
An Empirical Evaluation of Exact Set Similarity Join

Techniques Using GPUs

Christos Bellasa, Anastasios Gounarisa

aDepartment of Informatics, Aristotle University of Thessaloniki, Greece
{chribell,gounaria}@csd.auth.gr

Abstract

Exact set similarity join is a notoriously expensive operation, for which sev-
eral solutions have been proposed. Recently, there have been studies that
present a comparative analysis using MapReduce or a non-parallel setting.
Our contribution is that we complement these works through conducting a
thorough evaluation of the state-of-the-art GPU-enabled techniques. These
techniques are highly diverse in their key features and our experiments man-
age to reveal the key strengths of each one. As we explain, in real-life ap-
plications there is no dominant solution. Depending on specific dataset and
query characteristics, each solution, even not using the GPU at all, has its
own sweet spot. All our work is repeatable and extensible.

Keywords: set-similarity join, GPU computing, CUDA

1. Introduction

Given two collections of sets and a threshold, set similarity join is the
operation of computing all pairs, the overlap of which exceeds the given
threshold. Similarity joins are used in a range of applications, such as pla-
giarism detection, web crawling, clustering and data mining and have been
the subject of extensive research recently, e.g., [1, 2, 3, 4, 5].

In very large datasets, finding similar sets is not trivial. Due to the in-
herent quadratic complexity, a set similarity join between even medium sized
datasets can take hours to complete on a single machine. For example, in
the same setting used in our experiments to be presented later, a similarity
join over the complete DBLP dataset using a Jaccard threshold of 0.85 takes
approximately 8.5 hours when employing only a modern CPU. In addition,

Preprint submitted to Elsevier December 5, 2019

challenges like high dimensionality, sparsity, unknown data distribution and
expensive evaluation arise. To tackle scalability challenges, two main and
complementary approaches have been followed. Firstly, to devise sophisti-
cated techniques, which safely prune pairs that cannot meet the threshold as
early as possible, typically through simple computations related to the prefix
and the suffix of the ordered sets, e.g. [1, 4]. Secondly, to benefit from massive
parallelism offered by parallel paradigms such as MapReduce [5, 6, 7, 8] and
GPGPU(General-Purpose computing on Graphics Processing Units) [9, 10].
Orthogonally, there exist several proposals that trade accuracy for faster
times, such as techniques for approximate set similarity or for nearest neigh-
bor search, e.g., [11, 12, 13] (the detailed discussion of related work is deferred
to Section 5). Our work deals with exact set similarities joins exclusively.

Comparative evaluations on the state-of-the-art techniques for set simi-
larity joins that focus on either a MapReduce or a non-parallel single machine
setting have recently appeared [1, 14]. The goal of our work is to fill the gap
and thoroughly evaluate the state-of-the-art exact set similarity algorithms
and techniques in a single machine setup that can benefit from massive par-
allelism through the usage of a graphics card. Hence, we distinguish our
work from [14], where distributed set similarity join algorithms are evalu-
ated. On the other hand, we evaluate techniques, which may use the massive
parallelism contrary to the rationale in [1].

Modern GPUs offer a high-parallel environment at low cost. As a result,
GPGPU has been introduced to accelerate a large variety of applications
[15]. In general, GPGPU takes advantage of the different and complemen-
tary characteristics offered by CPUs and GPUs to improve performance. It
has been employed in domains like deep learning, bioinformatics, numerical
analytics and many others. However, implementing existing algorithms and
techniques on a GPU requires in-depth knowledge of the hardware specifi-
cations and is often counter-intuitive. In addition, not all tasks are suitable
for GPU-side processing. A traditional CPU surpasses at complex branching
in application logic, while a GPU is superior at mass parallel execution of
simple tasks and floating point operations [16].

In this work, we perform a comprehensive experimental evaluation be-
tween GPU-accelerated set similarity joins and CPU standalone implemen-
tations using the framework provided in [1]. Moreover, we examine two al-
ternatives (i) transferring the whole workload onto the GPU, or (ii) splitting
the workload between the CPU and the GPU and assigning the most suit-
able tasks to each part. Our findings demonstrate that there does not exist

2

a clear winner among the evaluated techniques; in other words, each alterna-
tive has its own sweet spot depending on the data and query characteristics.
In summary, the contributions of our work are as follows:

• To the best of our knowledge, this is the first comprehensive presen-
tation and comparative evaluation of GPU accelerated set similarity
joins. In our study, we include the GPU-oriented state-of-the-art tech-
niques.

• We conduct extensive performance analysis using eight real world datasets.
We compare our findings against the state-of-art CPU and GPGPU im-
plementations. We identify the conditions under which each solution
becomes the dominant one so that to derive a set of guidelines as to
when to use each technique.

• We provide a repository with all techniques, so that third-part re-
searchers can repeat and extend our work.1

Paper outline. Next, we give an overview of set similarity joins and pro-
vide the basic details about the CUDA programming model. We present
the-state-of-the-art techniques in Section 3. Our experimental analysis is
presented and discussed in Section 4. We provide an overview of the re-
lated work in Section 5. We conclude our study and discuss open issues in
Section 6.

2. Background

We introduce the filter-verification framework used by state-of-the-art
main memory set similarity join algorithms in line with the comparison work
conducted by Mann et al. [1]. We also provide a comprehensive overview
of the CUDA programming model, which is proprietary to NVIDIA [17] yet
widespread in practice, and explain its main concepts.

1Source code is publicly available from https://github.com/chribell/gpgpu_

ssjoin_eval.

3

2.1. Set Similarity joins

The state-of-the-art main memory set similarity algorithms conform to
a common filter-verification framework, as explained in [1]. The common
idea behind all these algorithms is (i) to avoid comparing all possible set
pairs by applying filtering techniques on preprocessed data to prune as much
candidate pairs as possible; and (ii) then to proceed to the actual verification
of the remaining candidates. We summarize the key points of the work of [1]
that are relevant to our research below.

2.1.1. Data layout.

Every dataset is a collection of multiple sets. Each set consists of ele-
ments called tokens. The data preprocessing phase involves a tokenization
technique and deduplication of tokens if required. As a result of such a pre-
processing phase, all the tokens of a set are unique. The input data tokens
are represented by integers and are sorted by their frequency in increasing
order, so that infrequent tokens appear first in a set. The sets of a collection
are sorted first by their size and then lexicographically within each block of
sets of equal size.

2.1.2. Set Similarity functions.

To measure the similarity between sets, the normalized similarity func-
tions Jaccard, Dice and Cosine are typically used. The given normalized
threshold τn is translated to an equivalent overlap τ , which defines the min-
imum number of tokens that need to be shared between two sets to satisfy
the threshold (see Table 1). For example, if the Jaccard similarity threshold
of two 10-token sets is set to 0.8, this is translated to an overlap threshold
of 9 tokens that need to be shared.

2.1.3. Filters.

The most widely used filter, called prefix-filter, exploits the given thresh-
old and similarity function by examining only two subsets called prefixes, one
from each sorted set in the candidate pair, and discards the pair if there is no
overlap between the prefixes. A π-prefix is formed by the π first tokens of the
set, i.e. for set r, πr = |r|−τ+1 and for set s, πs = |s|−τ+1. In Figure 1(a),
for τ = 4, there is no overlap between the respective set prefixes, thus, even
if there is an overlap on the remaining tokens, any overlap threshold set to 4
or higher cannot be reached, and in such cases, the candidate pair (r, s) can
be safely pruned.

4

Similarity function Definition Equivalent Overlap

Jaccard |r∩s|
|r∪s| ⌈ τn

1+τn
(|r|+ |s|)⌉

Cosine |r∩s|√
|r||s|

⌈τn
√
|r||s|⌉

Dice 2|r∩s|
|r|+|s| ⌈ τn(|r|+|s|)

2
⌉

Overlap |r ∩ s| τ

Table 1: Similarity Functions (adapted from [1])

1 2 ? ? ?5 6 7 ? ?(a)

(b)

(c)

5 6 ? ? ? 5 6 ?

5 8 ? ? ? 7 8 ? ? ??

r :

r :

r : s :

s :

s :

? ?

6 5

?

πr
πs

5 3

Figure 1: Filters used for candidate pruning: (a) prefix, (b) length, (c) positional

Another filter, known as length filter, takes advantage of the normalized
similarity functions dependency on set size. Hence, a candidate pair can
be pruned if the set size inequality τn · |r| ≤ |s| ≤ |r|/τn is not satisfied.
In Figure 1(b), if τn = 0.8, the shown candidate pair (r, s) can be pruned
despite the prefix equality because a 6-token r set requires a s set of size
4 ≤ |s| ≤ 6.

The last filter used in the examined algorithms is the positional filter.
Given the first match position, it evaluates if a candidate pair can reach the
similarity threshold. As an example, in Figure 1(c), if the threshold implies
that at least 6 tokens should be shared, the pair is pruned since the remaining
tokens from set s are not enough to reach the similarity threshold.

