
Exploiting general purpose big-data frameworks
in process mining: the case of declarative

process discovery

Ioannis Mavroudopoulos1, Konstantinos Varvoutas1, Georgia Kougka1,
Anastasios Gounaris1, and Marco Comuzzi2

1 Aristotle University of Thessaloniki, Greece
{mavroudo,kmvarvou,georkoug,gounaria}@csd.auth.gr

2 Ulsan National Institute of Science and Technology, South Korea
mcomuzzi@unist.ac.kr

Abstract. Declarative process models are a flexible tool to capture the
process model in unstructured and highly variable business scenarios.
Extracting declarative process constraints, however, is a computation-
ally intensive task and, as the volume of log data increases, efficiently
extracting constraint template occurrences becomes challenging. While
there have been efforts to improve the performance of declarative con-
straint extraction, we argue that solutions can be seamlessly derived by
adapting application-agnostic pattern analysis techniques for big data to
this task. In this work, we propose a solution for the efficient extraction
of declarative constraints, specifically those described in the Declare lan-
guage, without the limitation of developing tailored systems for declar-
ative processes. We build on top of a recent scalable framework, named
SIESTA, which can perform efficient pattern analysis on large log files.
Our approach yields promising results, significantly outperforming the
existing Declare Miner and MINERful solutions.

Keywords: Business Process Constraints · Process Mining · Big Data.

1 Introduction

Process mining (PM) is a discipline within Business Process Management (BPM)
that aims at extracting useful knowledge from the so-called event logs, that is,
logs of the information systems that support the business process (BP) exe-
cution [10]. The principal use case of PM is process discovery, which aims at
obtaining a model of the control flow of a process, capturing the order in which
the activities in an event log are usually executed. Imperative process models [1]
aim at capturing explicitly all the control flow relationships among classes of
activities. In scenarios characterized by high variability, such as diagnosis and
treatment in healthcare, declarative process models [13] are often more appro-
priate. These take the form of a set of constraints on the order of activities in
the process execution, e.g., activity b cannot happen after activity a. Within the
boundaries set by those constraints, process execution can be left free.

Process discovery in declarative process modelling turns into extracting declar-
ative constraints among activities in an event log [13]. Declare [19] is one of the
languages that can be used to express such constraints. In process discovery and
other scenarios, such as anomaly detection, calculating the support of constraints
in a log can be crucial. In such cases, extracting Declare constraints can be a
computationally challenging task. Intuitively, discovered Declare constraint tem-
plates must be checked against every trace in a log to verify their support. While
some methods have been proposed to efficiently extract Declare constraints as
logs grow larger by exploiting parallelism [3,16], we argue that more can be done
by adapting general-purpose big data pattern analysis frameworks to the task
of declarative process constraint extraction.

One such example of general-purpose big data pattern analysis framework
recently published is SIESTA [18,17], a scalable system specifically designed for
efficient pattern analysis over large log files. Its efficiency relies on building in-
verted indices of continuously arriving logs, which can then speedup pattern
query execution. The primary focus of this work is the efficient extraction of
all the patterns presented in the Declare modeling language [14,6] extending
SIESTA’s query processor and leveraging the built indices, thus alleviating the
need to build tailored declarative pattern extraction tools in the BPM commu-
nity. Declare patterns include the patterns usually employed in process mining,
along with numerous additional ones, providing a more comprehensive collection
of constraints.

The results of our approach are promising. We efficiently extracted the com-
plete set of Declare patterns from three real-world, large business process log
files, encompassing 1.2 to 2.5 million events, in less than three minutes using a
commodity machine. In contrast, leading competitors such as the Declare Miner
[15], used by RuM [2], required significantly more time. The performance advan-
tage of our solution becomes even more pronounced when the extraction process
is executed multiple times with varying support thresholds, which is when our
indices are better utilized. In such scenarios, Declare Miner required up to 15.6
times longer, while MINERful [7] was overall 1.63 times slower. Additionally,
through artificially generated event logs containing hundreds of event types and
up to 10M events, we demonstrate that our solution scales better than the com-
petitors. Our implementation is publicly available.3Overall, our paper shows how
the BPM community can leverage effectively existing general-purpose big-data
analysis frameworks, without needing to rely on ad-hoc solutions specifically
tailored to event log data.

The remainder is structured as follows: Sec. 2 and 3 present the related work
and the background, respectively. Our contribution, showcasing how we leverage
SIESTA’s indices for efficient extraction of the Declare patterns, is presented in
Sec. 4. Sec. 5 reports on the performance evaluation, while we conclude in Sec. 6.

3 https://anonymous.4open.science/r/SequenceDetectionQueryExecutor-046B

https://anonymous.4open.science/r/SequenceDetectionQueryExecutor-046B

2 Related Work

Our work relates to several other proposals in declarative process modelling.
Extracting constraints from real-world processes by focusing on the discovery of
Declare models in Linear Temporal Logic (LTL) based on event logs has been
investigated by [15]. The main proposal comprises a two-phase approach em-
ploying the Apriori algorithm to generate a list of candidate Declare constraints.
These are further pruned based on relevance using various metrics, including
confidence, support, interest factor, and so on. This approach is similar to our
work in that we both focus on search space reduction. However, our solution
emphasizes performance issues. Another approach that extends the rationale of
[15] for parallel discovery of declarative process constraints is introduced by [16]
and aims to improve the time performance exploiting concurrency. The work
in [16] discusses a Declare Miner plug-in of the ProM PM toolkit [9] that uses
Declare modeling for efficient model discovery by combining it with a group
of algorithms for sequence analysis apart from Apriori. Additionally, the par-
allelization is achieved by two different partitioning methods: search space and
database partitioning. Note that SIESTA is scalable by design and capable of
benefiting from massive parallelism through its implementation in Spark and the
underlying data storage layer.

