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ABSTRACT
Distance-based outlier detection techniques is awide-spreadmethod-
ology for anomaly detection. Despite their effectiveness, a main
limitation is that they heavily rely on the dataset and the param-
eters chosen in order to establish the right status of each data
point. These parameters typically include, but are not limited to,
the neighborhood radius and threshold. In continuous streaming
environments, the need for real-time analysis does not permit for an
algorithm to be restarted multiple times with different parameters
until the right combination is specified. This gives rise to the need
for one technique that combines an arbitrary number of parameter-
izations with the use of minimal yet sufficient computer resources.
In this work we both compare the state-of-the-art techniques for
handling multiple queries in distance-based outlier detection al-
gorithms and we propose a novel technique for multi-parameter
distance-based outlier detection tailored to distributed continuous
streaming environments, such as Spark and Flink.

CCS CONCEPTS
• Information systems→ Data streammining; • Computing
methodologies → Anomaly detection; Massively parallel algo-
rithms.
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1 INTRODUCTION
Real-time analytics is nowadays playing a key role in applied data
science fueled by the recent expansion of data stream sources,
such as social networks, online shops and smartphone usage and
application logs. Outlier analysis [1] is a key mechanism used for
identifying noise or anomalous data points in such data streams.
Distance-based outlier detection [6] is a commonly used technique
for identifying outliers within data streams or databases because of
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its simplicity and usefulness for every domain that can translate the
difference between data points into a metric distance computation.
Based on the distance-based approach, a data point p is an outlier if
it has less than k neighbors within distance R. Many distance-based
algorithms have been proposed in the literature; some of them are
tailored to data streams [2, 5, 7, 11] while others are applicable only
to static data, such as traditional databases [4].

The main drawback of distance-based techniques is the depen-
dence on the input parameters. Even when a domain expert is in-
volved, data streams keep evolving so that a specific good parameter
setting at one point becomes obsolete some time later. This yields
the need for more flexible techniques that can take into account
multiple user queries, i.e., outlier detection queries with different
parameterizations [3, 7, 13]. In a banking system, for example, each
fraud type has a different pattern that needs to be detected in order
to raise an alarm. Using multiple-parameters in the same algorithm
can detect all of these different frauds (outliers) without stressing
the system. In this work, multi-query and multi-parameter outlier
detection is used interchangeably.

In addition, the data streams grow larger in the volume and
speed that data is produced. This gives rise to the need for scalable
analytics. Regarding distance-based outlier detection, the solutions
for distributed settings are rather limited. They cover distributed
spatial databases [4] and there is also a proposal for massively
parallel stream solutions in [8].

In this work we focus on transferring the state-of-the-art multi-
query distance-based outlier detection algorithms, presented in the
next sections, in a distributed streaming setting using the Flink1
framework which is used for massively parallel stream analytics.
Wemake two contributions. First, we provide parallel flavors for the
aforementioned algorithms by combining them with a partitioning
technique and present a comparative study. Second, we propose
a novel hybrid technique that is shown to be as efficient as the
most efficient technique to date. Finally, our implementations are
provided as an open source module so that third parties can both
repeat all the experiments and build on our techniques.2

The remainder of this work is structured as follows. Section 2
contains the necessary information on stream and outlier detec-
tion semantics along with the main existing techniques. Section 3
introduces the first part of the multi-query space, where only the
application parameters (i.e., the radius and the threshold) change
while Section 4 contains the complete solution taking into account
both the application and the windowing (i.e., size of window and
slide) parameters. Section 5 shows the performance evaluation
results using a real cluster and finally a discussion about future
extensions concludes our work in Section 6.

1https://flink.apache.org/
2The code repository is at https://github.com/tatoliop/
parallel-streaming-outlier-detection
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2 BACKGROUND
This section consists of four parts. The first part focuses on streams
and techniques that allow real-time analytics while the second
part deals with definitions of the distance-based techniques. The
third part of this section presents a brief reference to the state-
of-the-art algorithms while the fourth one presents the common
principles that are followed in their implementations along with
the distributed algorithm that serves as the basis.

