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Abstract. Product Data Model (PDM) is an example of a data-centric
approach to modelling information-intensive business processes, which
offers flexibility and facilitates process optimization. It is declarative,
and as such, there may be multiple workflow designs that can produce
the end product. To this end, several heuristics have been proposed.
The contributions of this work are twofold: (i) we propose new heuristics
that capitalize on established techniques for optimizing data-intensive
workflows; and (ii) we extensively evaluate the existing solutions. Our
results shed light on the merits of each heuristic and show that our
proposal can yield significant benefits in certain cases. We provide our
implementation as an open-source product.
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1 Introduction

Data-centric approaches have been emerging in the last two decades as an
alternative to the more mainstream activity-oriented modelling approaches for
business processes [15, 11, 8]. We quote from [15] that “the central idea behind
data-centric approaches is that data objects/elements/artifacts can be used to
enhance a process-oriented design or even to serve as the fundament for such a
design. This has certain advantages, varying from increasing flexibility in process
execution and improving reusability to actually being able to capture processes
where data play a relevant role.”

In this work, we focus on a particular data-centric modelling approach,
namely a Product Data Model (PDM)-oriented one, for which the main driver,
as also reported in [15], is process optimization apart from flexibility; this ap-
proach is tailored to information-intensive processes and it is declarative. As
such, it focuses on describing what is needed in order to deliver an information
product rather than the exact way to achieve this goal. To fulfill the latter as-
pect, the declarative model is accompanied by a method to generate workflow
designs, which is referred to as Product Based Workflow Support (PBWS) [19].
PBWS presents a set of heuristics for PDMs with a view to enhancing the per-
formance on a case-by-case manner. PBWS improves upon a previous method,
called Product Based Workflow Design (PBWD) [14], where the burden of defin-
ing the sequence of actions rests with the workflow designer, while PBWDmerely
assists this task through presenting the alternatives.
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Heuristic solutions are intuitive in their rationale, easy to implement and are
of low computational complexity. However, the existing solutions fail to benefit
from established techniques in the areas of optimization for workflows for data
analytics and database query execution plans, which adopt principled cost-based
approaches [9]. Inspired by such techniques, in our heuristics, we suggest to con-
sider both the time/cost of each operation in a PDM model and the probability
of this operation to lead to an early termination of the process, thus saving time
and resources. More specifically, we make a twofold contribution:

1. We propose a new heuristic for choosing the next operation to be performed
in a PDM for a specific case to optimize time duration and/or cost. Our pro-
posal comes in three flavors and is based on established query processing and
data-centric workflow technology, and is of low computational complexity.

2. We perform an extensive experimental evaluation of the available heuristics
and we show that our proposal yields benefits in terms of time, cost or a
combination of both compared to previous heuristics, on the average case.
However, there is no globally dominant solution, in the sense that in specific
cases, existing heuristics may behave better. We provide the open source of
all the heuristics and the experiments, so that interested third parties can
repeat our work and extend the set of heuristics and/or test cases.1

The remainder of this paper is structured as follows. In Section 2, we present
the PDM underpinnings of the techniques evaluated. Section 3 discusses existing
solutions from PBWS and introduces our proposal along with implementation
details. We evaluate the candidate techniques in Section 4. The next section
deals with the related work and we conclude in Section 6, where we also briefly
discuss limitations and future work.

2 Background: the Product Data Model

A PDM is used to represent the structure of a workflow product in a rooted
graph-like manner, similar to a Bill of Material [19, 12]. PDMs describe the
required elements for yielding the desired product in the root, where example
(informational) products include decision on whether to grant an approval to a
specific admission request, approval of a mortgage application, and so on. More
specifically, the vertices (or equivalently nodes) in this structure correspond to
data elements, that is the information that is processed in the workflow. Each
node has a value assigned to it, which typically differs between process instances
(cases). In Figure 1, we present the PDM for a classical mortgage example, which
will also be used in the comparison section. The final product of the process is
to determine the value of the root (or top or end product) node. Values are
determined from the bottom to the root as specified by the arcs (graph edges),
which are called operations. These arcs represent actions that are applied on the
valued data elements to produce values for nodes downstream. Each operation