The MINERful algorithm is another process mining approach proposed by
[7] for discovering declarative process constraints. This is also a two-phase tech-
nique, where the first phase produces statistical information extracted from event
logs, while the second one estimates the constraints. This approach has also been
extended by [21], who implemented a tool, named UnconstrainedMiner, for fast
and accurate mining Declare constraints without requiring predefined assump-
tions about the model. This tool manages to handle large logs efficiently in
parallel and provides all constraints for post-processing to transform event data
into a structured format for immediate constraint mining and the addition of
new constraints based on their LTL semantics. However, as shown by [7], MIN-
ERful is faster than UnconstrainedMiner. Both Declare Miner and MINERful
have been implemented in the rule mining toolkit RuM [2]. RuM is a repre-
sentative example of an artifact that integrates multiple Declare-based process
mining methods. In terms of implementation, the Declare4Py package [8] has also
been proposed. It implements several declarative process modelling techniques,
but without an explicit focus on performance, particularly as far as declarative
constraints discovery is concerned.

There are also other approaches, such as [5] and DisCoveR [4], that also dis-
cover and utilize declarative constraints similar to those described in the Declare
language. Our solution efficiently discovers frequent patterns that adhere to De-
clare constraints, which can later be utilized in various applications. Unlike the
approaches in [5] [4], our method does not focus only on discovered patterns that
appear in all traces in a log, as the discovered patterns depend on a user-defined
support threshold. Specifically, [5] aims to extract patterns that describe all the
possible execution paths of a business process, resulting in rules with multiple
alternatives, e.g., "activity A is followed by B or C". DisCoveR extracts patterns,

modeled as Dynamic Condition Response (DCR) graphs, that hold true in all
traces of an event log. Therefore, these approaches normally yield a smaller set
of patterns compared to our solution. Regarding expressivity, the method in [5]
does not consider most of the unordered, existence, and position templates, as
well as the alternate ones. However, it does capture the cyclic and concurrency
relationships, which can only be implicitly deduced by Declare patterns (e.g.,
concurrency can be inferred by the co-existence of two activities without a spec-
ified order). DisCoveR supports most Declare constraints but lacks templates
like responded existence and chain precedence. Additionally, both DCR and the
Compliance Request Language (CRL) [11] can describe constraints based on
attributes such as time and resources, which SIESTA currently does not sup-
port. Note that our SIESTA-based solution, through its integration with a CEP
engine, can detect any pattern expressible as a regular expression of activities
without nested expressions.

Finally, it is important to note that there is another set of open-source im-
plementations [20,22,3,12] that perform process mining and pattern extraction
from event logs using SQL or graph-based database architectures and technolo-
gies. The approach by [20] applies SQL queries to relational event data, while
[12] propose a novel data model for more efficient querying and event data trans-
formations using Neo4j’s Cypher graph query language. A similar interesting re-
search direction is proposed by [22], where the encoding of event logs as graphs
in Neo4j is adopted for compliance checking. Additionally, the compliance rule
evaluation by pre-defining the data structure is addressed by [3], where the recent
MATCH_RECOGNIZE SQL extension is shown to be the dominant solution.
In this paper, we also compare our proposed solution against both Neo4j and
MATCH_RECOGNIZE.

3 Preliminaries

We begin with a brief description of the notation and an overview of the SIESTA
system along with the proposed indexing extension to support the extraction of
Declare constraints (described in Sec. 4). SIESTA is an infrastructure for efficient
support of sequential pattern queries based on inverted indices, generated from a
logfile L containing timestamped events E. The events are of a specific type and
are logically grouped into sets called cases, sessions, or traces. More formally:

Definition 1. (Event Log) Let A be a finite set of activities (aka tasks). A log
L is defined as L = (E,C, γ, δ,≺), where E is the finite set of events, C is the
finite set of Cases, γ : E → C is a function assigning events to Cases, δ : E → A
is a function assigning events to activities. An event ev ∈ E that belongs in a case
σ ∈ C, is a tuple that consists of at least a recorded timestamp ts, denoting the
recording of task execution, an event type type ∈ A (i.e., δ(ev) = ev.type), and a
position pos, denoting the position of the event in σ (i.e., σ = ⟨ev1, ev2, . . . , evn⟩
and evi.pos = i). Finally, ≺ is the strict total ordering over events belonging to
a specific case, deriving from the events’ timestamp.

Logfile

Preprocess

Append events

User

S3

Query
Processor

CEP

Database Layer

(a) Architecture

Indices

IndexTable

(A, A) -> [(t1, 1, 2)]

(B, C) -> [(t2, 2, 3)]
(A, C) -> [(t2, 1, 3)]
(A, B) -> [(t1, 1, 3), (t2, 1, 2)]

SingleTable

(A) -> [(t1, 1), (t1, 2), (t2, 1)]

(C) -> [(t2, 3)]
(B) -> [(t1, 3), (t2, 2)]

CountTable

(A, A) -> (1, 1)

(B, A) -> (1, 1)
(A, C) -> (1, 2)
(A, B) -> (2, 3)

available et-pairs

(A,A) (A,B) (A,C) (B,C)
t1 = <A, A, B>
t2 = <A, B, C>

Logfile

(b) Indexing example

Fig. 1: System overview

The event timestamps provide an ordering between the events that belong
in a trace. SIESTA requires a clear ordering between the events in each trace to
accurately create its indices. Therefore, we assume that two events within the
same trace cannot have the same timestamp. As evident from real-world event
logs, the timestamp of each event typically corresponds to either the beginning of
the activity or its completion. Although event logs may also contain timestamps
related to lifecycle information, e.g., when activity is enabled or paused, these
are not required by our implementation. Below, we provide the main definitions.

Definition 2 (et-pair). An event type pair, or et-pair for short , is a pair
(ai, aj), where ai, aj ∈ A.

Definition 3 (event-pair). For a given et-pair (ai, aj) and a sequence of events
σ = ⟨ev1, ev2, ..., evn⟩, there is an event-pair (evx, evy), if x < y ∧evx.type =
ai ∧ evy.type = aj and evx, evy ∈ σ. Note that based on this definition, the
events in a event-pair do not have to be consecutive.