2.1 Streaming semantics
A data stream is defined as an infinite sequence of data points
produced continuously. The data stream contains data points; each
data pointp is associatedwith a timestamp that represents its arrival
time, p.t . Windowing is a commonly used technique in real-time
analytics that helps to break the stream into smaller finite sets
that are easier to be processed. A window can have a fixed sizeW
based on a time period or on the number of data points, called time-
based and count-based, respectively. Each consecutive window of
a stream can either be overlapping (sliding) with the previous one
or non-overlapping (tumbling) from all of the others. In the sliding
windows, the overlap is defined according to either a time period
or the number of data points that enter/leave the window and is
called the slide size S .

A time window is annotated by the starting and ending times-
tampsW .start andW .end respectively which represent the range
of time that the data point’s arrival fall in (e.g.W .start ≤ p.t <
W .end). Any data point with p.t <W .start is considered expired
from the current window. In a sliding time window the starting
and ending timestamps are moved every S time units. When a time
window withWranдe = [W .start ,W .end) slides by S time units,
the new window hasWranдe = [W .start + S,W .end + S). Accord-
ing to the definitions above, tumbling windows are a subset of the
sliding ones where the slide size S = W . In this work we focus
on sliding windows. Also, the techniques that are proposed are
typically applicable to both time- and count-based windows.

2.2 Distance-based outlier detection definitions
The distance-based outlier detection problem is defined as follows.

Definition 2.1. Given a set of objects P and the application pa-
rameters R and k , report all of the objects p ∈ P that have less than
k neighbors (p.nn < k), where an object p′ is assessed as a neighbor
of p if dist(p,p′) ≤ R.

The above definition implies that each object is given a single
label (being outlier or not). Adding the window semantics to the
definition 2.1, the distance-based outlier detection problem for a
sliding window setting is defined as follows.

Definition 2.2. Given a window with sizeW and slide size S on
a data stream O and the application parameters R and k , for each
window slide containing a set of objects p ∈ P withW .start ≤
p.t <W .end , report all of the objects p ∈ P that have less than k
neighbors (p.nn < k), where an object p′ is assessed as a neighbor
of p if dist(p,p′) ≤ R.

The main implication of the extensions in the definition above is
that a single data point can change its status as many times as the

number of window slides that take place while this point belongs
to the window.

2.3 Multi-query outlier detection algorithms
The state-of-the-art distance-based algorithms that support multi-
ple query input are AMCOD [7], SOP [3] and PSOD [13].

The AMCOD algorithm is an extension of the MCOD one [7],
in which the use of micro-clusters drastically cuts down the range
queries needed in order to find the neighbors for each data point.
The algorithm supports only queries with multiple application
parameters (R and k) without providing a solution for multiple
windowing parameters.

The SOP algorithm creates one skyband query in order to find the
sufficient yet minimal set of neighbors for each data point provid-
ing multiple query support with both application and windowing
parameters.

The third algorithm from the literature is the PSOD algorithm
that can handle multiple queries that include different application
and windowing parameters without the use of a skyband query.

In this work, we also propose a new algorithm, coined as pM-
CSKY, which takes advantage of both the micro-clusters of the
AMCOD and the slide processing with the skyband query of the
SOP algorithm.

2.4 Data partitioning
In this work, the multi-query algorithms are implemented from
scratch in a distributed setting. The implementation has a common
feature for all 4 of the algorithms, namely the data partitioning.
The partitioning technique distributes the data points to different
workers where each worker runs a localized instance of the respec-
tive outlier detection algorithm, reporting the local outliers. The
final phase of the distributed implementation combines the output
of each worker in order to report the global outliers for the current
window.

The data partitioning technique used in all of the cases is bor-
rowed from the pMCOD algorithm in [8]. pMCOD is another ex-
tension of MCOD and the state-of-the-art distributed algorithm for
continuous outlier detection in data streams with the drawback of
supporting only 1 query per instance. It combines the techniques
from MCOD (such as the micro-clusters explained in section 3.2)
with the data partitioning technique for fast real-time outlier detec-
tion and reporting. The partitioning technique uses a VP-tree [12]
in order to partition the metric space into cells. Full details and re-
sults, including the impact of number of machines on performance
are in [9].