1 https://github.com/kmvarvou/pdm heuristics



Evaluation of Heuristics for Product Data Models 3

Fig. 1. The PDM mortgage example from [19]

can have zero or more input data elements while producing the value for exactly
one output data element. An operation is represented by a tuple, which consists
of the output element and a set of input elements, e.g. (A, {B,C,D}) for Op01
in the figure, which means that Op01 can be applied only if B, C and D have
been produced and may lead to the generation of the value of A. A data element
may be determined through multiple operations, e.g., in the figure, A can be
determined in three manners and, for a specific case, the process terminates as
soon as one of them manages to complete. In the case where an element has zero
input elements, it is called a leaf element, and commonly, it is provided as input
to the process; in the figure, elements such as B, F and E are leaf elements.

In summary, the PDM describes the operations that can be performed to
produce the top element, along with their inter-dependencies. Not all operations
need to be executed. To allow for cost-based decisions, each operation has the
following metadata (an example is in the table at the bottom-right of Figure 1):

– Cost, which represents the cost associated with executing the operation.

– Time, which represents the time required for the complete execution of the
operation.

– Probability, represents the probability that an operation is executed unsuc-
cessfully, therefore not producing its output element.

– Conditions, which represent requirements regarding the value of the input
elements. These requirements must be met, if the process is to be executed,
meaning that the existence of all input elements of an operation is not suf-
ficient.
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3 Deriving workflow designs

PDM does not specify per se how the end information product is created but
allows multiple workflow designs to produce the desired information product. As
mentioned above, there are cases where multiple workflow designs lead to the
production of an output element. Usually, in these cases, the alternative paths
have different execution costs and time durations. This gives rise to the following
optimization problem: which paths of operations to choose for a specific case in
order to optimize given quantitative objectives of cost and time?

There are two high-level strategies for the calculation of an optimal execution
path of a workflow, namely a global and a local one. A global strategy considers
the effect of each decision on future steps. It takes into account the complete set
of alternative paths that produce the end product to optimize the execution per-
formance of each case. Instead, a local strategy adopts a step-by-step approach,
meaning that, at each step, it examines the set of operations available for ex-
ecution and chooses the best one, according to a particular metric, e.g. cost of
execution. As explained in [19], a global strategy does not scale. For this reason,
in this work, we exclusively deal with low-polynomial local strategy heuristics.

More specifically, the local strategies used by the PBWS method in [19]
comprise the following heuristics (the last one is not explicitly mentioned in [19]
but it is trivial to include it):

1. Random: the operation is randomly selected from the set of executable op-
erations.

2. Lowest Cost : the operation with the lowest cost is selected.
3. Shortest Time: the operation with the shortest time is selected.
4. Lowest Failure Probability : the operation with the lowest probability of not

being executed successfully is selected.
5. Shortest Distance to Root Element : the operation with the shortest distance

to the root element (measured in the total number of operations) is selected.
6. Shortest Remaining Process Time: the operation with the shortest remain-

ing processing time (measured as the sum of the processing times of the
operations on the path to the root element) is selected.

7. Shortest Remaining Cost : the operation with the shortest remaining cost
(measured as the sum of the costs of the operations on the path to the root
element) is selected.

We discuss implementation details at the end of this section.

3.1 Rank-based Heuristics

Our approach relies on treating productions rules in a manner that resembles
knock-out activities, and their optimal ordering, which also bears similarities
to the way data analytics operators and database joins are ordered [2, 10, 9]. A
knock-out activity is an activity whose execution leads directly to the completion
of the process. For example, the execution of Op03 in Figure 1, which produces
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the root element A is a knock-out activity/production rule. Then, the optimal
ordering needs to take into account the probability of an operation to produce
the end element, either directly or indirectly as a sequence of operations starting
with that operation, and the corresponding cost or execution duration.