Definition 4 (event-pairs non-overlapping in time). Two event-pairs (evx,
evy) and (evi, evj) are non-overlapping in time if x > j ∨ y < i.

In the original SIESTA [17], event-pairs are generated based on Definition 4.
However, in recent work [18], SIESTA is extended to allow two event-pairs to
partially overlap in time. This change affects only the event-pairs (ev1, ev2) where
ev1.type = ev2.type = ai (i.e., both event types are the same), in which case the
second event can be reused as the first event in another event-pair instance.
This modification ensures that the list containing event-pairs (ev1, ev2), with
ev1.type = ev2.type = ai, includes all instances of ai in L, which is utilized
for efficiently retrieving relevant events when calculating Declare constraints, as
discussed in the next section.

SIESTA’s architecture (illustrated in Figure 1a) consists of the pre-processing
component and the query processor, along with the database layer. The pre-
processing component is responsible for handling continuously arriving logs and

computing the appropriate indices. After the indices are computed, they are
stored in a database. In our implementation, we primarily utilize Apache Cas-
sandra4, but we also evaluate S3 as an alternative storage solution for big data
scenarios. Finally, the query processor utilizes the stored indices to perform effi-
cient pattern analysis and integrates a Complex Event Processing (CEP) engine.

The primary inverted index, named IndexTable, is created based on the et-
pairs. For each et-pair, a list of non-overlapping (partially overlapping when both
activities in the et-pair are the same) event-pairs is extracted from each trace.
These lists are then combined into a single list. The relevant information stored
for every event-pair is the traceid in which it was detected and the timestamps of
the two events in the pair. Besides the IndexTable, there are additional auxiliary
tables that enable different processes. The most relevant one to our work is the
SingleTable, which stores records with an event type as key and a value contain-
ing all occurrences of this event type in the log. The SequenceTable contains the
raw traces, while the CountTable holds basic statistics for every available et-pair
(i.e., et-pair for which at least one event-pair exist in L).

Example: Let us consider a web-logging application that monitors the or-
der of different actions denoted as A, B, and C, for two users. Fig. 1b presents
this log file along with the corresponding available et-pairs and SIESTA’s built
indices. After calculating and storing the indices, the query processor, imple-
mented to operate in parallel, efficiently utilizes them to respond to various
query types. The supported query types are: (i) Pattern Detection: This query
returns all traces containing the specified pattern (e.g., ⟨C,B,A⟩); (ii) Statis-
tics: This query provides basic statistics for an event-type pair (et-pair); and
(iii) Pattern Continuation: This query identifies events most likely to extend the
queried pattern.

In this work, we extend the supported queries mentioned above by adding
one more to extract business process constraints from the indexed log files.

4 Pattern Extraction on top of SIESTA

In this work, we show how we can efficiently extract declarative process mod-
elling constraints and more specifically, we show that we can cover all constraint
templates (i.e., patterns) defined in the Declare modelling approach [14,6] . The
patterns in Declare fall into three distinct categories: existence and unordered
relation, position, and ordered relations [14,6]. Table 1 presents various Declare
patterns that can be applied to a sequence S = ⟨ev1, . . . , evn⟩, considering the
event types a and b (i.e., a, b ∈ A) [7]. This table employs the definition below.

Definition 5. (Event type occurrences) For a trace σ = ⟨ev1, ev2, . . . , evm⟩,
event occurrences denoted as Oσ

a = [evi|evi.type = a], where a ∈ A and evi ∈ σ.

We now focus on SIESTA’s query processing extension to support the effi-
cient extraction of Declare patterns. In our implementation, we allow the support
4 https://cassandra.apache.org/_/index.html

https://cassandra.apache.org/_/index.html

Declare pattern Formal Definition Description

Existence Patterns

existence(a,n) |Oσ
a | ≥ n a exists at least n times in σ

absence(a,n) |Oσ
a | ≤ n− 1 a exists at most n− 1 times

exactly(a,n) |Oσ
a | = n a exists exactly n times

Unordered Relation Patterns

co-existence(a,b) (|Oσ
a | ≥ 1 ∧ |Oσ

b | ≥ 1) ∨ (|Oσ
a | = 0 ∧ |Oσ

b | = 0) if a occurs, then b occurs and vice versa

not co-existence(a,b) (|Oσ
a | ≥ 1 ∧ |Oσ

b | = 0) ∨ (|Oσ
a | = 0 ∧ |Oσ

b | ≥ 1)
∨(|Oσ

a | = 0 ∧ |Oσ
b | = 0)

a and b never occur together

choice(a,b) |Oσ
a | ≥ 1 ∨ |Oσ

b | ≥ 1 at least one of a or b occurs

exclusive choice(a,b) (|Oσ
a | ≥ 1 ∧ |Oσ

b | = 0) ∨ (|Oσ
a | = 0 ∧ |Oσ

b | ≥ 1) one of a or b occurs, but not both

responded existence(a,b) |Oσ
a | ≥ 1 ⇒ |Oσ

b | ≥ 1 if a occurs b occurs as well

Position Patterns

init(a) ev1.type = a first event in σ is a

last(a) evn.type = a last event in σ is a

Ordered Relation Patterns

response(a,b) ∀evi|evi.type = a ∃evj |evj .type = b,i < j if a occurs, then b occurs after a

precedence(a,b) ∀evj |evj .type = b ∃evi|evi.type = a, i < j b occurs only if preceded by a

succession(a,b) response(a,b)∧ precedence(a,b) a occurs if and only if it is followed by b

not succession(a,b) ∀evi|evi.type = a ∃evj |evj .type = b,i < j a can never occur before b

alternate response(a,b) ∀evi|evi.type = a ∃evj |evj .type = b∧
∃evk|evk.type ̸= a, i < k < j

