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ABSTRACT

Geo-distributed analytics is becoming an increasingly common-
place as IoT, fog computing and big data processing platforms are
nowadays integrating with each other. In this work, we deal with a
problem encountered when complex Spark workflows run on top
of geographically dispersed nodes, either data centers or individual
machines. There have been proposals that optimize the execution
of such workflows in terms of the aggregate traffic generated or
the latency (which is due to data transmission), or both metrics.
However, the state-of-the-art solutions that target both objectives
are either significantly sub-optimal or suffer from high optimiza-
tion overhead. In this work, we address this limitation. The main
solutions that we propose are both efficient and effective; based on
either the extremal optimization or the greedy algorithm design
paradigm, they can yield significant improvements having an op-
timization overhead of a few tens of seconds even for Spark work-
flows of 15 stages running on 15 distributed nodes. We also show
the inadequacy of evolutionary optimization solutions, such as ge-
netic algorithms, for our problem.
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1 INTRODUCTION

Geo-distributed analytics, such as fog computing solutions [1, 22],
is an emerging area boosted by the maturity of big data analytics
platforms supporting data streams, e.g., Flink [8] and Spark [2],
along with the prevalence of IoT devices in modern applications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IDEAS’19, June 10-12, 2019, Athens, Greece

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6249-8/19/06....$15.00

https://doi.org/10.1145/3331076.3331107

Anastasios Gounaris
Aristotle University of Thessaloniki
Greece
gounaria@csd.auth.gr

[5, 7, 18]. The execution model builds upon and extends the one in
distributed [21] and parallel [9] databases. In short, the execution
plan is typically a directed acyclic graph of operators and benefits
from the main types of query plan parallelism, namely partitioned,
pipelined and independent.

In this work, we consider Spark running over separate physi-
cal nodes with distinct data transmission capacities; as reported in
[10], the applications of such a setting span several fields, such as
climate science, multinational companies, bio-informatics and log
analysis. Spark execution plan inherently benefits from pipelined
and partitioned parallelism [3] with the underlying cluster man-
agement layers, e.g., YARN, Mesos and so on, being responsible
for the actual runtime task scheduling. A typical assumption is that
the cluster on which the execution runs is characterized by abun-
dant memory and fast node interconnection speeds, and the whole
processing takes place in a single geographical area. However, this
assumption becomes a limitation, when the data to be processed
are physically stored in multiple places and/or processing needs to
occur close to the data source. To overcome this limitation, several
geo-distribution-aware extensions to MapReduce-based solutions
have been proposed [10].

Optimization techniques for geo-distributed Spark execution pl-
ans directly affect the manner partitioned parallelism is enforced
through specifying the portion of the tasks in each Spark stage
that each processing node should become responsible for. Current
techniques to this end aim to minimize either the total traffic be-
tween the nodes, e.g.,[27], or the latency, e.g. [23]. In a recent previ-
ous proposal of ours, we present bi-objective solutions that target
both criteria [19]. The proposal in [19] challenges the validity of a
main motivation behind geo-distributed data flows, namely that it
is too costly to gather data in a single place, e.g., [10, 16, 28], and
is tailored to multi-stage workflows rather than simple two-stage
MapReduce ones. It comprises two techniques: a greedy one that
is fast but not very effective in terms of the quality of the derived
solutions and another one based on iterated local search that is ef-
fective but takes longer time, in the order of couple of minutes, to
compute the proposed task distribution.

In this work, we make a twofold contribution. Firstly, we com-
bine the best attributes of the solutions mentioned above. The main
bi-objective solutions that we propose are capable of running much
faster that the best performing one in [19] and still yield signifi-
cant improvements over the main competitor, as evidenced by the
results of a thorough evaluation. The solution is based on either
the extremal optimization (EO) paradigm [4, 6] or the greedy algo-
rithm design strategy but in a less shortsighted than in [19]. Sec-
ondly, also in light of the well-known No Free Lunch theorem [29],
it is important to find which optimization paradigm fits better to
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Figure 1: A real Spark DAG

our specific problem; to this end, we show that evolutionary opti-
mization solutions, such as genetic algorithms, are inferior to the
solutions we propose hereby.

Paper structure. The remainder of the paper is structured as fol-
lows. In the next section, we give a motivation scenario. In Section
3, we give the formal problem definition and we outline the solu-
tions in [19] to make this work self-contained. We present our new
solution in Section 4. The evaluation aims to cover a wide range
of scenarios and is presented in Section 5. We conclude with the
discussion of the related work and the open issues in Sections 6
and 7, respectively.

2 A MOTIVATION EXAMPLE

Our work is highly inspired by performance issues in modern data
analytics platforms, such as Spark, which is arguably the most-

widespread framework for data-intensive cluster computing to date.

The distinctive feature of our work is that we do not assume a cen-
tralized, homogeneous setting; on the contrary we consider that a
cluster may consist of physical machines that are geo-distributed,
have heterogeneous uplink and downlink speed capacities, and
communicate through sending data across a network in order to
complete an application. Our algorithms can make such applica-
tions run faster by offering a task placement plan that minimizes
the data transfer over the network, while we consider both of these
two objectives. Next, we showcase how our algorithms, namely
Greedy-full and Extremal to be presented in Section 4, can improve
a Spark application.