More specifically, at each step, we consider all the operations ready for execu-
tion (i.e., those with all inputs present) and we choose the one with the highest
rank value. The rank value of an operation Op is defined as follows:

rank(Op) =

∏
Op′∈π(Op) 1− Probability(Op′)∑

Op′∈π(Op) Cost(Op′)

where π(Op) is the path from Op (including) to the root.
Example: in the example in Figure 1, assume that in the current state all leaf

elements have been produced already except element E, for which Op07 was not
executed successfully. Thus, in the next step, there are two available production
rules for execution, namely Op02 and Op03. Based on their attributes they have
the following ranking value: rank(Op02) = 0.9025/10 = 0.09025. While Op02
may not lead to a process termination directly, we consider Op02 as part of a path
that leads indirectly to the root, that is the path: Op02 → Op01 → A(end state).
Therefore, we use as probability of this knock-out path, the probability of success
of the operations in the whole path, which is (1 − Probability(Op02)) ∗ (1 −
Probability(Op01)) = 0.95 ∗ 0.95 = 0.9025 and as cost, the aggregate cost of
the whole path, which is Cost(Op01) + Cost(Op02) = 5 + 5 = 10. On the other
hand, rank(Op03) = 0.95/9 = 0.105556. The probability 0.95, in the nominator,
is the probability of the successful execution of Op03 because it is the successful
execution of Op03 that produces the root element A and therefore, completes
the workflow execution. Based on these values, Op03 is selected for execution. ⊓⊔

This heuristic comes in three flavors. The first one uses the formula above.
The other two modify the denominator in the rank formula and employ (i) the
sum of the operation duration times and (ii) the sum of the product of the
cost and times, respectively. As such, they focus more on time duration and a
combination of both metrics, respectively.

3.2 Implementation Issues

All the heuristics conform to a generic template, shown in Algorithm 1, which
produces, for each case, the sequence of steps (operations) chosen; this sequence
is captured in the variable WF . The operations metadata are mapped to a
HashMap variable, where the key is the operation id and the value is nested
and consists of all attributes in the table of the example in Figure 1. Based on
such a structure, the executableList can be found through a simple traversal of
the hashmap, taking into account the contents of the availableList. This occurs
once at the beginning and then, executableList keeps being updated. Then the
availableList is scanned to choose the nextOp operation according to the chosen
local strategy (line 4). The time complexity of this algorithm, for the first 4
heuristics, is O(n(n+V )), where n is the number of operations and V the number
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Algorithm 1 PDM heuristics template

Require: (1) Operations metadata as depicted in the table in Figure 1. (2) A set
of the already produced data elements named “availableList”; if none this set is
initialized to ∅.

1: WF ← {}
2: executableList← operations that can be executed
3: while executableList ̸= ∅ and !availableList.contains(root element) do
4: nextOp← select operation for execution from executableList
5: WF ← {WF,nextOp}
6: execute nextOp
7: if execution is successful then
8: add output elements of executed operation to availableList
9: update executableList based on new available elements
10: end if
11: end while
12: return WF

of nodes in the graph. This is because, in each step at most n operations are
examined, and there are n steps at most. Also, for an operation to be inserted
in the executableList, up to V elements checks need to be performed. A fast
implementation employs a priority queue for supporting the choice of nextOp in
each iteration, but it is beyond the scope of this work to discuss such details.

However, a more important point is that the three last existing heuristics
along with our proposal need to process the path from a given operation to the
root. For this, we need to employ another auxiliary structure, where the PDM
model is seen as a typical graph with as many vertices as the data elements
and directed edges for each data element in the input of another data element
pointing to that element. Since finding the shortest path from a root element
is at most O(nlogV ) using an algorithm such as Dijkstra, the complexity of
the relevant techniques is the previous complexity multiplied by this factor, i.e.,
O(n2(n + V )logV ). In addition to the PDM’s data elements, this graph also
contains an artificial starting vertex. This vertex represents the initial state of
execution where no elements have been produced. It covers operations, such as
Op08, Op09 and Op10 in the example, which, otherwise, cannot be represented
as edges connecting vertices.