Each time a occurs, then b occurs
afterwards, before a recurs

alternate precedence(a,b) ∀evj |evj .type = b∃evi|evi.type = a∧
∃evk|evk.type ̸= b, i < k < j

Each time b occurs, it is preceded by a and
no other b can recur in between

alternate succession(a,b) alternate response(a,b)∧
alternate precedence(a,b) a and b occur in pairs

chain response(a,b) ∀evi|evi.type = a, evi+1.type = b
Each time a occurs, then b occurs
immediately afterwards

chain precedence(a,b) ∀evi|evi.type = b, evi−1.type = a
Each time b occurs, then a occurs
immediately beforehand

chain succession(a,b) chain response(a,b)∧chain precedence(a,b) a and b appear concecutive in pairs

not chain succession(a,b) ∃evi|evi.type = a∧ evi+1.type ̸= b a in never immediately followed by b

Table 1: Declare Patterns

threshold to be defined during querying, enabling the extraction of patterns with
varying support values until the optimal threshold is discovered. This threshold
dictates the minimum support that each pattern (i.e., constraint template) must
reach to be included in the result set. For existence, unordered relations, and
position patterns, we calculate support as the proportion of traces that validate
the pattern. However, for ordered relation patterns, support is akin to confidence
in data mining (i.e., the number of rule fulfilment divided by the total number
of rule activations). Moreover, to facilitate the efficient extraction of all Declare
patterns together based on a single threshold, we group relevant patterns accord-
ing to the required information and execute them in a single run. This approach
allows us to optimize the process, as costly operations, such as fetching data
from the indices and joining records, are executed only once.

Algorithm 1 Extract ordered relation patterns
Input pattern-type, support
Output Ordered Relation Patterns

1: for every (a,b) in IndexTable do
2: R[a,b] ← IndexTable[a,b]
3: for every (a,b) in R do
4: R[a,b] ← R[a,b] ▷◁ SingleTable[a] ▷◁ SingleTable[b]
5: C ← count_occurrences(R, pattern-type)
6: X ← extract_total_occurrences(SingleTable)
7: return filter(C, X, support, pattern-type)

4.1 Ordered Relation Patterns

As discussed in Sec. 3, the process of detecting event-pairs in SIESTA during
index building allows for the skipping of irrelevant events in between, which is
a requirement to support all Declare patterns. Consider the scenario where a
more strict approach was implemented, where event-pairs are generated only
between consecutive events (like in directly-follows graphs); then, from the or-
dered relation patterns, only the chain patterns would have been extractable.
The IndexTable and SingleTable contain all the necessary information for ex-
tracting the ordered relation patterns. Algorithm 1 provides an abstract outline
of this process. It takes the type of the pattern as input (e.g., alternate response)
and returns the detected ordered relation patterns.

For an et-pair (a, b), the IndexTable[a,b] contains only traces that include
this pair, i.e. where an event of type b occurs after an event of type a (line 1-2).
However, there might be multiple instances of both event types a and b in a trace.
For example, consider a trace ⟨a1, a2, b1, b2⟩. Following the event pair extraction
presented in Sec. 3, only the pair ⟨a1, b1⟩ will be stored in the IndexTable, as
⟨a2, b1⟩ or ⟨a2, b2⟩ would overlap in time with ⟨a1, b1⟩. When counting the in-
stances, where event b appears after event a, we require all occurrences of both
a and b in the trace to be present. Specifically, for the alternate patterns, we
require information about any events of type a or b that occur between a possible
occurrence of (a,b). Therefore, we join the IndexTable[a, b] with the records from
SingleTable[a] and SingleTable[b] (line 3-4). Alternatively, IndexTable[a, a (resp.
b, b)] could have been employed. Consider the trace ⟨a1, a2, b1, a3⟩. After imple-
menting the modification in the previous section, IndexTable [a,a] will include
the event-pairs (a1,a2) and (a2,a3) (a2 is part of both event-pairs). Consequently,
when we retrieve IndexTable [a,a], all occurrences of event type a will be avail-
able. Since utilizing either IndexTable[a, a] or SingleTable[a] will yield the same
results, we opt for the one with the smaller overall size, which depends on the
case. After joining these three lists, we will have all occurrences of both event
types in the traces where at least one occurrence of the pair (a, b) exists. For
a pair (a, b), the resulting structure, denoted as R[a,b], will have the following
format: [(traceid, Oσ

a , O
σ
b)], where Oσ

x is a list containing all the occurrences of
event type x in the trace with the id equal to traceid (Definition 5).

Simple Patterns. Now that all the relevant information is present, we can
proceed to counting the total occurrences of each pattern. This process takes

place in the count_occurrences function (line 5). The function operates as fol-
lows: for a pair (a, b), we iterate through Oσ

a and count how many of these
events have an event in Oσ

b that occurred after them, where Oσ
a , O

σ
b ∈ R[a, b].

For the precedence(a, b) pattern, we do the opposite: we iterate through Oσ
b

and count how many of these events have an event in Oσ
a that occurred before

them. Finally, the succession and not-succession patterns emerge as byproducts
of combining the results from both the response and precedence patterns. Specif-
ically, the pattern succession(a, b) is valid only if the pair (a, b) appears in both
the response and the precedence result sets, i.e. its calculated support exceeds
the user-defined support threshold. Conversely, the not-succession(a, b) pattern
is valid if the calculated support for both response(a, b) and precedence(a, b) is
less than (1-support) or if the et-pairs (a, b) and (b, a) do not exist in the In-
dexTable. Through slight modifications to how simple ordered relation patterns
are extracted, we can detect both the alternate and the chain patterns as well.

Alternate Patterns. For the alternate response(a,b) the count_occurrences
iterates through Oσ

a (Oσ
b for precedence) and count for how many of these events

there is an event in Oσ
b (resp. Oσ

a) that appears after (resp. before) them, without
any other event from Oσ

a (resp. Oσ
b) appearing in between.