2.1.4. Algorithm outline.

The set similarity join operation is achieved by executing an index nested
loop join consisting of three steps (see Algorithm 1 and the corresponding

5

Algorithm 1 Filter - Verification Framework

Input: Sorted set collections R,S, a threshold τ
Output: A set pairs containing all similar pairs
1: I ← construct inverted index(S)
2: for each set r ∈ R do
3: C ← {}
4: for each token t ∈ prefix(r, τ) do
5: for each set s ∈ I[t] do
6: if not length/positional filter(r, s, τ) then
7: C ← C ∪ {s}
8: end if
9: end for

10: end for
11: for each set s ∈ C do
12: if verify(r, s, τ) then
13: pairs← pairs ∪ (r, s)
14: end if
15: end for
16: end for
17: return pairs

R, S Collections of sets to be joined

ri (resp.sj) a token set from R (resp. S)

τn Normalized similarity threshold

τ Equivalent overlap

C ⊆ R× S Set of candidate pairs

Table 2: Notation

main notation in Table 2). First, through an index lookup, a preliminary
candidate set (pre-candidates) is generated (line 5). In the second step,
pre-candidates are deduplicated and filtered (line 6). The pairs that pass
all filters form the final candidates. These two steps compose the filtering
phase. In the third and final step, also noted as verification in the literature,
the similarity score for each of the remaining candidate pair is computed and
if it exceeds the threshold, the pair is added to the output (line 13).

A special but very common case is where the set similarity join is a

6

self-join using only a single collection of sets. In that case, a token set is
first probed against the current index contents and then added to the index
itself. This allows for incremental index building that is interleaved with
verification. Also, the fact that a set that probes the index is always no
shorter than the current indexed sets, since the sets are also ordered by their
size, leads to more candidate pairs to be pruned earlier.

2.2. CUDA Overview

In CUDA terminology, the CPU and the main memory are referred to as
host, while the GPU and its own memory are referred to as device. In this
work, we use the terms CPU and host (resp. GPU and device) interchange-
ably.

2.2.1. Architecture.

CUDA-enabled GPUs have many cores called Streaming Processors (SPs),
which are divided into groups called Streaming Multiprocessors (SMs). Each
SM includes also other units such as ALUs, instruction units, memory caches
for load/store operations, and follows the Single Instruction Multiple Data
(SIMD) parallel processing paradigm.

2.2.2. Thread Organization.

Threads are organized in logical blocks called thread blocks. A thread
block is scheduled and executed in its entirety on a SM in groups of 32
threads called warps. Threads within a warp are called lanes and share the
same instruction counter, thus they are executed simultaneously in a SIMD
manner. An example of how warps map to a thread block to be executed is
shown in Figure 3; thread block sizes are defined as kernel launch parameters.
There are two cases of thread divergence, which degrade performance, namely
inter-warp, when concurrent warps run unevenly and intra-warp, when warp
lanes take different execution paths. The latter is also simply referred to as
warp divergence.

2.2.3. Memory hierarchy.

There are several memory types on CUDA-enabled GPUs. They are
divided into on-chip and off-chip ones. Off-chip memories include the global,
constant, texture and local memory. The global memory is the largest (in
the order of GBs) but slowest memory. Data transferred from the host to
device resides in global memory and it is visible to all threads. The constant

7

off-chip

on-chip

GPU

global memory

constant memory

texture memory

local memory

L1 cache

constant cache

texture cache

shared memory

registers

SM 1

L1 cache

constant cache

texture cache

shared memory

registers

SM 2

L1 cache

constant cache

texture cache

shared memory

registers

SM N

L2 cache

main memory

PCI - E

...

Figure 2: Memory hierarchy for CUDA-enabled GPUs (taken from [18]).

memory is read-only and much smaller (in the order of KBs). It is used
for short access times on immutable data throughout the execution. The
texture memory is essentially a read-only global memory and is preferred
when 2-dimensional spatial locality occurs in memory access patterns. The
local memory is part of the global memory and is used when the registers
needed for a thread are fully occupied or cannot hold the required data. This
is called register spilling. On-chip memories include the caches, the shared
memory and the registers. For data reuse, there are caches per SM and the
L2 cache is shared across all SMs. The shared memory is the second fastest
memory type. Each SM has its own shared memory. Data stored in shared
memory can be accessed by all threads within the same block, thus threads
of the same block are allowed to inter-communicate via shared-memory. The
registers are the fastest memory type and contain the instructions of a single
thread and the local variables during the lifetime of that thread. An overview

8

Streaming Multiproccesor

thread / warp lane

Thread block 16× 5

warp0

warp1

warp2

warp3

Figure 3: A warp-to-thread block mapping example.

of the memory hierarchy is illustrated in Figure 2.

2.2.4. Kernel grid.

Every function to be processed in parallel by the GPU is called a kernel.
Each kernel is executed by multiple thread blocks, which form the kernel
grid. The grid can be regarded as an array of blocks with up to two dimen-
sions. Each block is, in turn, an array of threads with up to three dimensions.
CUDA can schedule blocks to run concurrently on a SM depending on the
shared memory and registers used per block. Increasing either of these fac-
tors can lead to limited concurrent block execution, which results in low
occupancy. Occupancy is defined as the ratio of active warps on a SM to the
maximum allowed active warps per SM. Maximizing occupancy is a good
heuristic approach but it does not always guarantee performance gain. On
the contrary, maintaining high warp execution efficiency, i.e. the average
percentage of active threads in each executed warp, is a more robust ap-
proach for data-management tasks, as shown in executing generic theta-joins
on GPUs [18].

3. Algorithms & Techniques

In this section, we review and discuss the algorithms and techniques that
are evaluated in this work. First, we summarize the findings of Mann [1]
regarding the best three CPU algorithms, which we consider as our baseline.

9

Second, we present three techniques, which employ the GPU to accelerate
set similarity joins in a different manner.

3.1. CPU

In [1], seven main memory algorithms2 are compared using real world
datasets. The key characteristics of the best three algorithms are summarized
below.
AllPairs (ALL). It is the first and most naive main memory algorithm to
exploit the given threshold. During the inverted list lookup, it applies the
prefix and length filters to prune candidate pairs [2].
PPJoin (PPJ). It extends ALL by applying the positional filter on pre-
candidates [19]; therefore its verification phase is less loaded at the expense
of a higher overhead during filtering.
GroupJoin (GRP). It is an extension to PPJ. Sets with identical prefix
are grouped together. Each group is handled as a single set. Thus GRP
has faster indexing, as it discards candidates pairs in batches. During the
verification phase, the candidate pairs are expanded [3].

Discussion. There are three key observations provided in [1]. First, all
the evaluated algorithms have small performance differences except those
which involve sophisticated filtering. Second, efficient verification yields sig-
nificant performance speedups and renders complex filters inefficient. Finally,
candidate generation is indicated as the main bottleneck especially for the
techniques that employ the prefix filter.

3.2. GPGPU

The techniques that use the GPU fall into two categories: (i) those that
split the workload between the CPU and the GPU, and (ii) those that move
the whole workload to the GPU.

3.2.1. CPU-GPU co-processing

Since the algorithms solving the set similarity problem efficiently conform
to the filter-verification framework, splitting the workload between CPU and
GPU involves specifying which component each phase is assigned to. In
principle, GPUs are used to accelerate compute-intensive applications by
processing data in a predefined memory space. In addition, based on the way

2AllPairs [2], PPJoin and PPJoin+ [19], MPJoin [20], MPJoin-PEL [21], AdaptJoin
[22] and GroupJoin [3].

10

8 9

s1

s3

s4

s2

s3

s5

Prefix index (Collection S)

8 9 r6

r7

Probing sets (Collection R)

fr6g× ()]
s3

s4

s3

s5

CPU

GPU

(r6; s3)
(r6; s4)

f gf(r6; s3)g
verification

candidates

filtering

result

Figure 4: Splitting the workload between CPU (candidate generation) and GPU (candi-
date verification). The workload representation is adapted from [1].

that the CPU invokes the GPU, it is considered an anti-pattern if a GPU
operates autonomously, e.g., self-exiting based on some condition, which may
hurt the overall performance.

In [10], a co-process scheme between CPU and GPU is introduced in order
to efficiently compute set similarity join. Due to the fact that for a probe set,
an arbitrary number of candidate pairs may be generated, the filtering phase
remains a CPU task. Thus, the CPU remains responsible for index building
and initial pruning of candidate pairs. On the other hand, the verification
phase is stated as more suitable for parallelization, as it involves a merge-
like loop, where the overlap of candidate pairs is computed and therefore is
delegated to the GPU. As a result, the multithreaded framework depicted in

11

time

! filter

! verify

! output

CPU T0

GPU

CPU T1

Figure 5: Execution overlap between the CPU threads (T0 → filter, T1 → output) and
GPU (verify), each color corresponds to a different data chunk of candidates.

Figure 4 is proposed. The main challenges addressed involve the appropriate
data layout on the device memory, efficient usage of the fast shared memory
and thread workload; regarding the latter, three main alternatives have been
explored: a thread can evaluate multiple candidate pairs, or only one pair or
part of a single candidate pair.

ALL, PPJ and GRP, reported as the most efficient algorithms in [1], are
used for the filtering phase. Since the limited GPU memory is the most
dominant constraining factor, the workload is divided into chunks and the
GPU is invoked several times. Hence, the CPU iteratively transfers as many
candidates as the GPU memory can handle. This results in a non-blocking
filtering phase, which naturally lends itself to an execution overlap between
filtering and verification as shown in Figure 5; the third phase is for the
construction of the final output pairs on the CPU. The two CPU phases run
in different threads. As reported in [10], the runtime is improved in several
cases, especially for large datasets.

Discussion. Even though the average verification runtime is reported as
constant for most datasets in [1], the work in [10] proves that employing the
GPU for this part improves overall performance. Selecting the appropriate
verification technique depending on the average set size, and performing fur-
ther fine tuning can completely hide the verification time due to the execution
overlap, especially where the number of candidates is in billions. However,
since the runtime is bounded by the execution time for the filtering phase and
due to Amdahl’s law, the achieved speedups are lower than an order of mag-
nitude, e.g., if filtering takes 40% of the total time, the maximum speed-up
through parallelizing only the verification phase cannot exceed 2.5X.