3 SUPPORTING MULTIPLE R AND k
COMBINATIONS

In this section, we present how to support a wide parameter space
when the R and k parameters vary using the four algorithms that
were mentioned previously. We start by explaining the R − k query
space and the way the multiple parameters are handled in all of
the outlier detection algorithms of this work; we then continue by
explaining the differences between the algorithms along with their
unique features.
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R / k k1 k2 k3
r1 Status assessed as inlier (1) Status assessed as outlier

(2)
Auto assess as outlier due
to (2)

r2 Auto assess as inlier due to
(1)

Status assessed as outlier
(3)

Auto assess as outlier due
to (3)

r3 Auto assess as inlier due to
(1)

Status assessed as inlier (4) Status assessed as inlier (5)

r4 Auto assess as inlier due to
(1)

Auto assess as inlier due to
(4)

Auto assess as inlier due to
(5)

Table 1: Outlier status assessment

3.1 The R − k parameter space
We explore the 2-dimensional parameter space R − k which means
that the queries are created from the combinations of the different
R and k values from the user input, i.e. if the input has 4 different
k values and 5 different R values, the total number of queries is
5 ∗ 4 = 20.

While the metadata stored depend on the algorithm, detecting
the outlierness or inlierness of each data point shares the same
technique between all four solutions and is based on the following
two definitions [13].

Definition 3.1. Given a 2-dimensional parameter space with R =
{r1, r2, ..., rn } and k = {k1,k2, ...,km }, if a data point p is an inlier
for a combination (ri , ky ) with 1 ≤ i ≤ n, 1 ≤ y ≤ m, then p is an
inlier for every combination (ri′ , ky ) with ri′ ≥ ri .

Definition 3.2. Given a 2-dimensional parameter space with R =
{r1, r2, ..., rn } and k = {k1,k2, ...,km }, if a data point p is an outlier
for a combination (ri , ky ) with 1 ≤ i ≤ n, 1 ≤ y ≤ m, then p is an
outlier for every combination (ri , ky′ ) with ky′ ≥ ky .

All the R−k combinations can be represented in a 2-dimensional
array with each row being a R value and each column being a k
value, both in ascending order. Starting from the top left cell where
r1 =min(R) and k1 =min(k), a data point p is assessed by counting
its neighbors in the respective range. If p is an inlier then, based
on definition 3.1, it is an inlier for the remaining cells of the same
column and the process continues with the first cell in the next
column. On the other hand, if p is an outlier, based on definition
3.2, it is an outlier for the remaining cells of the same row and the
process continues with the first cell in the next row.

Table 1 shows an example of such a representation along with
the steps for a data point’s p status assessment. Starting with the
cell [r1,k1], assume that the process determines that p is an inlier
and thus it can immediately update the whole column [k1] with
the inlier status. The process continues with the next combination
of [r1,k2] where the data point is an outlier, which means that the
final part of the row r1 (in this example the [r1,k3] cell) is updated
with the outlier status. The same process continues with the next
empty cell [r2,k2] until all of the table’s cells are updated. Overall,
twelve combinations are examined with only five of them to be
explicitly considered.

3.2 AMCOD
AMCOD is a variation of the MCOD algorithm [7] to support mul-
tiple queries. MCOD uses the notion of micro-clusters in order
to significantly decrease the number of range queries needed to
establish the status of a data point. A micro-cluster has a diameter
of R and contains k + 1 data points, which means that all of these

Algorithm 1 AMCOD_skyband (computation of the skyband for
a point p ∈ PD)
Require: A list of preceding neighbors in ascending order of dis-

tance
1: minimum_neiдhbors ← List()
2: for i = 1 to neiдhbors .size do
3: counter← 0
4: for y = 1 to i do
5: if neiдhbors(y).timestamp > neiдhbors(i).timestamp

then
6: counter = counter + 1
7: end if
8: end for
9: if counter ≤ k then
10: minimum_neiдhbors ← add(neiдhbors(i))
11: end if
12: end for

points are inliers (as they have at least k neighbors in the R range)
and there is no need to store further metadata. The rest of the data
points are stored in a structure called PD along with their neighbors.
The algorithm only needs to evaluate the status of the points in PD
at the end of each slide.

AMCOD adopts all of MCOD’s structures but changes the di-
ameter of the micro-clusters to Rmin , the minimum value of the R
parameter values, and the number of data points that are needed
for the creation to kmax + 1. This means that all of the data points
in a cluster are inliers in all of the parameter queries. For the rest of
the data points that belong to the PD set, the metadata needed to
establish the status are the preceding and the succeeding neighbors
along with their distance from the source point. A data point can
be established as a safe inlier if it has at least kmax succeeding
neighbors in Rmin range.