In a geo-distributed setting, it is reasonable to assume that data
transmission is the dominant factor for the application latency. Fo-
cusing on the data transmission capacities, we employ three ma-
chines (noted as M1, M2 and M3 in Table 1) with uplink speeds
of 5 MB/sec, 2 MB/sec, and 5 MB/sec, respectively. The downlink
speeds are 5, 3 and 2 MB/sec, respectively. The execution plan of
the application we try to optimize, in the form of a Directed Acyclic
Graph (DAG), is a linear one, as shown in Figure 1. Each node
(bounded rectangle in the figure) is a stage that consists of tasks,
the placement of which is decided by our algorithms. The edges be-
tween the nodes represent the data movement between the stages.
The overall input is set to 287.6 MB and the selectivity between
the stages is always equal to 1; i.e., the total amount of data being
reshuffled and flowing across the stages remains the same.
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We first compute the task allocation offline and then enforce
the task allocation in Spark. Then, we compare the estimated run-
ning time reduction with the actual one. The offline computation
ignores the CPU overhead that a real setting has even when trans-
mitting data [20] and thus the time it refers to is only the over-
head of moving data. Note that the data movement reduction is
the same in the offline computation and the real run. Table 1 shows
the allocations decided by each algorithm, namely Iridium [23], our
main competitor, Extremal and Greedy-full (i.e., the contributions
of this work) for each stage and for each machine. Note that for
the first two stages of Figure 1, we do not choose a new placement
because we assume that the initial data placement, on which the
task placement of the first two stages depends, is fixed; these two
stages just read and parallelize the initial dataset evenly. Thus we
start from the task placement of Stage 2. With these new task al-
locations, Extremal is estimated to achieve a 50.5% reduction in
the running time over Iridium, while Greedy-full achieves 9.86%
reduction. The real reduction achieved in the Spark environment
was 47.75% and 13% respectively, indicating that our algorithms
can indeed reduce the running time of a real application in Spark.
More importantly, the amount of data transmitted over the net-
work drops by 74.97% due to Extremal (from 799.7 to 200.1MBs)
and by 25.3% due to Greedy-full (from 799.7 to 597.3MBs).

Implementation Details. In order to enforce our task placement
in the Spark engine, we have rebuilt Apache Spark 2.3.2 with the
following changes; we override the TaskSchedulerImpl class, where
we disable the shuffling of the offers the executors make for a task
and we edit the TaskSetManager class to set the task locality to
¢ “Any’’ and thus prevent Spark from deciding a placement for the
tasks based on the data location. Finally, we can easily emulate a
geo-distributed setting with machines characterized by different
downlink and uplink speeds by using machines connected to a lo-
cal network and set the bandwidth limits of the executors using a
tool, such as the Wonder Shaper script!

3 BACKGROUND

We first present the problem statement, which is kept the same as
in [19], and then we present the two existing solutions, the strong
points of which we combine in this work. The problem is stated in
a system-agnostic manner; i.e., it is not applicable to Spark solely.

3.1 Problem Statement

A geo-distributed data flow is represented as a DAG G(V, E). Each
node v; € V, where j=1...N and N = |V]|, represents a job and
each edge represents a shuffle data movement between the jobs.
For example, in Spark data flows, we consider a job to be a Spark
stage (note that Spark uses the terminology job to refer to a set of
stages); in between such stages, data shuffling takes place. Each job
runs in parallel in M data centers (DCs): i.e., each DC becomes re-
sponsible for a fraction of the job execution with the magnitude of
the fraction devised by our algorithms. DCs generalize the notion
of physical machines used in the motivation example.
Conceptually, the workload of a job is split into small units of
work, each allocated to a specific processing element, e.g., a multi-
core server of a specific DC, as an atomic unit. We refer to these

!available from https://github.com/magnific0/wondershaper
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Table 1: Task placement decision (proportion of tasks allocated) of Iridium, Extremal and Greedy-full for each stage and

machine

. _ . stage 2 stage 3 stage 4 stage 5 stage 6
Algorithm/Stage- Machine | —gr—35 3 Mz M3 | M1 Mz M3 | Mi_ Mz M3 | Mi MZ M3
Iridium 0.286 0.429 0.285 | 0.188 0.529 0.283 | 0.098 0.628 0.274 | 0.038 0.717 0.245 | 0.208 0.792 0.0
Extremal 0.0041 0.993 0.0029 | 0.0 0.995 0.005 | 0.003 0.997 0.0 0.002 0.998 0.0 0.001 0.999 0.0
Greedy-full 0.333 0.477 0.19 0.116  0.606 0.278 | 0.032 0.706 0.262 | 0.0 1.0 0.0 0.0 1.0 0.0