3.2.2. GPU standalone

Ribeiro et al. with their successive works in [23, 24, 9] perform the com-
plete exact set similarity join on the GPU. We provide an overview of the

12

three main techniques proposed below along with a brief discussion.
GPU-based Set Similarity Join (gSSJoin) [23]. gSSJoin first constructs
a static inverted index over all tokens; then, for each probe set, it performs
a set similarity operation consisting of three steps: (i) First, an intersection
count between the input set and every other set is calculated. By using the
inverted index, the workload is evenly distributed among the GPU cores.
Figure 6 depicts how gSSJoin evenly distributes the workload among four
GPU threads. In the example in the figure, first, the four inverted lists
corresponding to the tokens of probe set r20 with ids 4,8,9, and 13 are con-
catenated in a logical vector E. Next, given the number of GPU threads,
|T | = 4, each thread is assigned with |E|/|T | = 16/4 = 4 elements. Each
element contributes to the computation of the intersection count of a specific
candidate pair containing r20. Each thread processes independently its corre-
sponding partition; this implies that a count may be incremented by multiple
threads and thus the atomic add operation is used to ensure correctness. (ii)
Then, the Jaccard similarity of every pair is calculated and stored in global
memory. (iii) Finally, the pairs that have similarity higher or equal to the
threshold value are selected and transferred to the main memory. To reduce
the transfer size, a stream compaction technique is employed.

Discussion. gSSJoin can be considered as an efficient brute force ap-
proach, since, for every pair, the corresponding similarity score is calculated.
By completely avoiding any kind of filtering, it remains more robust to varia-
tions of threshold values and token frequency distribution; this is its strongest
point. By not using any kind of filtering, proven to be quite effective es-
pecially in large threshold values, gSSJoin conducts numerous unnecessary
intersection counts and may add extra overhead to the overall runtime in
contrast to filter-based approaches. However, the main drawback of gSSJoin
is the inherent launch overhead, which starts dominating in medium and
large datasets (> 1M): as the dataset size increases, the launch overhead
increases as well, since each probe set corresponds to several independent
kernel calls.3

Filter-based gSSJoin (fgSSJoin) [24]. fgSSJoin extends gSSJoin by en-
capsulating a filtering phase. In addition, a block partitioning scheme is

3In our setting, a launch overhead is approximately 0.01ms, which is several times
higher than the execution overhead of a single kernel. Given the fact that for each probe
set, gSSJoin launches many kernels to find its similar pairs, as the dataset size increases,
the aggregated overhead becomes the main performance bottleneck.

13

r20 = f4; 8; 9; 13g

r2 r3 r6 r12 r2 r4 r12 r14 r2 r3 r6 r9r8 r12 r14 r15

4 8 9 13

T0 T1 T2 T3

r20

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19

0 3 2 1 20 0 1 1 0 0 3 0 2 1 0 0 0 0

intersection count

E

Figure 6: gSSJoin workload allocation example for four GPU threads.

R0

R1

R2

Input collection R

fn R0

R1

R2

R0

R0;1

R0;1;2

probe blocksindexed blocks

./

./

./

Figure 7: Block partitioning scheme used in fgSSJoin and sf-gSSJoin.

adopted in order to process collections of arbitrary size. In summary, the
input collection is divided into blocks of size n, with n being an input pa-
rameter chosen accordingly for the result to fit in global memory. Through
an iterative process, a block is indexed and probed against itself and all its
predecessors. Figure 7 illustrates the block partitioning and probing. First,
block R0 is indexed and probed against itself. After that, block R1 is indexed
and probed against itself and its predecessor R0. Finally, the same procedure
applies to block R2. The sets are ordered by their size; this allow a length
filter to be applied and whole block-to-block comparisons to be skipped.

During the filtering phase, partial intersection counts between indexed
and probed sets prefixes are calculated and stored in global memory, given
that on-chip memories are too small to hold the results. This incurs an O(n2)
space complexity to cover the worst case scenario, where all set pairs are
candidates. Subsequently, every pair that has a non-zero partial intersection
count undergoes full verification, whereas the rest is pruned. The workload

14

R0

probe block

r0

r1

r2

r3

indexed block

r4

r5

r6

r7

./
4; 6; 8; 9; 12

4; 6; 8; 10; 12

r0

r1

r2

r3

r4 r5 r6 r7

2

4; 8

1

f(r5; r2)g

output

4

r5

r5

r5

r5

6

8

10

r512

7; 8

R1

R1 inverted index

0

filter verify

jr5 \ r0j = 2

jr5 \ r2j = 4

Figure 8: fgSSJoin probe block example (block size n = 4, threshold τn = 0.8).

is distributed similarly to gSSJoin. Figure 8 depicts the filter-verification
steps of fgSSJoin. Initially, by using the prefix filter, fgSSJoin computes the
partial intersection counts between the probe sets r0, r1, r2 and the indexed
set r5. Before moving to the verification phase, the pair (r5, r1) can be
safely pruned since its partial intersection count is zero. Finally, the non-
zero partial intersection count pairs undergo full verification. As a result,
only the pair (r5, r2) has the required overlap and thus it is added in the
output.

Discussion. By integrating a filtering stage, fgSSJoin reduces the candi-
date search space, especially in large threshold values. Its most significant
contribution is the block partitioning scheme, which overcomes the launch
overhead limitation of gSSJoin. In addition, thanks to a length filter, whole
blocks can be pruned. A scalability issue arises when processing the quadratic
memory space required to store the intermediate intersection counts. More
specifically, after each probe block call, this space must be reset to zero to
ensure correctness. As a result, the accumulated overhead may become a
significant issue, as the dataset size increases.
Size-filtered gSSJoin (sf-gSSJoin) [9]. sf-gSSJoin adopts the same block
partitioning scheme as fgSSJoin. It performs the set similarity join into two
phases per probe. First, it calculates the complete intersection counts be-

15

R0

probe block

r0

r1

r2

r3

indexed block

r4

r5

r6

r7

./
4; 6; 8; 9; 12

4; 6; 8; 10; 12

r0

r1

r2

r3

r4 r5 r6 r7

4

4; 8

2

f(r5; r2)g

output

4

r5

r5

r5

r5

6

8

10

r512

7; 8

R1

R1 inverted index

1

intersection count verify

jr5 \ r1j = 1

jr5 \ r2j = 4

jr5 \ r0j = 2

Figure 9: sf-gSSJoin probe block example (block size n = 4, threshold τn = 0.8).

tween probed and indexed sets without any prefix filtering. Then, for each
non-zero intersection count, it calculates the corresponding pair’s Jaccard
similarity. Finally, the output stored in linear global memory is transferred
back to main memory. Figure 9 gives an overview of sf-gSSJoin’s probing.
In contrast with fgSSJoin, sf-gSSJoin directly calculates the complete inter-
section counts between probe sets r0, r1, r2 and the indexed set r5 in its first
pass. This results to more global memory accesses, compared to fgSSJoin
when prefix filtering is effective.

Discussion. As stated before, as the threshold value decreases, filter
effectiveness degrades leading to an increased number of candidates and
subsequently larger execution times. sf-gssJoin combines the robustness of
gSSJoin against varying threshold values and data token frequencies with
the scalability of the block partitioning scheme used in fgSSJoin; thus, as
reported in [9], it outperforms its two predecessors when the filtering does
not make much difference, e.g., for threshold values lower than 0.5. Contrary
to fgSSJoin, no prefix filter is employed; only the length one is used.

3.2.3. Bitmap filter

In their work, Mann et al. [1] point out the prefix filter as the main bot-
tleneck of the filter-verification algorithms and underline that future filtering
techniques should invest in faster and simpler methods. Driven by this, the

16

r

s

br

bs

13 23 45 49 56 57 62 76 87 99

0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0

0 1 0 1 0 0 1 1 0 1 1 0 0 1 1 0

13 22 45 49 58 61 62 73 87 99

0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0⊕ jr \ sj ≤ 8

Figure 10: Candidate pair r, s can be safely pruned for τn = 0.95 → τ = 10 since its
expected overlap upper bound is 8

authors of [25] propose a new low overhead filtering technique called bitmap
filter.

Essentially, the bitmap filter uses hash functions to create signature bitmaps
of size b for the input collection sets. Thus, the initial dataset tokens are
mapped in a fixed bitmap space. Without compromising the exactness of
set similarity join, bitmap filter can deduce an overlap upper bound for a
candidate pair (Equation 3.1). If the upper bound is less than the minimum
required overlap, the candidate can be safely pruned. Figure 10 illustrates
the application of bitmap filter on an example candidate pair.

|r ∩ s| ≤ ⌊|r|+ |s| − popcount(br ⊕ bs)

2
⌋ (3.1)

Discussion. The simplicity and speed of bitmap filter relies on the fast
bitwise operations. In order to deduce an overlap upper bound, a population
count operation of the signatures’ hamming distance is required, which in
turn can be directly converted to the corresponding hardware instruction.
Such bitwise operations can easily benefit from the massive parallel environ-
ment of the GPU. To support their reasoning, the authors of [25] describe
a simple GPU implementation, in which the GPU generates candidate pairs
using the bitmap filter and the CPU verifies them. As a result, significant
speedup is achieved over the sequential algorithms depending on the dataset
characteristics. However, their solution lacks scalability, since it involves
transferring complete candidate pairs via the PCI-E bus, which becomes the
main bottleneck. We investigate the application of bitmap filter utilizing the

17

index filters verification
CPU See Algorithm 1

CPU-GPU in CPU as in CPU multiple workload alternatives
gSSJoin in GPU - using atomic operations
fgSSJoin in GPU prefix, length using atomic operations
sf-gSSJoin in GPU length using atomic operations
bitmap - bitmap, length multiple workload alternatives

Table 3: Feature comparison between the evaluated techniques.

fgSSJoin block partitioning scheme; contrary to the initial proposal in [25],
to mitigate scalability issues, we keep the whole join process on the GPU.