A sketch of the algorithm is as follows. When a new data point
arrives, a range query is issued on the centers of the micro-clusters.
If it is within radius of a cluster, it is inserted in the cluster’s list
of points. Otherwise, a new range query is issued on the points
of PD. All the neighbors are inserted into the preceding set and
the new data point is inserted in the neighbor’s succeeding list
along with the distance value. If the conditions for a new cluster
are met, then the data point becomes the center of the cluster and
the neighbors are added to the cluster’s list. Otherwise, the point is
inserted into PD and the set of preceding neighbors pass through
the (k-1)-skyband query, as shown in Algorithm 1, in order to store
the minimal and sufficient number of neighbors. When a data point
expires, it is removed from either the PD or the cluster it belongs.
If the cluster’s number of points falls bellow kmax + 1 then it is
disbanded and the remaining alive data points are re-inserted as
new points (without updating their neighbors again).

3.3 SOP
SOP is a framework that can handle multiple parameter queries
while processing each data point only once by transforming all



WI ’19, October 14–17, 2019, Thessaloniki, Greece T. Toliopoulos, A. Gounaris

Algorithm 2 SOP_skyband (called for each neighbor found)
Require: A data point p with distance value d
1: layer ← LSky.дetLayer (d)
2: counter← 0
3: for i = 1 to layer do
4: counter = counter + LSky.layerCount(i)
5: end for
6: if counter ≤ k − 1 then
7: LSky.insert(p)
8: return true
9: else
10: return false
11: end if

of the queries into a single skyline computation. It also uses a k-
skyband query to find the minimal and sufficient neighbors for each
new data point and update the neighbor set of an old point.

Each data point of the SOP algorithm has a data structure called
LSky where the neighbors with their distance values are stored.
LSky is a layered structure where each layer represents a R value
from the input parameters (in ascending order) and the points stored
in a layer have a distance value distance ≤ Rlayer , i.e. in the first
layer belong the neighbors with distance ≤ R1 = Rmin and in the
second layer the points with R1 < distance ≤ R2.

SOP uses the k-skyband query for every data point, either new
or old, taking into account the chronological order of the points.
For the new points, the query finds the minimal and sufficient
neighbors for the point from all previous points whilst, for existing
points, the query updates the neighbors from the already found
ones plus the new slide’s data points.

A sketch of the algorithm’s steps are as follows. When a new
data point arrives, a range query is issued on all of the previous
data points in reverse chronological order (starting from the newest
to the oldest). For each neighbor found, the k-skyband query (Al-
gorithm 2) is called and the neighbor is either inserted into the
point’s LSky or discarded. The operation stops when a neighbor
with distance ≤ Rmin is not inserted in the structure, which means
that the minimal set has been found. On the other hand, for each
existing (old) data point, a range query is issued on the new slide’s
data points in reverse chronological order. For each neighbor and
each point in the already created LSky structure, the k-skyband
query is called to update the set.

3.4 PSOD
PSOD is a framework that can handle queries from the 2-dimensional
parameter space without the use of a skyband query. The work
on this parameter space is a precursor for the 4-dimensional space
explained in Section 4, where the solution is complete.

The algorithm is based on the definitions 3.1 and 3.2 in order
to assess the status of a data point fast. It does not use a skyband
query in order to find the minimal and sufficient set of neighbors
for each data point; however the range queries stop when a data
point is established as a safe inlier or an unsafe inlier. It uses a
data structure similar to LSky to store the neighbors based on their
distance to the source point p and the different R values, called

p.NT . For each combination (ri ,ky ), the algorithm only needs to
sum up the number of neighbors from each table cell up to i in
order to find the total neighbors for p.

A sketch of the algorithm is as follows. For each new data point
p, a range query is issued on the data points of the window. The
p.NT structure is updated for every neighbor o found. If the o is not
a safe inlier, o.NT is also updated with p. In our implementation,
we use the previously explained LSky structure in order to store
the neighbors since it is similarly implemented with the NT table
that the PSOD framework uses for the R-k parameter space.

3.5 pMCSKY
pMCSKY (which stands for parallel Micro-Cluster and Skyband-
based solution) is a novel combination of theMCOD’smicro-clusters
and PD set along with the SOP neighbor structure and skyband
query (Algorithm 2).