Chain Patterns. For the chain response(a,b) pattern, the function will check
for every event in Oσ

a (resp. Oσ
b for precedence) if there is an event in Oσ

b (resp.
Oσ

a) that appears immediately after (resp. before) this one. However, this check
requires additional information about the position of the events in the trace,
which can be found in the SequenceTable, where the raw traces are stored. A
different approach involves slightly modifying the index-building procedure of
SIESTA and storing the position of the events instead of their timestamps in
the IndexTable. Since the time information is not relevant in any of the Declare
patterns, we opted for the second approach.

Once all occurrences of the pattern are counted, the final step is to assess
which ones surpass the user-defined support threshold. Calculating support by
simply dividing the number of traces containing the pattern by the total number
of traces is not accurate. This is because multiple instances of the pattern can
appear in a single trace, and two event types may appear infrequently but still
together. Therefore, for ordered relation patterns, we calculate support as the
number of pattern occurrences (or rule fulfilments) divided by the total appear-
ances of the first constraint event in the log file (or the total appearances of the
second event for the precedence pattern), also known as rule activations. The
total occurrences of each event can be easily extracted with a linear scan of the
SingleTable (line 6). Finally, the function filter (line 7) removes all the patterns
that have a support less than the support threshold.

Example: Let us consider the extraction of the response constraints from the
small logfile presented in Fig. 1. In lines 1-2 of Algorithm 1, we extract the records
from the IndexTable that correspond to the pairs (A,B), (A,C), and (B,C). Next,
in lines 3-4, we combine the previous records with the corresponding records
from the SingleTable, resulting in the following output: R[A,B]: [(1,[1,2],[3]),
(2,[1],[2])], R[A,C]: [(2,[1],[3])], and R[B,C]: [(2,[2],[3])]. In line 5, we count the

occurrences of the response patterns and we find that response(A,B) occurred
3 times, while response(A,C) and response(B,C) occurred only once. Line 6
extracts the total occurrence of each event type from the SingleTable, which are
3, 2, and 1, respectively, for events A, B, and C. The corresponding supports are
1, 0.33, and 0.5, respectively. If we opted for chain-response patterns, we would
have counted that chain-response(A,B) occurred 2 times, chain-response(A,C)
did not occur, and chain-response(B,C) occurred only once. The corresponding
supports are 0.66, 0, and 0.5, respectively. Assuming that a user would only be
interested in the most frequent patterns and set the support threshold to 0.9,
only the pattern response(A,B) would have been returned (line 7).

4.2 Existence and Unordered Relation Patterns

All existence patterns can be extracted using three structures:

S: For each event type x, this structure contains a list of tuples (traceid, Oσ
x),

where Oσ
x is the total occurrences of the event in the trace with id equal to

traceid (Definition 5). Extracting S from the SingleTable is straightforward.
U: This structure maps each event type to the total number of unique traces

that contain it. It can be extracted from S.
I: For each et-pair, this structure contains all the unique traces that contain this

pair. It is straightforward to extract it from the IndexTable.

Existence, Absence, and Exactly constraints. These three patterns can
be answered solely by utilizing structure S. For existence patterns, we set n to
the maximum observed occurrences of an event in a trace. In each iteration, we
decrease n by one until it reaches zero, and we count how many traces have at
least n occurrences of this event. Once the number of detected traces divided by
the total number of traces in the log file exceeds the support threshold, we stop
the iteration and add this pattern to the result set. A similar approach is taken
for the absence pattern, but this time we set n to range from 1 to the maximum
observed occurrences per trace. If the number of traces that have less than n−1
occurrences of the pattern divided by the total number of traces exceeds the
support threshold, we stop and add this to the result set. Finally, for the exactly
pattern, we evaluate all different values of n and count only the traces that have
exactly n occurrences of the pattern.

Example: Executing the above processes with the support set to 1 will return
the following patterns: existence(A,1), existence(B,1), and exactly(B,1), as both
A and B appear in both traces at least once.

Co-existence, Choice, Exclusive Choice, and Responded Existence
constraints. These patterns are based on how often two event types appear
together, regardless of their order. For an et-pair (a,b), we can calculate the
traces where these two events co-exist by utilizing the structure I. Specifically,
by taking the union between the unique traces where the pair (a,b) occurs and
the unique traces where (b,a) occurs (i.e., I[a, b] ∪ I[b, a]), we can detect all the
traces where events a and b co-exist. Furthermore, for every event pair (a,b), the

following equation holds:

total_traces = |I[a, b] ∪ I[b, a]|+ |OA|+ |OB|+ |N | (1)

where OA represents the traces where only event a appears, OB represents the
traces where only event b appears, and N represents the traces where neither
event a nor event b appears. To compute the |OA| we simply need to subtract
from the number of unique traces where a appears the number of unique traces
where both a and b appear together (|OA| = U [a]− |I[a, b] ∪ I[b, a]|). Based on
Eq. (1) we can detect the remaining existence patterns for an et-pair (a, b).

Co-existence occurs either when a trace contains both a and b or if it con-
tains no one of them, i.e., occurrences = |N |+ |I[a, b]UI[b, a]| = total_traces−
U [a]− U [b] + 2× |I[a, b]UI[b, a]|.

Choice occurs when a trace contains at least one of a or b, i.e., occurrences =
|OA|+ |OB|+ |I[a, b]UI[b, a]| = U [a] + U [b]− |I[a, b]UI[b, a]|.

Exclusive Choice occurs when a trace contains one of the a or b, but not
both, i.e., occurrences = |OA|+ |OB| = U [a] + U [b]− 2× |I[a, b]UI[b, a]|

Responded Existence occurs either when a trace does not contain a or if
it contains both a and b, i.e., occurrences = total_traces−|OA| = total_traces
−U [a] + |I[a, b]UI[b, a]|.

Note that the difference from the co-existence is that we consider the traces
that contain b but not a as valid traces.