3.2.4. Summary view

In Table 3, we provide a unified table, where all the GPU-enabled alter-
natives are shown with regards to their differences from the standard CPU
algorithms. During verification, we distinguish between the techniques where
multiple thread workload alternatives are employed and those that simply re-
sort to atomic add operations in a straight-forward manner.

As already explained, our techniques are main-memory ones. Therefore,
the dataset must fit into CPU main memory, while the GPU’s main memory
must be large enough to hold the inverted index in the GPU standalone
techniques.

4. Evaluation

The goals of our experimental evaluation are threefold: (i) to show the ex-
tent of the achieved speedups between CPU standalone and GPU-accelerated
implementations while improving on the CPU should not be taken for granted;
(ii) to identify the conditions under which each solution becomes the domi-
nant in practice, and (iii) to provide explanations about the observed behav-
ior.

For ease of presentation, we split the experiments into two parts: the main
part, which is adequate to reveal the main pros and cons of each technique,
and the additional part, where we emphasize on scalability and on using
synthetic data to cover a larger range of data characteristics.

The remarks of both sets of experiments are either the same or comple-
mentary and are summarized at the end.

18

4.1. Setting of the main experiments

The experiments were conducted on a machine with an Intel i7 5820k
clocked at 3.3GHz, 32 GB RAM at 2400MHz and an NVIDIA Titan XP on
CUDA 9.1. This GPU has 3840 CUDA cores, 12 GB of global memory and
a 384-bit memory bus width.

We report the overall runtime, noted as join time, which is the composi-
tion of filtering (if any) and the verification conducted. When we drill-down,
we explicitly refer to the former as filtering time and to the latter as ver-
ification time. We do not include any data preprocessing time spent for
tokenization and de-duplication, which are performed exactly as in [1]. Note
that data transfer times are also included in the join time for the GPU-
enabled solutions. We conduct experiments for all datasets presented below
using by default five thresholds in the range [0.5, 0.9]. We focus on self-joins
using the Jaccard similarity and experiment on main-memory solutions on
a single machine. Thus, for the CPU-based solutions, datasets must fit in
main-memory. For the GPU-enabled approaches, the complete datasets are
also copied to the GPU memory, possibly in chunks. For simplicity, we per-
form an aggregation on top of the set similarity join, to measure the count
of the results; in Section 4.5 we provide empirical evidence why this does
not affect the results presented. The reported time for each experiment is an
average over 5 independent runs but is important to note that no significant
deviation was observed. We measure the total join time with the std::chrono
and time.h libraries. For the GPU operations we measure time by using the
CUDA event API.

We experiment with eight real world datasets; seven of them were also
employed in [1] and we also employed the TWITTER dataset found in [26].
Table 4 shows an overview of each dataset characteristics. Some datasets
follow a Zipf-like distribution of set sizes, as shown in Figure 11, but in
general, the distribution types differ. A summary of each dataset (adapted
from [1]) is as follows:

AOL: query log data from the AOL search engine. Each set represents
a query string and its tokens are search terms.

BMS-POL: purchase data from an e-shop. Each set represents a pur-
chase and its tokens are product categories in that purchase.

DBLP: article data from DBLP bibliography. Each set represents a pub-
lication and its tokens are character 2-grams of the respective concatenated
title and author strings.

19

Dataset Cardinality Avg set size # diff tokens
AOL 1.0 · 107 3 3.9 · 106
BMS-POS 5.1 · 105 6.5 1657
DBLP (100K) 1.0 · 105 88 7205
DBLP (200K) 2.0 · 105 88 8817
DBLP (300K) 3.0 · 105 88 1.0 · 104
DBLP (1M) 1.0 · 106 88 1.5 · 104
DBLP (Complete) 6.1 · 106 88 2.7 · 104
ENRON 2.5 · 105 135 1.1 · 106
KOSARAK 1.0 · 106 8 4.1 · 104
LIVEJOURNAL 3.1 · 106 36.5 7.5 · 106
ORKUT 2.7 · 106 120 8.7 · 106
TWITTER 1.6 · 106 75 3.7 · 104

Table 4: Datasets characteristics.

100 101 102 103 104
Set Size

100

101

102

103

104

105

106

Co
un

t

AOL
BMS
DBLP
ENRON
KOSARAK
LIVEJOURNAL
ORKUT
TWITTER

Figure 11: Datasets set size distribution

20

ENRON: real e-mail data. Each set represents an e-mail and its tokens
are words from either the subject or the body field.

KOSARAK: click-stream data from a Hungarian on-line news portal.
Each set represents a user behavior and its tokens are links clicked by that
user.

LIVEJOURNAL: social media data from LiveJournal. Each set repre-
sents a user and its tokens are interests of that user.

ORKUT: social media data from ORKUT network. Each set represents
a user and its tokens are group memberships of that user.

TWITTER: social data from Twitter. Each set represents a user tweet
and its tokens are character 2-grams of the respective tweet text.

In the remainder of the discussion, datasets of 105 will be referred to as
small, the ones in the order of 106 medium, and those in 107 as large. As can
be observed from Table 4, the datasets differ significantly in the average set
size and number of distinct tokens. When the average set size is less than
10, it will be referred to as small; otherwise, as large. Also, the number of
different tokens will be characterized as small when in the order of 104, and
large when in the order of 106. These properties are essential to derive the
sweet spots of each technique, because, along with the threshold values, they
affect the amount of candidate pairs that need to be verified. For example,
for the same dataset size and threshold values, fewer pairs are filtered when
the number of distinct tokens is small. Similarly, any filtering becomes less
effective when the average set size is small, especially when combined with
low number of distinct tokens.

4.1.1. Launch configuration

In GPGPU computing, selecting the best launch parameters, i.e. number
of blocks and threads per block is required to fully exploit the massive paral-
lelism. Although recent compiler optimizations tend to offload the developer
from the burden to meticulously pick these parameters, depending on the
context and the GPU code, it may be inevitable for these not to be hand
picked.

For the CPU-GPU co-processing framework [10], with fine tuning4 and

4Fine-tuning for this approach is only required for the small datasets where, depending
on certain key dataset characteristics, the GPU verification may add an extra overhead.
As the dataset size increases, the overall join time is bounded by the CPU filtering time.
Hence, fine-tuning the GPU in such cases would not yield any performance speedup.

21

0.50.60.70.80.9
Similarity Threshold

0

250

500

750

1000

1250

Ti
me
 (

se
cs
)

(a) AOL

0.50.60.70.80.9
Similarity Threshold

0

10

20

30

40

Ti
me
 (

se
cs
)

(b) BMS

0.50.60.70.80.9
Similarity Threshold

0

20

40

60

80

100

Ti
me
 (

se
cs
)

(c) DBLP (100K)

0.50.60.70.80.9
Similarity Threshold

0

10

20

30

Ti
me

 (
se
cs
)

(d) ENRON

0.50.60.70.80.9
Similarity Threshold

0

20

40

60

80

100
Ti

me
 (

se
cs
)

(e) KOSARAK

0.50.60.70.80.9
Similarity Threshold

0

50

100

150

200

250

Ti
me

 (
se
cs
)

(f) LIVEJOURNAL

0.50.60.70.80.9
Similarity Threshold

0

200

400

600

800

1000

Ti
me

 (
se

cs
)

(g) ORKUT

0.50.60.70.80.9
Similarity Threshold

0

10000

20000

30000

Ti
me

 (
se

cs
)

(h) TWITTER
0.700.750.800.850.90

0

20

40

60

80

100

CPU
CPU-GPU
fgSSJoin
sf-gSSJoin
bitmap

Figure 12: Comparison between the best times for different thresholds.

by selecting the appropriate workload allocation between threads, depend-
ing on each dataset characteristics, we manage to fully overlap filtering and
verification phases, and the final phase, where the CPU constructs the result
pairs. For gSSJoin and its variations, we used a fixed number of thread blocks
(equal to the number of SMs) and threads per block (max supported value)
as proposed by their authors. Specifically, we launch a 1-dimensional grid
consisting of 15 thread blocks and 1024 threads per thread block. In addition,
we choose to partition the input collection to blocks of size n = 15000.

4.2. Main experiments

We compare the state-of-the-art CPU standalone implementation of Mann [1]
against its GPU-accelerated version [10], noted as CPU-GPU and the GPU

22

standalone solutions described in [23, 24, 9]. In Figure 12, we present the
best join times measured for all. Each time reported for the CPU is the
overall best among the three algorithms (i.e., ALL, PPJ, GRP) and there-
fore the best we can achieve in our setup. Respectively, for the CPU-GPU
co-processing solution, each time reported is the overall best among of the
three CPU algorithms and the best GPU verification techniques described
in [10]. Finally, for gSSJoin and its variations, we report the sum of time for
all the GPU operations required to perform the set similarity join.

As shown in Figure 12, for the majority of datasets and high thresholds,
i.e. the threshold range is in [0.8, 0.9], invoking the GPU does not yield
any performance speedup. Given the fact that in high thresholds, filtering is
quite effective, hence the number of candidates is quite small, employing the
GPU seems redundant, especially for small datasets. On the other hand, as
the threshold value decreases ([0.5, 0.7]), GPU standalone solutions are quite
effective in general. This is due to the fast intersection count conducted in
parallel which accelerates the verification phase, but as explained later, there
are several other factors that impact on performance.