As explained in [10] and [8], the micro-clusters of MCOD is a
key tool for decreasing the range queries for a new data point and
the PD set helps to establish its status in a faster time. AMCOD
uses this tool but its main drawback is its data structures: it uses
a preceding neighbors set, which has passed through the skyband
query 1, and a set for all succeeding neighbors without trying to
compress their size (unless the point becomes a safe inlier). In the
pMCSKY algorithm, the diameter of a micro-cluster and the number
of points it needs to be formed is the same as the AMCOD algorithm,
Rmin and kmax + 1 respectively.

As already explained, the SOP algorithm has a data structure
(LSky) that contains the minimal yet sufficient set of the total neigh-
bors of a data point, which includes both preceding and succeeding
neighbors. This is employed in pMCSKY as well. The structure’s
main advantages is the low storage space it needs along with the
fast count of the neighbors for each R value. Finally the k-skyband
query of the algorithm takes into consideration the stream’s chrono-
logical order and the LSky structure in order to quickly assess if a
neighbor belongs to the minimal set or not.

Algorithm 1 shows themain body of pMCSKYwhich is explained
as follows. When a new data point p arrives, a range query is
issued on the centers of the micro-clusters. If it is within radius of a
cluster, it is inserted in the cluster’s list of points. Otherwise a new
range query is issued on the data points in reverse chronological
order. Each neighbor passes through the k-skyband query to assess
whether it belongs to the minimal set or not and is either inserted
into the p.LSky structure or not, respectively. If the conditions for a
new cluster are met, then the data point becomes the center of the
cluster and the neighbors are added to the cluster’s list and removed
from the PD set. Otherwise p is inserted into PD and its status as
an inlier, outlier or safe inlier is established. For each existing (old)
data point o, a range query is issued on the new slide’s data points
in reverse chronological order. For each neighbor and each point in
the already created o.LSky structure the k-skyband query is called
to update the set. When a data point expires, it is removed from
either the PD or the cluster it belongs. If the cluster’s number of
points falls bellow kmax + 1, then it is disbanded and the remaining
alive data points are re-inserted as new points.
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Algorithm 3 PMCSky
Require: A data point p, the micro-clustersMC and the list of data

points data_list
1: skyband_list = p.LSky
2: if p.LSky = null AND p.mc = 0 then
3: for i = 1 toMC .size do
4: distance← calculate(p,MCi )
5: if distance ≤ Rmin/2 then
6: MC.insert(p)
7: p.mc←MC.id
8: end if
9: end for
10: if p.mc = 0 then
11: skyband_list← data_list
12: end if
13: else
14: skyband_list← skyband_list + data_list .new_slide_points
15: end if
16: for i = 1 to skyband_list .size do
17: distance← calculate(p,skyband_list(i))
18: inserted = SOP_skyband(skyband_list(i), distance)
19: if inserted = false AND distance ≤ Rmin/2 then
20: Break FOR
21: end if
22: end for

4 SUPPORTING MULTIPLE R, k, W AND S
COMBINATIONS

In this section, we deal with a broader parameter space, where both
the application (R and k) and the window (W and S) parameters
vary along with the three algorithms that were implemented for
that case. Same as the previous section, we start by explaining the
query space and the way it is handled in all of the outlier detection
algorithms of this work and continue by explaining the differences
and issues between the algorithms during their implementation.

4.1 The R − k −W − S parameter space
We explore the 4-dimensional parameter space R − k −W − S ,
which means that the queries are created from the combinations
of the different parameter values from the user input including
windowing parameters (window sizeW and slide size S). The total
number of queries can be computed by the product of the numbers
of distinct parameters, similarly to the description in Section 3.1.

Expanding the representation of 3.1, we use a 3-dimensional
array to indicate the number of outliers for each combination. Each
row represents a R value, each column a k value and the third
dimension represents theW values. Notice that there is no S repre-
sentation because we use the greatest common divisor of all the S
values in order to find the greatest slide size that can be employed
for each of the input combinations. Each algorithm presented below
distinguish itself in the way it reports the outliers for each given
slide size value.

Another extension in the 4-dimensional case includes the Def-
inition 4.1 stemming from Definition 3.1. With this extension, if
a data point p is assessed as an inlier in cell [ri ,ky ,wa ], we can

automatically establish its status as in inlier in all cells [ri′ ,ky ,wa′]

with i ′ ≥ i and a′ ≥ a.