However, in the rank-based solutions more problems arise due to the product
in the fraction nominator. In addition, we have to deal with the cases, where
multiple paths from a data element to the root element exist, as is the norm. We
distinguish between two cases. First, if there exists an operation that directly
leads to the root element, we consider this edge as the complete path. Second,
if such an operation does not exist, we cannot rely on shortest paths with edges
either non weighted or weighted according to the cost or time as we do for cal-
culating the denominator, which is calculated using Dijkstra’s algorithm in a
straightforward manner. Our procedure is as follows with regards to the nom-
inator of the rank fraction. We use the probability of failure of data element
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Fig. 2. The PDM social insurance example from [14]

production, exactly as provided in the metadata table to assign weights to the
graph edges. Then, as the representative path of the operator Op, we choose the
path for which the sum of these probabilities is the smallest one, i.e., we have
again reduced the problem to a shortest path one. For this path, we compute
the product of the success probability values; the success probability of each
operation (or graph edge) is 1 minus the failure probability.

4 Evaluation

In this section, we evaluate our proposed approach using two PDMs. The first
one is the mortage example that was presented in Section 2, while the second one,
shown in Figure 2, represents a larger process from a social insurance company
[14]. To evaluate the 7 existing heuristics and our 3 rank-based flavors, we created
100K random cases for each of the two PDMs. The cost and time attributes were
assigned (integer) values in the [1,10] range, i.e., these attributes may differ up
to an order of magnitude. The probability of failure was assigned values in the
[0.0, 0.999] range, i.e., we consider the complete range from guaranteed success
to almost certain failure. All distributions are uniform. We do not explicitly
consider the probability of meeting conditions, since this probability can be seen
as covered by the failure probability.

The results are summarized in Figures 3, 4, 5 and 6. Each figure corresponds
to one of the four combinations of the two objectives of cost and execution time
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Fig. 3. The average cost per case (left) and number of cases where each heuristic
achieved the best result (right) regarding the mortgage PDM.
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Fig. 4. The average execution time per case (left) and number of cases where each
heuristic achieved the best result (right) regarding the mortgage PDM.

of the process and the two PDMs. We start our discussion with the first two
result figures that refer to the smaller PDM of Figure 1. In all figures, the left
barchart depicts average behavior, while the right one shows the number of cases
where a heuristic exhibited the best performance for that specific case. The main
observations are as follows:

1. The rank-based heuristics proposed in this work are the best performing ones
both when cost and when time is the optimization objective. Their relative
difference is small and does not exceed 1.1%, which means that the rank
function effectively covers both objectives in all three flavors.

2. Choosing randomly the next operation incurs approximately 25% higher cost
and 25% higher time compared to our solutions. The best performing heuris-
tics from the existing ones are Shortest Remaining Cost for the cost objective
and Shortest Remaining Time for the time objective. These heuristics are on
average only 4.2% and 4.6% worse than the rank-based ones, respectively.
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Fig. 5. The average cost per case (left) and number of cases where each heuristic
achieved the best result (right) regarding the social insurance PDM.
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Fig. 6. The average execution time per case (left) and number of cases where each
heuristic achieved the best result (right) regarding the social insurance PDM.

3. There is no globally dominant solution. As the two right barcharts show,
even the random heuristic yields the best performance in some cases. On
average, for each case there are 1.86 heuristics that yield the best perfor-
mance regardless of the exact objective (it can be observed in the figures
that the barcharts do not sum to 100K). The most common winners are the
rank-based heuristics, but each individual flavor is the best in no more than
28.5% of the cases.

Next, we move our attention to Figures 5 and 6, which refer to the largest
PDM in Figure 2. In this PDM, in summary, the rank-based heuristics are still
the best ones in the average case, with even smaller relative differences between
the three flavors (less than 0.4%). The random heuristic is only 14% worse than
the best heuristic on the average case. But the best performing heuristic from the
ones in [19] has now become the one that chooses the operation with the lowest
failure probability; this heuristic is 6.3% worse that the rank-based solutions.
Finally, in each case, 1.52 heuristics achieve the top performance on average.
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Similar and even better results are observed when the optimization objective
is the product of cost and time (no details are provided due to space limitations).
Two additional significant points are: (i) Our proposals are superior to the best
performing existing heuristic by up to more than 20 times. (ii) The overhead
time to run the heuristics is extremely low: on a Ryzen 5 3600x CPU with 16GB
RAM, our rank-based heuristics take less than 1.34 milliseconds for each case of
the social insurance PDM; the other heuristics are even faster and the times are
negligible for the small PDM.