Example: In our running example, executing the above processes with support
set to 1, will return the following patterns:

– co-existence(A,B): A and B co-exist in both traces.
– choice(A,B): At least one of the A or B is present in both traces.
– choice(A,C): At least one of the A or C is present in both traces.
– choice(B,C): At least one of the B or C is present in both traces.
– responded-existence(A,B): Where there is an A, there is also a B in both

traces.
– responded-existence(C,A): Where there is a C, there is also an A in both

traces.
– responded-existence(C,B): Where there is a C, there is also a B in both

traces.

4.3 Position Patterns

Position patterns are straightforward to extract from the SequenceTable. For
each trace, we extract the first and last events and count their occurrences. If
the calculated support is greater than the support threshold, the pattern is added
to the result set. Note that, if the support threshold is set to a value higher than
0.5, at most one pattern of init and last will be returned. For instance, in our
running example, extracting position patterns with a support threshold set to 1
will return only the pattern: init(A).

Datasets Events Traces Event Types Length per trace
Mean Min Max

BPI_2017 1,202,267 31,509 26 38.1 10 180
BPI_2018 2,514,266 43,809 41 57.3 24 2973
BPI_2019 1,595,923 251,734 42 6.3 1 990

Table 2: Dataset characteristics

5 Evaluation

Datasets. Among the event logs made available by the Business Process Intelli-
gence (BPI) Challenges, we selected the ones of 2017, 2018, and 2019, because of
their significant number of events and average trace length compared to others.5
Table 2 presents the key characteristics of these datasets, including the number
of traces and total events in the log, as well as the minimum, maximum, and
mean number of events per trace. However, for our last scalability experiment, we
consider the BPI_2011 dataset, which originally contains fewer events (150K),
but 624 distinct event types, and we cloned its traces to obtain datasets with
increasing number of events (up to 10M).
Competitors. We evaluate the proposed solution against 5 other approaches
in the literature. The first one, is the Declare Miner implemented in RuM6 (ver-
sion 0.7.2). The second competitor is MINERful; instead of also using RuM,
we experimented with a more efficient implementation.7 The third competitor
is the Python library Declare4Py. 8 The remaining two approaches leverage the
MATCH_RECOGNIZE (MR) SQL operator and a graph-based data representa-
tion. Specifically, for the MR approach, we employed the Trino implementation
(version 429) with a PostgreSQL database. In the graph-based approach, we
encoded the event log as a graph, which is stored in a Neo4j database (version
5.12). Subsequently, we executed queries using the Cypher graph query language
to extract the Declare patterns.
Experiments. We employed a single machine running Ubuntu 20.4, equipped
with 32GB of RAM and 8 cores (16 threads) at 3.8 GHz. In the case of SIESTA,
7GB of RAM were allocated to the database, while the remaining resources were
dedicated to the preprocessing component and the query processor. The other
approaches were given unrestricted access to the available resources. Addition-
ally, for all queries across all approaches, we set the support threshold to 90%
(the default value for RuM). Note that, to allow for a fair comparison, we do not
test running the techniques over a cluster of machines, because only SIESTA can
benefit from massive parallelism. Our competitors can exploit the available cores
and resources of the single machine we have used, e.g., RuM spawns multiple

5 https://data.4tu.nl/
6 https://rulemining.org/
7 https://github.com/cdc08x/MINERful
8 https://github.com/ivanDonadello/Declare4Py

https://data.4tu.nl/
https://rulemining.org/
https://github.com/cdc08x/MINERful
https://github.com/ivanDonadello/Declare4Py

respon
se

preced
ence succes

sion
0

10

20

Ti
m
e
(s
)

BPI_2017
BPI_2018
BPI_2019

(a) Simple

respon
se

preced
ence succes

sion
0

10

20

Ti
m
e
(s
)

BPI_2017
BPI_2018
BPI_2019

(b) Alternate

respon
se

preced
ence succes

sion
0

10

20

Ti
m
e
(s
)

BPI_2017
BPI_2018
BPI_2019

(c) Chain

Fig. 2: Response times for the extraction of the various ordered relation patterns.

threads. All our experiments, along with detailed instructions for deploying and
executing our approach, are publicly available9.

Initially, we assess the response time of our solution for ordered relation
patterns. The indexing times were 59.3, 94, and 64.2 seconds for BPI_2017,
BPI_2018, and BPI_2019, respectively. The response times for various ordered
relation patterns are illustrated in Fig. 2. Notably, there is no significant dif-
ference in response times between the simple, alternate, and chain patterns.
This similarity arises because the most time-consuming operation, i.e., fetching
and joining records from IndexTable and SingleTable, is common to all three.
Furthermore, response and precedence patterns exhibit identical response times
across all three settings. Intriguingly, the succession pattern, requiring the cal-
culation of both response and precedence, takes less time than the combined
response times of individual patterns. This efficiency is due to fact that the
most time-consuming operations occur only once. Remarkably, it takes less than
12 seconds to extract response or precedence patterns from all 3 datasets.

Next, we compare the response times of SIESTA in extracting a single or-
dered relation pattern, specifically the precedence relation, against the other
techniques. The results, encompassing both loading and pattern extraction times,
are illustrated in Figure 3. For SIESTA, the loading time is equivalent to the
index building (or preprocessing) time. Note that RuM only provides a con-
solidated time for both data import and extraction; hence, this combined time
is presented. It is also important to mention that Declare4Py is not included
in this comparison since it does not discern specific pattern types but rather
extracts the entire set of Declare patterns simultaneously. The same applies to
MINERful. A comparison involving the extraction of the complete pattern set
is presented later in this section.