Nevertheless, there is no clear pattern. Continuing with the GPU stan-
dalone solutions, we observe that are rather inefficient for the biggest dataset
(AOL); in contrast, they perform better for the TWITTER dataset. This
calls for a deeper analysis. The detailed observations with the key strengths
and weaknesses of each technique are deferred to Section 4.4.3 and after we
explain the technique behavior in more detail. Also, we have omitted the
gSSJoin solution, due to its inability to scale, as explained below.

4.3. Performance analysis

Motivated by the fact that neither technique is the most dominant one (as
also shown in Figure 12), first we shed light on the impact of the fact that the
GPU standalone solutions require quadratic space in the global memory. We
also discuss the effect of dropping the prefix filter in sf-gSSJoin. Further, we
evaluate the use of bitmap filter, instead of prefix filter used in fgSSJoin, and
provide useful insights. In addition, we explain why we omitted gSSJoin from
the main experiments. Another aspect of our analysis, involves the evaluation
of the scalability of all solutions as we run them over artificially increased
datasets. Finally, we experiment on synthetic datasets to further highlight
the impact of specific dataset characteristics. The two latter aspects, due to
their significance, are examined separately.

23

τn # probes accumulated O(n2) space time (secs)
0.5 138841 125 TB 261
0.6 94747 85 TB 178
0.7 64928 58 TB 122
0.8 50431 45 TB 95
0.9 42628 38 TB 80

Table 5: Quadratic space overhead for AOL

4.3.1. Quadratic space overhead of fgSSJoin and sf-gSSJoin

For datasets, the output of which does not fit in the GPU memory,
fgSSJoin and sf-gSSJoin use a block division scheme to process input data
gradually. To conduct a set similarity join between two blocks, an O(n2)
memory space is required to store the intersection counts. After each block
probe, this memory space must be cleared to ensure correctness for the next
probe calls.

Considering that an intersection count is a 4-byte integer, the required
memory space to store all counts for n = 15000 is 900MB. In our experiments,
we use the cudaMemset function to clear the intersection count space. This
entails a 2 ms overhead per probe call.

For datasets with a high proportion of similar set sizes, such as AOL,
length filtering on block level is ineffective. This results in a higher number
of GPU calls which in turn increases the clear operation overhead of the
quadratic memory space. Concrete numbers are presented in Figure 13 and
Table 5. The magnitude of the impact of quadratic space on runtime is
dictated by two factors: input collection size and the number of pruned
blocks.

The bottom line is that in large datasets, especially when, due to the
dataset size and set size, the length filter cannot prune many pairs, the over-
head associated with the quadratic space complexity is not outweighed by any
benefits compared to the CPU solution for thresholds above 0.6, and, overall
fgSSJoin and sf-gSSJoin are not the optimal GPU-enabled techniques.

4.3.2. Filtering vs complete intersection (fgSSJoin vs sf-gSSJoin)

Assume that someone would like to run a similarity query that is rather
close to a cartesian product by setting the threshold to low values, such as t <
0.5. In this case, adopting and relying on effective filtering is not beneficial.
This renders sf-gSSJoin, which is closer to brute-force, the best performing

24

0.5 0.6 0.7 0.8 0.9
Similarity Threshold

0

100

200

300

400

500

600

700
Ti

me
 (

se
co

nd
s)

fgSSJoin (clear O(n2) space)
fgSSJoin (filter + verify)
CPU complete join time

Figure 13: Quadratic space overhead

technique. In general, sf-gSSJoin exhibits robustness with regards to low
threshold values. While it may perform worse than fgSSJoin, it scales better
when we gradually lower the threshold. Figure 14 shows concrete examples
for the DBLP(1M), ENRON and ORKUT datasets, and complements the
relevant results from Figure 17.

4.3.3. Bitmap performance

Bitmap filtering can be seen as an alternative to a prefix-based approach.
However, the technique is highly dependent on the dataset characteristics,
since sets may produce similar bitmaps even if they do not share similar
tokens; in general, the probability of such undesired collisions is increased
whenever the number of set tokens is increased and the bitmap size is re-
duced. Trying to increase the bitmap size along with the number of set
tokens does not scale either because it leads to more global memory accesses.
Nonetheless, the bitmap-based solution has its own sweet spot: high average
set size combined with low number of different tokens, as in the TWITTER
and DBLP datasets. Figure 12 shows the best timings of the bitmap solu-
tion for our main experiments (we have experimented with several signature
sizes).

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Similarity Threshold

0

500

1000

1500

2000

2500

3000

3500

4000

Ti
me

 (
se

co
nd

s)

fgSSJoin (filter)
fgSSJoin (verify)
sf-gSSJoin (intersection)
sf-gSSJoin (verify)

(a) DBLP (1M)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Similarity Threshold

0

20

40

60

80

100

120

140

Ti
me

 (
se

co
nd

s)

fgSSJoin (filter)
fgSSJoin (verify)
sf-gSSJoin (intersection)
sf-gSSJoin (verify)

(b) ENRON

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Similarity Threshold

0

200

400

600

800

1000

1200

Ti
me

 (
se

co
nd

s)

fgSSJoin (filter)
fgSSJoin (verify)
sf-gSSJoin (intersection)
sf-gSSJoin (verify)

(c) ORKUT

Figure 14: Comparison between the best times of fgSSJoin vs sf-gSSJoin for different
thresholds.

For the AOL dataset, bitmap has the worst performance because it in-
herits the quadratic space overhead of fgSSJoin and its filtering is ineffective.
For the BMS, ENRON and KOSARAK datasets and high threshold values,
bitmap performs worse than every other technique. However, as the thresh-
old value decreases, the performance difference between the best performing
techniques and bitmap is smaller. The best bitmap performance is observed
for the DBLP(100K) and TWITTTER datasets. Furthermore, in Figure 17
to be discussed later in detail, we show that bitmap remains efficient for larger
portions of the DBLP dataset. On the other hand, for the LIVEJOURNAL
and ORKUT datasets, bitmap has the worst performance for the majority
of threshold values.

Finally, as shown in Figure 15, we show the impact of the average set

26

0.5 0.6 0.7 0.8 0.9
Similarity Threshold

0

1

2

3

4

5

6

Ti
me

 (
se

co
nd

s)

fgSSJoin (filter)
fgSSJoin (verify)
bitmap (filter)
bitmap (verify)

(a) BMS

0.5 0.6 0.7 0.8 0.9
Similarity Threshold

0

100

200

300

400

500

Ti
me

 (
se

co
nd

s)

fgSSJoin (filter)
fgSSJoin (verify)
bitmap (filter)
bitmap (verify)

(b) DBLP (1M)

0.5 0.6 0.7 0.8 0.9
Similarity Threshold

0

100

200

300

400

500

600

700

800

Ti
me

 (
se

co
nd

s)

fgSSJoin (filter)
fgSSJoin (verify)
bitmap (filter)
bitmap (verify)

(c) TWITTER

0.5 0.6 0.7 0.8 0.9
Similarity Threshold

0

200

400

600

800

1000
Ti

me
 (

se
co

nd
s)

fgSSJoin (filter)
fgSSJoin (verify)
bitmap (filter)
bitmap (verify)

(d) ORKUT

Figure 15: Comparison between the best times fgSSJoin vs bitmap for different thresholds.

size and the number of different tokens on the efficiency of bitmap filter.
The BMS, DBLP (1M) and the TWITTER datasets have small number of
different tokens. However, BMS, contrary to DBLP and TWITTER has
small average set size, which leads to a big increase in the filtering time. For
ORKUT, even though it has a large average size, due to its large number
of different tokens, it renders bitmap filtering ineffective (the same behavior
was also observed for the LIVEJOURNAL dataset).

4.3.4. gSSJoin launch overhead

As stated in the technique presentation, gSSJoin launches a sequence of
separate GPU kernel calls per probe set in order to conduct the set similarity
join operation. Given the fact that launching a large number of small kernels
is considered a bad practice, executing gSSJoin results into an accumulated

27

0.50.60.70.80.9
Similarity Threshold

0

20

40

60

80

100

120

Ti
me

 (
se

cs
)

CPU
CPU-GPU
gSSJoin
fgSSJoin

(a) BMS

0.50.60.70.80.9
Similarity Threshold

0

20

40

60

80

100

Ti
me

 (
se

cs
)

CPU
CPU-GPU
gSSJoin
fgSSJoin

(b) DBLP (100K)

0.50.60.70.80.9
Similarity Threshold

0

200

400

600

800

1000

1200

Ti
me

 (
se

cs
)

CPU
CPU-GPU
gSSJoin
fgSSJoin

(c) DBLP (300K)

0.50.60.70.80.9
Similarity Threshold

0

20

40

60

80
Ti

me
 (

se
cs

)

CPU
CPU-GPU
gSSJoin
fgSSJoin

(d) ENRON

Figure 16: gSSJoin runtimes for different thresholds compared to other techniques

launch and execution overhead as shown in Figure 16. Hence, the overall
runtimes are dominated by the overhead required to invoke the GPU and it
is threshold value independent. In some cases, such as the DBLP datasets
(Figures 16(b) and 16(c)), gSSJoin performs better than the CPU at lower
thresholds since the GPU invocation overhead is lower than the filtering
phase conducted on the CPU. However, as the input collection size increases
the GPU overhead increases dramatically, rendering gSSJoin inefficient for
real world applications and is totally dominated by sf-gSSJoin.

4.4. Additional Experiments

Before presenting the main outcomes, we run additional experiments us-
ing larger and synthetic datasets.