Definition 4.1. Given a 3-dimensional parameter space with R =
{r1, r2, ..., rn }, k = {k1,k2, ...,km } andW = {w1,w2, ...,wz } if a
data point p is an inlier for a combination (ri , ky ,wa ) with 1 ≤ i ≤
n, 1 ≤ y ≤ m, 1 ≤ a ≤ z, then p is an inlier for every combination
(ri′ , ky ,wa′) with ri′ ≥ ri andwa′ ≥ wa .

4.2 Algorithms
The parameter space R − k −W − S is similar to the R − k space in
the sense that the algorithms only need minor changes in order to
function properly for all queries. To begin, we chose to use the SOP,
PSOD and the novel algorithm pMCSKY for these queries, since
AMCOD only works with the R − k space and according to Section
5 is significantly inferior to the other three.

The first step is the handling of parameterW . WhenW varies,
the algorithms need to hold the neighbors of each data point for
each window size. This creates a big overhead with regards to the
required memory of the system as the list of neighbors in smaller
windows is a subset of the bigger windows. In order to eliminate
the unnecessary neighbor saving, all three of the algorithms create
one window withW =Wmax . This allows to save all of the neigh-
bors needed to establish the status of the data point in the biggest
window, which is the superset of all the window sizes. In addition,
all three algorithms give more weight to the younger neighbors
(the ones that are going to expire later in the window).

Because pMCSKY uses micro-clusters, a further improvement
needs to be made in order to function properly. If a micro-cluster
is formed by the data points of the windowWmax , information
about a younger point’s status can be concealed. Figure 1 shows an
example of a situation, where the micro-cluster is formed from all
of the data points in the window. Data point p1 seems to belong to
the micro-cluster and its status is automatically assessed as an inlier.
However in the small window, it does not have enough neighbors
and thus it belongs to this window’s outliers. With this in mind,
the pMCSKY algorithm only creates micro-clusters formed by data
points in the window withW =Wmin .

The second step is concerned with the parameter S . When S
varies, the algorithms need to report outliers at different times for
each query. All the algorithms use the greatest common divisor
Sдcd of the S values in order to establish a common S value that can
provide the necessary computations for all of the input values. SOP
takes the Sдcd and reports the outliers for each S valuewhen enough
slides have passed. PSOD further processes Sдcd and computes
Svar , which is a list of the slides that the outliers needs to be
reported. For each Svari , the algorithm reports the outliers of the
respective S value. For the pMCSKY algorithm, we have chosen to
implement the SOP algorithm’s reasoning.

5 EXPERIMENTAL EVALUATION
The experimental setting is as follows. All of the experiments are
done using a cluster of 3 machines so that the algorithms are tested
in a distributed setting. The 3 machines have similar resources and
more specifically, the first one has a 6-core/12-thread CPU with
64GB of RAM, the second one has a 8-core/8-thread CPU with
32GB of RAM and the third machine has 4-cores/8-threads with 32
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Figure 1: Micro-clusters in the whole window

GB RAM. All of the machines are connected through an Ethernet
connection of 1 Gbps speed.

We have used two real-world datasets. The first one is named
Stock3 and has one dimension while the second one is named TAO4

and has three dimensions. We read both datasets as streams and
we divide the experimentation using two use cases, when we vary
R and k only, and when we vary all parameters. For the first use
case, termed as R − k , all four of the algorithms discussed in the
previous sections have been tested using both datasets and with
different window sizes and slide percentages in order to have as
much coverage regarding different scenarios as possible. In these
experiments the times presented represent the average time per
slide for each algorithm, aggregated over 200 slides. For the second
use case, termed as R −k −W − S , the three algorithms were tested
using a variety of application and windowing parameters with the
time presented representing the average total run time of each
algorithm’s instance; since slides differ, it is meaningless to present
average time per slide and also, we need to resort to finite datasets
for comparison. Note that the accuracy of the algorithms is always
100% since all of the techniques are exact.

Apart from the techniques discussed, we also present an example
of independent pMCOD instances running in parallel emulating
a naive multi-query algorithm in order to compare the difference
in running times between many instances of the single-query al-
gorithm versus one instance of the multi-query algorithms. The
choice of the pMCOD algorithm derives from the fact that all 4
implementations presented in this work have the data partitioning
technique of this algorithm as their basis. Also pMCOD is the state-
of-the-art distributed outlier detection algorithm for continuous
streams [8].

Finally, every plot’s y axis on the R − k use case represents the
performance using a log scale in order for the results to be shown
more clearly since two of the algorithms have very similar running
times that differentiate in milliseconds. Another issue of attention
is that the R and k application parameters have been chosen so that
the percentage of outliers for each dataset is around 1%.

