUTURE WORK

We presented a self-configuring distance-based outlier de-
tection technique, which provides better or equal results in
most of the cases compared to a fine-tuned traditional distance-
based approach. Zero training or initial configuration is re-

Fig. 4. Execution time for different W and sub-sequence size.

quired when applied to time series, thus it is particularly useful
for streaming scenarios, while it is inherently adaptive to
concept drifts. In the future, we plan to extend our solution to
increase its efficiency and investigate data engineering issues
involved and additional objective functions in depth.
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