28

0.10.20.30.40.50.60.70.80.9
Similarity Threshold

0

100

200

300

400

Ti
me

 (
se

cs
)

CPU
CPU-GPU
fgSSJoin
sf-gSSJoin
bitmap

(a) DBLP (200K)

0.10.20.30.40.50.60.70.80.9
Similarity Threshold

0

200

400

600

800

1000

1200

Ti
me

 (
se

cs
)

CPU
CPU-GPU
fgSSJoin
sf-gSSJoin
bitmap

(b) DBLP (300K)

0.10.20.30.40.50.60.70.80.9
Similarity Threshold

0

1000

2000

3000

4000

5000

6000

Ti
me

 (
se

cs
)

CPU
CPU-GPU
fgSSJoin
sf-gSSJoin
bitmap

(c) DBLP (1M)

Figure 17: Comparison between the best times for larger portions of the DBLP dataset.

4.4.1. Scalability

We examine the scalability of the evaluated solutions (i) on larger portions
of the DBLP dataset, which follow the same token distribution frequency and,
(ii) on artificially increased versions of the BMS, ENRON and LIVEJOUR-
NAL datasets. We populate the increased datasets similarly to [7]. All the
corresponding dataset characteristics are located in Table 6.

From Figure 17, we can see that the speed-ups of the GPU standalone
solutions are much more evident as the collection size increases compared to
the CPU standalone for larger portions of the DBLP dataset. This is further
verified from partial results regarding the full DBLP dataset, as shown in
Table 7. The benefits from employing GPUs are tangible even for larger
thresholds, given that, for the complete dataset, the candidate pairs are tens
of billions and CPU takes up to two hours approximately for DBLP dataset

29

Dataset Cardinality Avg set size # diff tokens
BMS (x25) 1.3 · 107 6.5 1681
ENRON (x25) 6.1 · 106 135 1.1 · 106
LIVEJOURNAL (x5) 1.5 · 107 36.5 7.5 · 106

Table 6: Larger datasets’ characteristics. Within parentheses is the increase factor.

0.70.80.9
Similarity Threshold

0

1000

2000

3000

4000

5000

6000

7000

Ti
me

 (
se

cs
)

CPU
CPU-GPU
fgSSJoin
bitmap

(a) BMS (x25)

0.70.80.9
Similarity Threshold

0

500

1000

1500

2000

Ti
me

 (
se

cs
)

CPU
CPU-GPU
fgSSJoin
bitmap

(b) ENRON (x25)

0.70.80.9
Similarity Threshold

0

500

1000

1500

2000

2500

3000

Ti
me

 (
se

cs
)

CPU
CPU-GPU
fgSSJoin
bitmap

(c) LIVEJOURNAL (x5)

Figure 18: Comparison between the best times for the increased datasets.

with τn = 0.9.
However, the correct interpretation needs to take into account the behav-

ior for the AOL dataset, where the GPU standalone solutions are suboptimal.
The key observation is that in Figure 175, the GPU standalone solutions per-

5When τn = 0, the similarity join is essentially a cartesian product, where the only
practical solution is sf-gSSJoin with running time as for τn = 0.1.

30

form very well not due to their capability to scale for large datasets, but due
to the length filter they encapsulate. This type of filter is particularly ef-
fective for the DBLP dataset but not for the AOL. The important lesson
learned is that dataset characteristics should be always taken into account
in all their main dimensions (dataset size, average set size and number of
different tokens).

Consequently, we proceed by experimenting on artificially increased datasets
using the best performing techniques. We also narrow the threshold range to
τn ∈ [0.7 − 0.9] due to the large overall join times. Depending on the index
size, it may not be feasible to increase datasets arbitrarily. For example, we
could populate a x10 version of the ORKUT dataset following the method
used in [7]. However, this leads to a 13GB index size, which cannot fit in
the GPU memory. We selectively choose two small datasets, i.e. BMS and
ENRON, one medium dataset, i.e. LIVEJOURNAL, and increase each by
an appropriate factor in order to comply with the main-memory restriction.

As it can be seen in the Figure 18(a), increasing the BMS dataset does
not yield any performance difference between the techniques compared to the
original dataset. This is mainly due to the combination of the small number
of different tokens and the small average set size, which results in a high
number of frequent tokens. As a result, this benefits fgSSJoin to conduct
filtering and intersection count faster.

In contrast, the CPU and CPU-GPU techniques perform better than
fgSSJoin on the increased ENRON dataset for τn = 0.8 as shown in Fig-
ure 18(b). Because of the large number of different tokens coupled with
the large average set size, there is a high number of infrequent tokens,
which favors prefix filtering. While the prefix filter remains effective, CPU-
based filtering techniques also remain competitive. For the same reasons,
the performance difference between the CPU-based filtering techniques and
fgSSJoin becomes more evident in the increased LIVEJOURNAL dataset
(Figure 18(c)). However, as the threshold value is decreased for the ENRON
dataset, prefix filtering becomes ineffective, leading fgSSJoin to perform bet-
ter (Figure 18(b), τn = 0.7).

4.4.2. Evaluation on synthetic datasets

We highlight three key dataset characteristics: (i) dataset size, (ii) aver-
age set size, and (iii) the number of different tokens. In order to evaluate the
impact of each of these factors in a more controlled manner, we create twelve
synthetic datasets using the combination of characteristics listed in Table 8.

31

τn CPU CPU-GPU fgSSJoin bitmap sf-gSSJoin
0.8 - 32387 1259 607 10353
0.9 7244 2814 230 303 5227

Table 7: Runtimes for the complete DBLP consisting of 6.1M sets (in secs)

Dataset size 5M, 10M, 20M
Number of different tokens 50K, 500K

Average set size 5, 25

Table 8: Synthetic datasets’ characteristics

0.70.80.9
Similarity Threshold

0

100

200

300

400

Ti
me

 (
se

cs
)

CPU
CPU-GPU
fgSSJoin

(a) 10M - 50K - 5

0.70.80.9
Similarity Threshold

0

500

1000

1500

2000

Ti
me

 (
se

cs
)

CPU
CPU-GPU
fgSSJoin

(b) 10M - 50K - 25

0.70.80.9
Similarity Threshold

0

200

400

600

800

1000

Ti
me

 (
se

cs
)

CPU
CPU-GPU
fgSSJoin

(c) 10M - 500K - 25

Figure 19: Comparison between the best times for synthetic datasets with fixed dataset
size.

0.70.80.9
Similarity Threshold

0

100

200

300

400

Ti
me

 (
se

cs
)

CPU
CPU-GPU
fgSSJoin

(a) 10M - 500K - 5

0.70.80.9
Similarity Threshold

0

250

500

750

1000

1250

1500

1750

Ti
me

 (
se

cs
)

CPU
CPU-GPU
fgSSJoin

(b) 20M - 500K - 5

0.70.80.9
Similarity Threshold

0

500

1000

1500

2000

2500

3000

3500

4000

Ti
me

 (
se

cs
)

CPU
CPU-GPU
fgSSJoin

(c) 20M - 500K - 25

Figure 20: Comparison between the best times for synthetic datasets with fixed number
of different tokens.

Furthermore, the synthetic datasets follow a zipf-like token frequency dis-
tribution. We use the original scripts provided by the authors of [1]. To
distinguish each dataset, we use the notation Dataset Size - Number of dif-
ferent tokens - Average set size.

Initially, we keep the dataset size fixed to 10M and vary the values of
the other two characteristics as shown in Figure 19. In the same manner,

32

0.70.80.9
Similarity Threshold

0

100

200

300

400

500

Ti
me

 (
se

cs
)

CPU
CPU-GPU
fgSSJoin

(a) 5M - 50K - 25

0.70.80.9
Similarity Threshold

0

50

100

150

200

250

Ti
me

 (
se

cs
)

CPU
CPU-GPU
fgSSJoin

(b) 5M - 500K - 25

0.70.80.9
Similarity Threshold

0

2000

4000

6000

8000

Ti
me

 (
se

cs
)

CPU
CPU-GPU
fgSSJoin

(c) 20M - 50K - 25

Figure 21: Comparison between the best times for synthetic datasets with fixed average
set size.

we keep the number of different tokens fixed to 500K (Figure 20) and the
average set size fixed to 25 (Figure 21). In all of the synthetic datasets, we
observe two behavioral patterns. As such, we can classify the runtimes into
two categories, (i) those where the CPU-based filtering outperforms fgSSJoin
for every examined threshold value and, (ii) those in which fgSSJoin begins
to perform better for τn = 0.7.

We see that CPU-based solutions are constantly more efficient than fgSSJoin
apart from the cases where the number of distinct tokens is not large and
the average set size is large. More specifically, in cases where the number of
different tokens is 500K, there is a high number of infrequent tokens, which
benefits CPU-based filtering. For lower number of distinct tokens, prefix fil-
tering gradulally becomes ineffective, and thus fgSSJoin performs better, as
previously stated in the Section 4.4.1.

In conclusion, the combination of the three main dataset characteristics,
namely dataset size, number of distinct tokens and average set size, directly
impacts on the prefix filter efficiency, and consequently on which technique
is the best-performing one. A small number of different tokens alongside a
large average set size will result also in more frequent tokens, which does not
allow prefix filtering to prune a lot of candidate pairs. On the contrary, for
larger datasets with a high number of different tokens, it is more probable to
have infrequent tokens.

4.4.3. Summary of Remarks

We summarize the strong and weak points of each technique. In the
discussion, threshold values of 0.9 are considered as very high, 0.8 as high,
0.5-0.7 as medium and less than 0.5 as low.