5.1 R − k use case
In this use case, we run two types of experiments with 16 (4 R
values combined with 4 k values) and 100 (10 R values combined
with 10 k values) queries, respectively. The window size is either

3available from https://wrds-web.wharton.upenn.edu/wrds
4Available from http://www.pmel.noaa.gov
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Figure 2: Experiments using Stock withW = 10k , 16 queries
(top) and 100 queries (bottom)
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Figure 3: Experiments using Stock withW = 100k , 16 queries
(top) and 100 queries (bottom)

10K or 100K. For the slide size, we have experimented with S =
{5%, 10%, 20%, 50%} of the window size.

Figure 2 shows the results of the experiments using the 4 algo-
rithms (AMCOD, pMCSKY, SOP and PSOD) on the 1-dimensional
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Figure 4: Experiments using TAO withW = 10k , 16 queries
(top) and 100 queries (bottom)

dataset withW = 10k . In this experiment, it can be seen that AM-
COD is clearly inferior by at least an order of magnitude and is not
tested any further. This is due to the fact that the algorithm depends
solely on the micro-clusters. The skyband query is used only on the
preceding neighbors after they are found through a range query on
the whole window whilst the list with the succeeding neighbors is
increasing as the window progresses. This not only has a big effect
on the memory usage but on the running times as well because of
the full-scale range queries. On the other hand, the micro-clusters
are not formed regularly with most of the data points ending up
on the PD set because of the Rmin and kmax restrictions.

Figure 3 refers to the same setting withW = 100K examining
pMCSKY, SOP and PSOD only. Figure 4 employs the 3-dimensional
dataset withW = 10k . The results indicate that in all of the experi-
ments, the PSOD algorithm is less efficient than the pMCSKY and
the SOP algorithms. This is due to the fact that the former needs
more range queries in order to update the neighbor list of each data
point when the window slides; in addition, it does not use any sky-
band query to decrease the number of stored neighbors. Another
remark about the PSOD algorithm is that the speed-down when
the slide size increases is in most cases close to linear, whereas it is
sublinear for the other two techniques.

We now turn our attention to the two best performing techniques,
namely pMCSKY and SOP. While pMCSKY is in most of the cases
a little better than SOP (reaching up to 35% faster running times),
when the slide size increases to 50%, SOP runs faster. Essentially,
the pMCSKY algorithm is a combination of the micro-clusters of
the pMCOD and AMCOD algorithms with the skyband query and
the LSky structure of SOP. This combination has all the benefits and
the drawbacks of the micro-clusters. More specifically, on the one
hand, it is beneficial by eliminating the need for neighbor search

Algorithm Average time per
slide

Total time

pMCOD (16 in-
stances)

141 ms 72998 ms

pMCSKY (16
queries)

55 ms 10819 ms

SOP (16 queries) 54 ms 10710 ms
PSOD (16 queries) 191 ms 38595 ms

Table 2: Average time and total time per algorithm

and storage as well as decreasing the number of data points that
need to be processed in order to find the window’s outliers. On
the other hand, the Rmin and kmax restrictions, like the AMCOD
algorithm, cause less clusters to be formed, most of which are more
vulnerable to breaking up. When a micro-cluster is destroyed, the
remaining alive data points that belonged to the cluster need to be
reinserted into the window by computing from the beginning the
range queries for possible neighbors. This is the main reason that
the algorithm is slower than the SOP one when the slide is 50% of
the window size.

A final point regarding the Figures 2, 3 and 4 is the difference
between the 16 and 100 query setting. The running times of all
of the algorithms, when we increase the queries from 16 to 100 is
increased as expected. The encouraging remark is that the difference
in the running times is in the orders of a few seconds, which means
that the algorithms can scale to a large number of queries without
suffering from significant performance degradation.

The final experiment includes the single-query algorithm pM-
COD. We run the 16-query setting using 16 instances of pMCOD
running in parallel. All of the experiments were done on the 1-
dimensional dataset withW = 10k and S = 5% ∗W = 500. Table
2 shows the results of the experiment. The average time per slide
of the pMCOD algorithm is 141 ms, almost 3 times the average
time of the pMCSKY and SOP algorithms, whilst the total time it
took for all of the instances to end is 7 times more than the time
one instance of pMCSKY needed. Attention should also be given in
the comparison between the pMCOD and PSOD algorithms. While
pMCOD’s average time per slide is lower than PSOD’s, the total
time it took for the 16 instances is 2 times more than the total time
of PSOD, which means that despite the low running times of each
individual instance of the single-query algorithm, the total time is
increased.