The results show that both SIESTA and RuM’s Declare Miner have superior
response times compared to MR and Neo4j. This is because the latter approaches
lack a mechanism to prune the search space, requiring a complete dataset scan
to validate each pattern. Due to the substantial difference in response times,
approaching nearly two orders of magnitude for the largest dataset (BPI_2018),
we will exclude them from consideration in the upcoming experiments. Declare
Miner and SIESTA demonstrate comparable performance, with Declare Miner

9 https://anonymous.4open.science/r/SIESTA-BPM-experiments-F1C7

https://anonymous.4open.science/r/SIESTA-BPM-experiments-F1C7

SIES
TA

Dec
lare
Min
er MR Neo

4j
100

102

104

Ti
m
e
(s
)

32.80
74.60

1271.00 1304.50
Loading
Query

(a) BPI_2017

SIES
TA

Dec
lare
Min
er MR Neo

4j
100

102

104

Ti
m
e
(s
)

97.60110.89

6931.90 6479.40Loading
Query

(b) BPI_2018

SIES
TA

Dec
lare

Min
er MR Neo

4j
100

102

104

Ti
m
e
(s
)

224.90
91.80

4016.00 4055.80Loading
Query

(c) BPI_2019

Fig. 3: Response times for the extraction of only the precedence patterns from
the real-world datasets.

existen
ce absenc

e exactly
0

2

4

6

Ti
m
e
(s
)

BPI_2017
BPI_2018
BPI_2019

(a) Existence

co-ex choice excl-ch resp-ex
0

2

4

6

8
Ti
m
e
(s
)

BPI_2017
BPI_2018
BPI_2019

(b) Unordered Relation

init last both
0

1

2

Ti
m
e
(s
)

BPI_2017
BPI_2018
BPI_2019

(c) Position

Fig. 4: SIESTA’s Response times for the existence, unordered relation, and po-
sition patterns from the real-world datasets.

achieving better response times in the BPI_2017 and BPI_2018 datasets, while
SIESTA exhibits faster response times in BPI_2019. According to Table 2, the
latter dataset has the highest number of traces, likely contributing to Declare
Miner’s longer response times. Moreover, as evident from Figure 3, over 95% of
SIESTA’s time is attributed to building the indices. The benefits of these indices
cannot be fully assessed from the extraction of a single pattern. Therefore, we
will evaluate later the performance of extracting the complete set of patterns
multiple times, for different support thresholds.

Figure 4 presents the response times for the existence, unordered relation,
and position patterns. Despite the size of the dataset, all patterns are extracted
in less than 6 seconds, highlighting the effectiveness of utilizing SIESTA’s indices
for extracting Declare patterns.

Next, we compare the extraction time for the complete set of Declare patterns
across various approaches. Two distinct scenarios were evaluated: first, data were
imported into each system, and a single extraction of the complete set of rules
was performed with the support threshold set to 0.9. In the second scenario,
the data were imported again, and multiple pattern extraction processes were
executed for different support values. Specifically, the pattern extraction was
executed 10 times with the support threshold ranging from 0.8 to 0.89. The
results for the two experiments are depicted in Fig. 5 and Fig. 6, respectively.
Fig. 6 shows that Declare Miner takes up to 15.6 times longer in the repeating
pattern extraction tasks, while MINERFul is overall 1.63 times slower.

SIES
TA

Dec
lare

Min
er
MIN

ERfu
l

dec
lare

4py
100

102

104

Ti
m
e
(s
)

113.20 78.0086.10

1046.40
Loading
Query

(a) BPI_2017

SIES
TA

Dec
lare

Min
er
MIN

ERfu
l

dec
lare

4py
100

102

104

Ti
m
e
(s
) 406.30

22.00
120.10

4927.30Loading
Query

(b) BPI_2018

SIESTA

DeclareMiner
MINERful

declare4py100

102

104

Ti
m

e
(s
) 629.50

37.00
99.80

313.10

Loading
Query

(c) BPI_2019

Fig. 5: Response times for the extraction of the complete set of patterns from
the real-world datasets (support=0.9).

SIES
TA

Dec
lare
Min
er
MIN
ERfu

l

dec
lare
4py

100

102

104

Ti
m
e
(s
)

1056.18
220.00248.99

10605.39
Loading
Query

(a) BPI_2017

SIES
TA

Dec
lare
Min
er
MIN
ERfu

l

dec
lare
4py

100

102

104
Ti
m
e
(s
) 3684.07

780.00304.01

50382.62Loading
Query

(b) BPI_2018

SIESTA

DeclareMiner
MINERful

declare4py100

102

104

Ti
m

e
(s
) 4470.68

370.00286.24

4579.87

Loading
Query

(c) BPI_2019

Fig. 6: Response times for the extraction of the complete set of patterns from
the real-world datasets for 10 support thresholds (10 queries).

#Events SIESTA-Cass SIESTA-S3 MINERful Declare Miner
1K 8.7 26.2 3.1 1.4

10K 11.8 44.1 13.1 7.7
100K 42.1 108.4 74.7 108.9

1M 167.6 314.5 373.7 631.0
10M - 2695.1 3222.0 -

Table 3: Response time (secs) for various instances of the BPI_2011 dataset

In summary, our approach exhibits superior performance across all three
datasets, providing responses that reach up to 28 times faster than Declare4Py.
RuM’s Declare Miner ranks third in response times and confirms our earlier
assumption that its performance depends on the number of traces in the log file
rather than the number of events. Even in a less favorable scenario for SIESTA,
where only one query is performed, and thus the indices are not fully utilized,
SIESTA outperforms these competitors. With all three datasets considered, the
process of extracting the Declare patterns was executed in under 3 minutes.
However, for isolated executions, MINERful seems to have higher performance
(see Figure 5), but the overheads of our solutions are quickly outweighed by its
performance gain even after only 10 repeated queries, as shown in Figure 6.