33

Dataset size - Average set size
τn

Very high(0.9)
High(0.8)

Medium(0.5-0.7)
Low(<0.5)

small - small small - large medium - large large - small
fgSSJoin CPU

fgSSJoin
fgSSJoin
sf-gSSJoin

fgSSJoin
fgSSJoin
fgSSJoin

fgSSJoin
fgSSJoin

CPU

sf-gSSJoin sf-gSSJoin

CPU
CPU-GPUCPU-GPU

CPU-GPUbitmap
N/A

CPU
large - large
CPU
CPU-GPU

N/A

CPU-GPU

CPU-GPUfgSSJoin

Dataset size - Average set size
Result size

> 109

109

[107
− 108]

[104
− 106]

small - small small - large medium - large large - small
< 104

N/Asf-gSSJoin sf-gSSJoin sf-gSSJoin

bitmap
N/A

CPU-GPU
CPU-GPU

N/A
N/A

sf-gSSJoin sf-gSSJoin sf-gSSJoin
fgSSJoin
fgSSJoin CPU-GPUfgSSJoin

fgSSJoin CPU
large - large

CPU-GPU

N/A

CPU-GPU
CPUCPUfgSSJoin

fgSSJoin CPU

CPU

fgSSJoin
fgSSJoin

CPU-GPU

CPU-GPU

Figure 22: Summary of the best techniques per scenario examined

CPU:
Strong points: handling high and very high thresholds where (prefix) filtering
is effective, e.g., no small average set size combined with high token cardi-
nality.
Dominating cases: very high thresholds unless small dataset and small aver-
age set size, where moving the dataset to the GPU and perform extremely
quick analysis there is more beneficial.
Weak points: handling threshold values lower than 0.8.

CPU-GPU:
Strong points: handling large datasets (but cannot scale with decreasing
threshold values).
Dominating cases: medium-high thresholds (0.5 < t < 0.8) and large datasets.
Weak points: handling (i) small thresholds; and (ii) medium thresholds and
no large datasets, because in these cases, the filtering phase (not parallelized
by CPU-GPU) dominates and/or is significant.

fgSSJoin:
Strong points:handling medium and high thresholds (0.5 < t < 0.8) but not
large datasets, where the initial index-based prefix filtering is ineffective.
Dominating cases: Same as the cases in the strong points.
Weak points: handling large datasets due to the quadratic complexity in the
block size and the associated overhead.

sf-gSSJoin:
Strong points:handling not very big datasets combined with low thresholds.

34

0.40.50.60.70.80.9
Similarity Threshold

0

10

20

30

40

Ti
me

 (
ms

)

select
aggregate

(a) DBLP (100K)

0.40.50.60.70.80.9
Similarity Threshold

0

500

1000

Ti
me

 (
ms

)

select
aggregate

(b) DBLP (1M)

Figure 23: Transfer times via PCI-E for the select (pairs) and aggregate (counts) queries
for the fgSSJoin,sf-gSSJoin and bitmap techniques.

Dominating cases: threshold below 0.5, where sophisticated filtering, e.g.,
prefix ones, is not effective.
Weak points: handling the cases, where prefix-based filtering can manage to
prune a significant portion of candidate pairs, e.g., queries with high thresh-
olds, especially when combined with high average set size.

bitmap:
Strong points:handling cases where bitmap signatures are effective, i.e., high
set size and not high number of different tokens.
Dominating cases: medium thresholds and dataset size combined with low
number of different tokens and high average set size.
Weak points: scalability in the dataset size.

In Figure 22, we provide an overview of the cases, where each technique is
the dominant one, based on our experiments. When there are two techniques
for the same combination of dataset size and average set size, the distinct
token cardinality makes the difference. The top part of the figure splits the
rows according to the τn values. The bottom part repeats the table with
rows split according to the result size. As can be seen, the contents are
highly correlated, thus the discussion above based on threshold values can
be rephrased to be based on result sizes.

35

4.5. Output consideration

In all the experiments above, the set similarity results contained only the
count for the GPU-enabled solutions. However, when considering outputting
the complete results, there are negligible changes.

More specifically, CPU-GPU manages to completely hide the final output
construction due to the thread overlapping shown in Figure 5.

The rest of the techniques share the same approach to constructing the
final result pairs in the GPU and then counting them. However, the main
bottleneck is to transfer the results back to the CPU. In Figure 23, we show
the overhead for the DBLP dataset. For instance, in a challenging case
where the dataset is 1M, τn = 0.4 and the number of output pairs is 1.3 ·109,
fgSSJoin transfers back to the main memory a tuple consisting of the pair
and its similarity degree for each result item. Thus, each tuple has a size of
12 bytes, which amounts to roughly 15.6 GB for the complete output. This
can be transferred in less than 1.5 second through the slow PCI-E CPU-GPU
connection, which is negligible compared to the join times reported in Figure
17.

5. Additional Related Work

Although extensive research has been carried out on set similarity join for
parallel paradigms, such as MapReduce[7, 8, 5], there are few additional stud-
ies investigating set similarity join on the GPGPU paradigm, which, however,
focus on approximate solutions while we deal with exact ones exclusively.

An early proposal has appeared in [11], according to which Lieberman
et al. cast the similarity join operation as a GPU sort-and-search problem.
First, they create a set of space-filling curves using bitonic sort on one of
the input relations; then, they process each record from the other relation in
parallel by executing searches in the space filling curves, using the Minkowski
metric for similarity. In [12], the authors employ the parallel-friendly Min-
Hash algorithm to estimate the Jaccard similarity of two sets. Their solution
is space-efficient since they only store set signatures instead of whole sets
to perform the similarity join. However, due to the MinHash nature (i.e.
data partitioning in bins), fine-tuning is required to achieve balance between
accuracy (to avoid false positives) and execution time. The main limita-
tions of the above techniques is that, apart from being approximate, they
are inherently limited to Jaccard similarity only.

36

Similarity joins are also discussed in [27], where two nested loop join
(NLJ) algorithms are presented: a naive NLJ and a faster index-supported
NLJ. The index is created on the CPU side during the preprocessing phase.
Both algorithms use the Euclidean distance for similarity and thus they are
not suitable for set similarity joins. Nevertheless, the solutions desctribed
in [10] also perform sophisticated CPU-side indexing before the GPU-side
processing.

Another problem, which is close to set similarity join and has been studied
on the GPGPU paradigm, is similarity (nearest neighbor) search. Examples
include [28, 29, 30, 31, 13] but none of them can be applied to our problem.
More specifically, the proposal in [28, 29] uses a GPU-based parallel Lo-
cality Sensitive Hashing (LSH) algorithm to perform approximate k-nearest
neighbor (kNN) search. In [30], a hybrid CPU-GPU framework, which uses
LSH combined with other techniques, such as reservoir sampling is presented,
where, the CPU constructs hashtables and the GPU process them and per-
forms a count-based top-k selection. In [31], the authors propose a two-level
tree and a re-ranking method for fast approximate nearest neighbor search.
In [13], Johnson et al. present a framework to compute a k-NN graph. All
these proposals can be deemed as devising key elements for building addi-
tional approximate set similarity join techniques.

6. Final Discussion

This work summarized and thoroughly evaluated the existing state-of-
the-art in GPU-based exact set similarity joins. We observe that the main
techniques have been proposed in the last few years and have different char-
acteristics, which supports the hypothesis that GPU-enabled similarity joins
is still a technology in evolution. More importantly, there is no clear winner,
which leaves the question as to whether a globally dominant solution exists
open. In Section 4.4.3, we summarize the key strengths and sweet spots
of each technique. Below, we summarize additional generic observations,
lessons learned and technical challenges encountered:

1. This works aims to extend comprehensive evaluations, such as these
in [1], where a single physical machine is employed, through allowing
computations to be also performed on a single GPU. We assume that
the initial datasets are up to several GBs in size, so that they can fit
into the RAM. In such a setting, judiciously employing the GPGPU

37

paradigm can lead to speed-ups up to two orders of magnitude, e.g.,
339X for the Twitter dataset when τ = 0.5 (see Figure 12). By ju-
diciously, we mean deciding the technique to employ according to the
summary table in Figure 22, which may suggest not to use GPU at
all. However, this is the exception; despite working with datasets fit-
ting into the main memory of a modern machine, GPU outperforms
CPU-only solutions, especially when τn < 0.9.

2. A main contribution of this work is to reveal and describe the strengths
and weaknesses of each technique. A prerequisite is to identify the main
factors that impact on the relative performance. The dataset size, token
frequency distributions, number of different tokens, average set sizes
and τn parameter (related to the result size) have been identified as such
factors, with the dataset size, average set size and τn parameter being
the most important ones. At a high-level, these parameter directly
impact on the effectiveness of the filter types employed by the different
techniques.

3. From the technical perspective, the most challenging issues are the de-
sign choices, which concern the kernel grid and balanced splitting of
the workload across GPU threads. Filtering and verification using the
intersection count technique, share common data, and as such they are
tightly coupled. Therefore, they cannot be regarded as individual oper-
ations and must be implemented taking into account their interactions.
Based on how data is accessed and the workload of each thread, cer-
tain GPU features, such as shared memory, that otherwise could speed
up the join process, may not be possible to exploit to its full extent.
For example, fgSSJoin splits the workload among threads based on the
static inverted index, which leaves global memory atomic operations as
the only alternative to process filtering and intersection count. As a
result, the fast on-chip shared memory is not utilized.