5.2 R − k −W − S use case
In this use case, we compare the algorithms pMCSKY, SOP, PSOD
on a total of 2500 queries in order to examine their behavior when
both the application and windowing parameters increase. The 2500
queries come from 10 distinct values forR andk and 5 distinct values
forW and S . TheW parameter ranges from 10k to 50k whilst the
S parameter ranges from 500 to 10000 with the lowest percentage
between window and slide being the 1% (W = 50k, S = 500) and the
maximum being the 100% (W = 10k, S = 10k). The datasets used
are both the 1-dimensional (Stock) and 3-dimensional (TAO) and
we measured the average running time until the algorithm instance
was completed.
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Figure 5: Experiments using Stock (top) and TAO (bottom)
for pMCSKY (blue-left bar), SOP (orange-middle bar) and
PSOD (green-right bar)

Figure 5 presents the results. As the figure shows, the PSOD
algorithm is still lacking in efficiency compared to the other two
algorithms. The two winning algorithms differ marginally, i.e., their
difference is a few seconds while the whole experiment lasts for
a couple of minutes and more. This is an expected result because,
when the window grows bigger (by increasing the maxW variable),
the number of neighbors that the PSOD algorithm stores is also
increasing. On the contrary, SOP and pMCSKY do not store as
many neighbors because of the skyband query. If we drill down to
compare the two faster algorithms, we can observe that pMCSKY
is by a small fraction worse than SOP. This happens because a new
restriction is added to micro-clusters (they need to be formed by
data points on the smaller window), which results in fewer micro-
clusters being created. However the small difference between the
algorithms implies that even a small number of micro-clusters can
have a positive impact on the performance.

Finally, Figure 6 presents the results of the three main algorithms
on the 1-dimensional dataset with the difference that this time, the
dataset has 5 times more data points than in the previous experi-
ment. The results of this case is as expected with the remark that
the pMCSKY and SOP’s running times degraded faster than PSOD
in comparison to the previous experiment. While the mean value of
the data for both experiments is the same, the second experiment’s
standard deviation is doubled from the first one. This in turn means
that micro-clusters are not formed as often as the first experiment
on the pMCSKY algorithm while the skyband query’s termination
condition is more difficult to achieve thus the need to issue more
range queries for both SOP and pMCSKY.
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Figure 6: Experiments using Stock with 5 times more data
points for pMCSKY (blue-left bar), SOP (orange-middle bar)
and PSOD (green-right bar)

6 CONCLUDING REMARKS
This work expanded the available solutions of multi-parameter
distance-based outlier detection algorithms for data streams through
transferring the relevant state-of-the-art algorithms to a distributed
setting. Moreover, a novel solution is presented that is shown to
have similar, if not slightly better, performance than the best per-
forming existing solution. More specifically, we have implemented
in Flink and investigated the top three algorithms to date, namely
SOP, PSOD and AMCOD, which support multiple query parameters;
in addition, for the first two solutions, we have provided support
for both multiple query and multiple application parameters. More
importantly, we also combined techniques from the SOP algorithm
and the first distributed distance-based outlier detection algorithm
pMCOD to take advantage of the benefits of both thus introducing
the pMCSKY solution. The experimental evaluation using a real
cluster with three physical machines and 18 cores provided strong
evidence that SOP and pMCSKY are the best performing solutions,
with their differences being small. In summary, this work both in-
troduces a new multi-parameter distance-based outlier technique
and provides a comparative study of the state-of-the-art algorithms
in a distributed setting. All of our implementations have been made
publicly available.

We identify two main ways for future extensions. The first one is
concerned with removing the restrictions from the micro-clusters
in the pMCSKY solution. The restrictions on the radius, number
of points and window size are shown to outweigh the benefits of
the micro-clusters. By completely removing or just mitigating the
constraints, the algorithm can significantly speed-up the processing
of each slide. The second direction for future work is to try and
eliminate unnecessary communication between the machines of the
cluster. This can be done with a more advanced partitioning scheme
that will be able to better balance the load on the machines taking
into account more criteria than the number of points allocated to
each partition, such as the communication required.
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