Finally, to further assess the scalability of our proposed approach, Table 3 dis-
plays the results obtained with datasets artificially generated from the BPI_2011

event log, utilizing both Cassandra and S3 databases.10 Our solution, especially
when implemented with Cassandra, consistently outperforms competitors for
medium to large datasets (100K-1M events). However, in a larger scenario of
logs containing 10M events, while the S3-based solution still surpasses MIN-
ERful, Cassandra fails to complete due to its substantial resource requirements
for processing a large number of read and write requests, leading to insufficient
memory on the commodity machine; normally, in such cases, Cassandra is de-
ployed on a dedicated server, but we did not want to change the computational
infrastructure to keep the experiment fair. On the other hand, S3 demands min-
imal resources but introduces higher overhead when writing SIESTA’s indices
into immutable distributed files (in parquet format) and lacks advanced built-in
capabilities, such as caching. Nonetheless, this overhead is offset by the high
compression rate for large datasets.

6 Conclusion and Future Work

This work has shown how existing general-purpose big data analytics frameworks
can be exploited effectively in process mining, alleviating the need to develop ad-
hoc solutions. Specifically, we have introduced a scalable and efficient solution for
extracting declarative process constraints from large event log files, by leveraging
the recently proposed SIESTA system. The proposed solution successfully ad-
dressed the challenge of handling large event logs and extracting business process
Declare constraints. The evaluation results show that our solution outperforms
other state-of-the-art methods, particularly when the constraint extraction pro-
cess must be repeated, e.g., for different support thresholds.

Besides providing a best-in-class declarative process constraint extraction
framework, this work has illustrated the seamless extensibility of SIESTA, allevi-
ating the need for ad-hoc pattern extraction tools specifically for BPM purposes.
In the future, we aim to extend our implementation by introducing a component
for conformance checking and temporal compliance [3] of the indexed traces
based on a list of rules. This will enable the identification of outlying traces
and changes in process execution. Furthermore, as outlined by [11], beyond the
discussed patterns, there exist two additional categories known as Timed and Re-
source Patterns. Integrating these patterns, as well as considering data payloads
conditions activating the patterns, would be interesting for future work.

References

1. van der Aalst, W.M., Carmona, J.: Process Mining Handbook. Springer (2022)
2. Alman, A., Ciccio, C.D., Haas, D., Maggi, F.M., Nolte, A.: Rule mining with rum.

In: Proc. ICPM. pp. 121–128. IEEE (2020)
3. Augusto, A., Awad, A., Dumas, M.: Efficient checking of temporal compliance rules

over business process event logs. CoRR abs/2112.04623 (2021)

10 Declare4py is omitted because it cannot complete the process if thresholds are re-
duced to avoid falsely pruning events.

4. Back, C.O., Slaats, T., Hildebrandt, T.T., Marquard, M.: Discover: accurate and
efficient discovery of declarative process models. International Journal on Software
Tools for Technology Transfer 24(4), 563–587 (2022)

5. van Beest, N., Groefsema, H., García-Bañuelos, L., Aiello, M.: Variability in busi-
ness processes: Automatically obtaining a generic specification. Information Sys-
tems 80, 36–55 (2019)

6. De Smedt, J., Deeva, G., De Weerdt, J.: Mining behavioral sequence constraints
for classification. IEEE TKDE 32(6), 1130–1142 (2019)

7. Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful
processes. ACM Trans. Manag. Inf. Syst. 5(4), 24:1–24:37 (2015)

8. Donadello, I., et al.: Declare4Py: A python library for declarative process min-
ing. In: Proceedings of the Best Dissertation Award, Doctoral Consortium, and
Demonstration & Resources Track at BPM 2022. vol. 3216, pp. 117–121 (2022)

9. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The prom framework: A new era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) Applications and Theory of Petri
Nets 2005. pp. 444–454 (2005)

10. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management, Second Edition. Springer (2018)

11. Elgammal, A., Turetken, O., van den Heuvel, W.J., Papazoglou, M.: Formaliz-
ing and appling compliance patterns for business process compliance. Software &
Systems Modeling 15, 119–146 (2016)

12. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data
Semant. 10(1-2), 109–141 (2021)

13. Maggi, F.M., Bose, R.J.C., van der Aalst, W.M.: Efficient discovery of understand-
able declarative process models from event logs. In: CAiSE. pp. 270–285 (2012)

14. Maggi, F.M., Mooij, A.J., Van der Aalst, W.M.: User-guided discovery of declara-
tive process models. In: IEEE CIDM. pp. 192–199. IEEE (2011)

15. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: Proc. CAiSE. pp. 270–285
(2012)

16. Maggi, F.M., Di Ciccio, C., Di Francescomarino, C., Kala, T.: Parallel algorithms
for the automated discovery of declarative process models. Inf. Syst. 74(P2),
136–152 (2018)

17. Mavroudopoulos, I., Gounaris, A.: SIESTA: A Scalable InfrastructurE of Sequential
paTtern Analysis. IEEE Transactions on Big Data pp. 1–16 (2022)

18. Mavroudopoulos, I., Gounaris, A.: A comprehensive scalable framework for cloud-
native pattern detection with enhanced expressiveness. CoRR abs/2401.09960
(2024). https://doi.org/10.48550/ARXIV.2401.09960, https://doi.org/10.
48550/arXiv.2401.09960

19. Pesic, M., Schonenberg, H., Van der Aalst, W.M.: Declare: Full support for loosely-
structured processes. In: Proc. EDOC. pp. 287–287 (2007)

20. Schönig, S., Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient and
customisable declarative process mining with SQL. In: Proc. CAiSE. pp. 290–305
(2016)

21. Westergaard, M., Stahl, C.: Leveraging super-scalarity and parallelism to provide
fast declare mining without restrictions. In: BPM Demos. pp. 31–35 (2013)

22. Zaki, N.M., Helal, I.M., Hassanein, E.E., Awad, A.: Efficient checking of timed
ordered anti-patterns over graph-encoded event logs. In: International Conference
on Model and Data Engineering. pp. 147–161. Springer (2022)

https://doi.org/10.48550/ARXIV.2401.09960
https://doi.org/10.48550/ARXIV.2401.09960
https://doi.org/10.48550/arXiv.2401.09960
https://doi.org/10.48550/arXiv.2401.09960

	Exploiting general purpose big-data frameworks in process mining: the case of declarative process discovery