5 Related Work

As stated in the introduction, an increasing amount of data-centric ap-
proaches have been developed as part of a general trend in the area of Busi-
ness Process Management (BPM). Despite this recent interest, Business Process
Improvement or Redesign, one of the key areas of BPM remains relatively un-
developed in terms of automated algorithmic solutions. In a recent survey that
aims to evaluate several data-centric process approaches, this lack of focus on
process optimization or redesign is highlighted [15]. Out of the 14 methods ex-
amined, only 2 of them identify the objective of business process optimization
as a motive for their development. These two methods are Product Based Work-
flow Design (PBWD) [14] and its extension, Product Based Workflow Support
(PBWS) [19], upon which we build our work.

A significant part of recent research in BPs targets variability between process
models aiming at the same high-level objectives [16]. For example, the work in
[16] is motivated by the fact that the same goal in different municipalities is
performed using different equivalent processes and, to manage such variability,
it introduces the configurable process trees. This methodology allows a specific
set of process models to be selected according to several criteria. This bears some
similarity to the way PBWS exploits the existence of alternative paths in order to
optimize each case’s performance. The main difference lies in the fact that these
alternatives are different paths of the same, already existing PDM model, while
in [16], there is an attempt to create a model that contains alternative paths to
cover all rationales. In such a context, proposals like [5] deal with the problem
of extracting alternative models, whereas the issue of assessing the quality of
different process model configurations [4] has also been explored.

Additionally, there are proposals considering variant optimization objectives,
such as the techniques in [1], where a set of heuristics is introduced for optimizing
the metrics of resource utilization, maximal throughput and execution (cycle)
time. These heuristics consider changing the relative ordering of activities, en-
forcing parallel execution and activity merging, but they cannot be applied to
PDMs (at least in a straightforward manner). Finally, our work relates to declar-
ative process models [13, 6]; e.g., our workflow design solution can be seen as a
promising means to derive executable model structures out of such declarative
models although providing a complete methodology to achieve this remains an
open issue.
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Regarding data-centric workflows, a lot of effort has been put towards find-
ing the best sequential order of flow tasks for objectives such as minimization
of the sum of the costs of these tasks or the bottleneck cost, or the maximiza-
tion of the utilization of each execution processor, and so on [9, 3, 7]. All these
proposals aim to optimize a single criterion, but there are also proposals that
target multi-objective data flow optimization, such as the algorithms in [18,
17]. Despite some initial efforts in [10], transferring the results of data analytics
workflow optimization to business process workflows is still a topic in its infancy.

6 Conclusions and Future Work

This work focuses on processes modelled according to the declarative PDM
paradigm and aims to evaluate both existing and novel heuristics for yielding
workflow designs on a case-by-case basis. Inspired by data analytics, we use the
notion of rank, which combines the probability to produce the root element and
the cost to achieve this in a single metric. In our experiments, we show that
rank-based heuristics exhibit the best performance on average, but in specific
cases, each of the 10 heuristics examined in this work may be the dominant one.

Our work suffers from the same limitations as the heuristics in [19]: we op-
timize on a case-by-case basis without seeing the process as a whole, e.g., in
terms of resource utilization and without considering parallel task execution.
Apart from addressing these limitations, we aim to follow three directions as
future work: (i) to better handle the information that a data element may need
input by multiple elements, when computing path costs (which is now implic-
itly ignored); (ii) to devise hybrid methodologies that switch between heuristics
in a specific case, motivated by our key observation that there is no globally
dominant solution; and (iii) to transfer similar techniques to other declarative
modelling approaches, such as [13].
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