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Abstract—We propose a distributed fabric over a set of au-
tonomous databases over an edge network that enables decentral-
ized querying, addressing privacy concerns and enhancing per-
formance. Employing SQLite instances per edge device, Docker,
Kafka, and the Spring Framework, the system demonstrates
efficient synchronization and scalability in querying.

Index Terms—Edge computing, SQLite, peer-to-peer, decen-
tralized storage

I. INTRODUCTION

In today’s rapidly advancing technological landscape, tradi-
tional data handling pipelines often struggle with inefficiency.
Edge computing [1] is a transforming paradigm offering effi-
cient and decentralized data processing capabilities. It accounts
for applications closer to data sources, like IoT devices or local
edge servers, promising benefits such as improved latency
times and enhanced bandwidth availability. However, to date
there is no system for autonomous edge devices supporting
CRUD operations locally, but also allowing each device to
join a network so that it can receive queries even for remote
data. Imagine, for example, a telemetry application, where
each edge device locally stores its monitored information, such
as CPU and memory load, and a user can submit queries to
any known device to retrieve data referring to all devices in
the network. To support such applications, a novel storage
fabricate is proposed, designed to store data locally, with the
usage of a local database like SQLite, while enabling seamless
data access and retrieval across distributed edge nodes. The
complete solution is available as an open-source system1.

II. SYSTEM DESCRIPTION

The proposed system architecture for the edge computing
framework employs a combination of advanced technologies
to ensure high performance, scalability, and security. More
specifically, each node hosts a dedicated SQLite [2] instance
to locally store and manage data, ensuring that data generated
by each node is preserved and can be accessed with minimal
latency. Additionally, the framework includes a communica-
tion layer to facilitate interactions between different nodes in
the network, enabling the execution of distributed queries. The
nodes are connected in a peer-to-peer manner [3], [4] and

1https://github.com/pantelis17/StorageFabricForEdgeDevices

Fig. 1. Architecture of the implemented framework

employ a distributed hash table (DHT) [4], [5] to achieve their
synchronization. A visualization of the architecture can be seen
in Figure 1.

The system is implemented using Java 21, Spring 3.1 [6],
JPA [7] and Hibernate 6 [8], providing a robust foundation for
the application. Furthermore, Apache Kafka [9] is integrated
for its event-driven architecture, which enables seamless com-
munication between distributed nodes and autonomous task
execution without extensive coordination. This integration is
critical for maintaining system resilience and scalability.

Main Functionalities. The framework supports several key
functionalities, which are called flows, that are all essential
for efficient edge computing operations. Currently, it contains
seven flows: ”New Node”, ”Sync”, ”Add”, ”Delete”, ”Fetch”,
”Lifecheck” and ”Down Nodes”. With the usage of these
flows, the framework is capable of supporting the following
functionalities:

• New Node: This flow is initiated when a new node
inserts the fabric (i.e., joins the network). This entails
announcing its existence and initiating a fast warm-up,
including syncing its data with the rest of the nodes.

• Lifecheck: it verifies the status of a node, i.e. active and
inactive, using periodic checks.

• Down Nodes: This flow is responsible for removing an
inactive node from the network. Along with the node, the
flow removes also the metadata concerning the specific
node.

• Sync: It allows the nodes to exchange metadata regarding
their locally stored data. After the sync process, each
node has the necessary information to fetch a specific



data point from its source node.
• Add new metrics to a node: This flow allows users to

add a metric, e.g., CPU usage, from a container or pod
to the database of a target node.

• Delete an existing metric from a node: It enables users
to remove a metric from the database of the target node.
This flow ensures that the deletion is propagated to other
nodes, maintaining data integrity.

• Fetch values: This flow allows users to retrieve metrics
from a node even if the data are stored on another node
of the cluster. Also, if the user specifies a specific metric
type, then the system can return the metrics from every
node in the network which, according to its metadata,
contains metrics of the specified type.

More details along with evaluation experiments can be found
in the provided GitHub repository.

Extensibility. The architecture is designed to be extensible,
allowing for future enhancements and integrations. Addition-
ally, it is configurable to adapt to different requirements. Here
are some key extensibility points:

• Modular Components: The architecture is designed with
modular components, allowing individual modules to be
updated or replaced without affecting the entire system.
This facilitates easy integration of new features and
technologies. For example, it is easy to replace SQLite
with any other database as it requires changes only in
one class of the codebase.

• Configurable Parameters: The synchronization mech-
anism between nodes can be adjusted to balance load
and performance. This allows the system to maintain
efficiency even as the number of nodes increases signif-
icantly. Also, the cutoff threshold for the response time,
currently set to 4 seconds by default, can be adjusted if
the system is expected to return a vast amount of data.

• Enhanced Security Measures: Future enhancements can
include implementing security protocols, such as user
authentication and encryption, to protect sensitive data
and ensure secure communications within the network.

• Customizable Data Management: The data manage-
ment strategies can be tailored to meet specific applica-
tion needs, including data aggregation, real-time analyt-
ics, and optimized data querying mechanisms, e.g., use
of semi-joins.

III. DEMO SCENARIO DESCRIPTION

During the demonstration of our application’s performance
and response validity, a complete workflow of setup and
execution will be presented. Docker [10] will be used for
the deployment of the required volumes, network and nodes.
Initially, Kafka services will be started, and a node will be
initiated. Metrics will be added through Postman requests,
followed by the initiation of an additional node. This new node
will send a Kafka message, it will be processed by the first
node, which will then send back an abstract description of its
data. Metrics will be added to the new node, and requests for
memory usage metrics will be performed. The first node will

return only its metrics due to the lack of synchronization, but
the second node will return metrics from both nodes because
of initial synchronization.

After waiting a few minutes for synchronization, identical
results will be returned from both nodes. Another node will
then be started, and the Kafka message will be sent. One of
the two active nodes will receive the message and synchronize
with the new node, producing the same results as the other
nodes. After shutting down the second node and resending
the request from the new node, the second node will fail to
respond. A lifecheck request will be sent, and upon failure, a
Kafka message will be broadcasted to all nodes, identifying
the second node as down. Resending the request will confirm
the second node was skipped.

The second node will be restarted, retrieve its data from the
previous database, and send a Kafka request. Again, one of
the two active nodes will receive it and send a sync request.
Until synchronization is complete, only the second node and
the node who receive the Kafka message will return full
results. After synchronization, the remaining node will update
its metadata, and requests will be accurate. A new cpu usage
metric will be added to the third node, and only this node will
return results until synchronization, after which all nodes will
return the full result.

Finally, we will delete the cpu usage metrics from the third
node. After synchronization, cpu usage will be removed from
the other nodes’ metadata. Re-adding the metric and sending
a request will result in the third node responding as expected.
During synchronization, information about cpu usage will be
sent to the first and second nodes but will be ignored due to the
active deletion constraint. This will persist through the second
sync request, but by the third sync, all nodes will respond
correctly to cpu usage requests.

IV. CONCLUSION

We present a novel approach to implementing a distributed
storage fabric system over a set of independent databases,
designed to address the inefficiencies and challenges of tra-
ditional centralized data handling pipelines and the absence
of a distributed database for autonomous collaborative edge
devices. By leveraging SQLite and Kafka, the proposed system
achieves efficient data processing, enhanced security, and scal-
ability. The modular architecture allows for easy integration
of new technologies and future enhancements, making it a
versatile solution for various edge computing applications.
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