4. Elaborating on the technical issues, brute-force-like solutions, such as
gSSJoin cannot scale because of the high launch overhead, which is as-
sociated with the input dataset size. More sophisticated solutions, such
as fgSSJoin and bitmap adopt a block partitioning scheme that enables
them to process thousands of sets per GPU invocation. However, their
current limitations, which are generic in the GPGPU programming,
concern (i) memory consistency and (ii) kernel invocation.

• Regarding memory consistency, for fgSSJoin to ensure correctness,

38

prefix filtering is conducted via atomic operations on global mem-
ory. This may lead to a performance degradation in cases where
multiple threads must update a specific global memory address.
For bitmap, as the signature size increases, the global memory ac-
cess footprint also increases and eventually dominates the filtering
phase.

• Regarding kernel invocation, for the GPU-standalone techniques,
a GPU invocation consists mainly of two kernels, a filtering and a
verification kernel. Essentially, the filtering kernel produces can-
didates pairs for the verification kernel to consume and verify in
order to output the final result. Due to the GPGPU programming
nature, a kernel cannot consume any portion of data produced by
a prior kernel until the latter runs to completion. This has an
impact on resource utilization and consequently on performance
since a thread block that has finished the filtering phase waits for
every block of the grid to finish. Recent advancements on GPGPU
programming such as multi-block cooperative groups which en-
able collective operations, such as verification, to work across all
threads in a group, may contribute to alleviate this issue, but this
remains an open issue.

As mentioned above, the long-term goal is the development of a poten-
tially hybrid and adaptive technique that is dominant across all cases. To
this end, several remaining issues need to be deeper investigated. We identify
the following main directions for direct extensions to our work with arbitrary
order of significance:

• We consider our work as a key step towards understanding in depth
the strengths and weaknesses of each technique. Nevertheless, there
is always room for even more thorough comparative analysis. In our
experiments, the largest dataset was up in the order of 107 sets given
that we focused on techniques employing a single GPU. Even many
years ago, such datasets can be deemed as medium, rather than large
ones [32]. Scaling in an efficient manner to billions of records is a
challenging open issue, given also that the initial results on MapReduce-
based techniques have not shown good scalability [14]. Perhaps using
multiple GPUs is a promising approach that remains to be investigated.

• Following up on the point above, the full space of significant parameters

39

has not been explored. We have identified that the average set size and
the number of distinct tokens play a significant role, since they are
directly related to the amount of work. However, a wider range of
combinations of dataset size, token frequency distributions, number of
different tokens and average set sizes needs to be explored.

• In addition to exploring the impact of multiple GPUs, the efficient
usage of heterogeneous devices is an open issue, which entails more
systematic work on workload splitting and task assignment. Some early
work in this regard has already been performed in [9].

• To tackle scalability problems in large datasets, approximate techniques
need to be thoroughly evaluated as well. In Section 5, we have listed
several of them, but no comparative evaluation study has been con-
ducted yet.

• There is still room for additional techniques. For example, no GPGPU
techniques to accelerate filtering in parallel through the usage of an in-
verted index exist to date. Such techniques may be coupled efficiently
with the work in [10], provided that atomic operations on the global
memory are voided and shared memory is exploited to the largest pos-
sible extent. Similarly, exact set similarity joins may be able to benefit
from recent advances in GPU indices, such as [29].

Acknowledgments

The authors gratefully acknowledge the support of NVIDIA Corporation
through the donation of the GPU used through the GPU Grant Program.

[1] W. Mann, N. Augsten, P. Bouros, An empirical evaluation of set similar-
ity join techniques, Proceedings of the VLDB Endowment 9 (9) (2016)
636–647.
URL http://www.vldb.org/pvldb/vol9/p636-mann.pdf

[2] R. J. Bayardo, Y. Ma, R. Srikant, Scaling up all pairs similarity search,
in: Proceedings of the 16th International Conference on World Wide
Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, 2007, pp.
131–140.

40

[3] P. Bouros, S. Ge, N. Mamoulis, Spatio-textual similarity joins, PVLDB
6 (1) (2012) 1–12.

[4] Y. Jiang, G. Li, J. Feng, W. Li, String similarity joins: An experimental
evaluation, PVLDB 7 (8) (2014) 625–636.

[5] A. D. Sarma, Y. He, S. Chaudhuri, Clusterjoin: A similarity joins frame-
work using map-reduce, PVLDB 7 (12) (2014) 1059–1070.

[6] R. Baraglia, G. D. F. Morales, C. Lucchese, Document similarity self-
join with mapreduce, in: ICDM, 2010, pp. 731–736.

[7] R. Vernica, M. J. Carey, C. Li, Efficient parallel set-similarity joins using
mapreduce, in: SIGMOD Conference, 2010, pp. 495–506.

[8] A. Metwally, C. Faloutsos, V-smart-join: A scalable mapreduce frame-
work for all-pair similarity joins of multisets and vectors, PVLDB 5 (8)
(2012) 704–715.

[9] S. Ribeiro-Junior, R. D. Quirino, L. A. Ribeiro, W. S. Martins, Fast
parallel set similarity joins on many-core architectures, Journal of Infor-
mation and Data Management 8 (3) (2017) 255.

[10] C. Bellas, A. Gounaris, Exact set similarity joins for large datasets in the
gpgpu paradigm, in: Proceedings of the 15th International Workshop on
Data Management on New Hardware, DaMoN’19, ACM, New York, NY,
USA, 2019, pp. 5:1–5:10.

[11] M. D. Lieberman, J. Sankaranarayanan, H. Samet, A fast similarity join
algorithm using graphics processing units, in: Data Engineering, 2008.
ICDE 2008. IEEE 24th International Conference on, IEEE, 2008, pp.
1111–1120.

[12] M. S. Cruz, Y. Kozawa, T. Amagasa, H. Kitagawa, Gpu acceleration
of set similarity joins, in: International Conference on Database and
Expert Systems Applications, Springer, 2015, pp. 384–398.

[13] J. Johnson, M. Douze, H. Jégou, Billion-scale similarity search with
gpus, arXiv preprint arXiv:1702.08734.

41

[14] F. Fier, N. Augsten, P. Bouros, U. Leser, J.-C. Freytag, Set similarity
joins on mapreduce: an experimental survey, Proceedings of the VLDB
Endowment 11 (10) (2018) 1110–1122.

[15] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, D. Glasco, Gpus
and the future of parallel computing, IEEE Micro 31 (5) (2011) 7–17.

[16] S. Mittal, J. S. Vetter, A survey of cpu-gpu heterogeneous computing
techniques, ACM Computing Surveys (CSUR) 47 (4) (2015) 69.

[17] D. B. Kirk, W. W. Hwu, Programming Massively Parallel Processors -
A Hands-on Approach, 2nd Ed., Morgan Kaufmann, 2013.

[18] C. Bellas, A. Gounaris, GPU processing of theta-joins, Concurrency and
Computation: Practice and Experience 29 (18).

[19] C. Xiao, W. Wang, X. Lin, J. X. Yu, G. Wang, Efficient similarity joins
for near-duplicate detection, ACM Trans. Database Syst. 36 (3) (2011)
15:1–15:41.

[20] L. A. Ribeiro, T. Hrder, prefix filtering to improve set similarity joins,
Information Systems 36 (1) (2011) 62 – 78.

[21] W. Mann, N. Augsten, Pel: Position-enhanced length filter for set sim-
ilarity joins, in: Proceedings of the 26th GI-Workshop Grundlagen von
Datenbanken, 2014, pp. 89–94.

[22] J. Wang, G. Li, J. Feng, Can we beat the prefix filtering?: an adaptive
framework for similarity join and search, in: Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2012, pp.
85–96.

[23] S. Ribeiro-Júnior, R. D. Quirino, L. A. Ribeiro, W. S. Martins, gssjoin:
a gpu-based set similarity join algorithm., in: SBBD, 2016, pp. 64–75.

[24] R. D. Quirino, S. Ribeiro-Junior, L. A. Ribeiro, W. S. Martins, Efficient
filter-based algorithms for exact set similarity join on gpus, in: Inter-
national Conference on Enterprise Information Systems, Springer, 2017,
pp. 74–95.

42

[25] E. F. Sandes, G. Teodoro, A. C. Melo, Bitmap filter: Speeding
up exact set similarity joins with bitwise operations, arXiv preprint
arXiv:1711.07295.

[26] A. Go, R. Bhayani, L. Huang, Twitter sentiment classification using
distant supervision, CS224N Project Report, Stanford 1 (12).

[27] C. Böhm, R. Noll, C. Plant, A. Zherdin, Index-supported similarity join
on graphics processors., in: BTW, Vol. 144, 2009, pp. 57–66.

[28] J. Pan, D. Manocha, Fast gpu-based locality sensitive hashing for
k-nearest neighbor computation, in: Proceedings of the 19th ACM
SIGSPATIAL international conference on advances in geographic in-
formation systems, ACM, 2011, pp. 211–220.

[29] J. Zhou, Q. Guo, H. V. Jagadish, L. Krcál, S. Liu, W. Luan, A. K. H.
Tung, Y. Yang, Y. Zheng, A generic inverted index framework for sim-
ilarity search on the GPU, in: 34th IEEE International Conference on
Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018, 2018,
pp. 893–904.

[30] Y. Wang, A. Shrivastava, J. Ryu, Flash: Randomized algorithms accel-
erated over cpu-gpu for ultra-high dimensional similarity search, arXiv
preprint arXiv:1709.01190.

[31] P. Wieschollek, O. Wang, A. Sorkine-Hornung, H. P. A. Lensch, Effi-
cient large-scale approximate nearest neighbor search on the gpu, in:
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[32] G. Graefe, New algorithms for join and grouping operations, Computer
Science - Research and Development 27 (2012) 3–27.

43