splits as tasks. Due to shuffling, in the generic case, it is necessary Table 2: Notations used in the paper.
to move data between DCs before the execution of each task. This
data movement is the dominant factor regarding the running time Symbol Meaning
of the jobs, while the actual execution time of the job is considered G(V,E) the data flow DAG
to be negligible. N,M number of jobs and DCs
In this work, we deal with the allocation of sets of tasks to each )i amount of input data of a job v; € V
DC for each job. Let I/ be the input dataset size of v;. If the selectiv- ol selectivity of a job v;
ity of the job is @/, then the output dataset is of size S/ = a/ +I/; the SJ amount of intermediate output data of a job (§/ =
job selectivity is defined as the ratio of its output to input size. If v; @ « 1)
has outgoing edges in G, §/ is divided into M parts to be sent to the U; uplink bandwidth on DC i
jobs downstream, denoted by r] Sli=1...Mst.y rl] = 1. Essen- D; downlink bandwidth on DC i
tially, rl] corresponds to the fraction of tasks of the children nodes of S; amount of intermediate data of vj on DC i
vj assigned to the i*" DC (tasks are assumed to be infinitesimally r! fraction of tasks executed on DC i for jobs succeed-
divisible). In other words, r] values affect the workload allocation ; o | 18
of jobs vy, where (j, k) € E. Overall each DC has to transfer a frac- TU;, TD; running time of intermediate data transfer on up
tion of (1 — r] ) of its local output data S and to receive a total of RI(G andldown link of DCf lG
tot: ing ti
s (87 - s/ ) data from all the other DCs.? Following the rationale @) ota’ Tunming tume o .
iy ¢ . . . . DM(G) total data movement between DCs in G
in [23], we specify the uplink (resp. downlink) bandwidth of the L .
th . . . RT; running time of job v;
i*" DC as Uj (resp. D;). Table 2 summarizes the main notation. .
. . . DM; total data movement between DCs of job v;
Based on the above, the time for a site to send data regarding the : L : ;

faioh i i r] J dth allocations | A N X M array holding in each row allocations|j]

output of a job is TU; = (1 —r;) * S;/U;, and the time to receive therj j=1...N,i=1...Mvalues

data is TD] rl] % (S — SJ)/D, The running time RT; of v; is
max{TUl.], TD? 1.

The total data movement from a node v; is equal to DM; =
2%1(1 - rl}) * S{. The total data movement is DM(G) = Zjl\il DM;,
where v; has at least one outgoing edge.

The running time of a G, RT(G) is the maximum sum of RT;
values across any path from a source job (v; without incoming
edges) to a sink one (v; without outgoing edges); sink nodes have
zero running time by default.

More formally, the problem we target is defined as follows:

Problem Statement: Given a dataflow G, a fixed distribution
of the initial data across M DCs, and a running time value RT base,
compute the rl] values s.t. DM(G) is minimized and RT(G) is al-
ways less than (1+ ¢)RTbase, where ¢ is a small constant ¢ > —1. If
0 > ¢ > —1, then we enforce the solutions to seek improvements
regarding both DM(G) and RT(G); when ¢ is positive, we tolerate
increases in RT(G) compared to RTbase. We can also regard posi-
tive values of ¢ as the percentage of the performance degradation
that is tolerated.

2Note that in general, S{ #* rf S/, ie., the distribution of the intermediate results in a
job is not necessarily the same as the way these results are shuffled in the next jobs.
However, assuming a uniform distribution of results, it holds that S{ = mean(r!‘) *
S/, where (k, j) € E.

Note that the higher we set ¢, the more the problem tends to
be a single-objective optimization (that of minimizing DM(G)) in
practice.

3.2 Existing Solutions and Limitations
In [19], a two-step approach was followed:

(1) Use Iridium [23] as the guideline for the initial assignment
of tasks, i.e., computation of the rl] values, to the DCs. Irid-
ium decides the allocation for each job separately, after per-
forming a topological sorting on G, and considers the nodes
from the upstream to the downstream ones. In this way,
RTbase is derived.

(2) Re-arrange the allocations with a view to decreasing the to-
tal movement cost while not allowing running time degra-
dation more than ¢ times.

Then, for the second step, two techniques were proposed. The
first one, is a fast greedy one. In the next section, we introduce
another greedy technique explaining the differences. The second
one is an Iterated Local Search (ILS) algorithm that uses Stochas-
tic Hill Climbing (SHC) internally. It randomly perturbs the ini-
tial solution, and then looks for additional randomly chosen small
changes in the perturbed configuration, so that DM(G) improves,
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Algorithm 1 Greedy-full algorithm

Require: allocations, RTthreshold, DM(G), RT(G), iterations
bestAllocations < allocations
bestRT < RT(G)
bestDM «— DM(G)
for i <1 to iterations do
for each job do
bottleneckDC « findBottleneckDC(job)
Reallocate tasks regarding the current job through dis-
tributing a proportion of f of bottleneckDC’s fraction to
the other DCs
tempAllocations < apply changes to all downstream jobs
inG
Calculate RT(G)’ using tempAllocations
Calculate DM(G)’ using tempAllocations
if DM(G)’ < bestDM && RT(G)” < RTthreshold then
bestAllocations < tempAllocations
bestRT < RT(G)’
bestDM «— DM(G)’
end if
end for
end for
return bestAllocations, bestRT, bestDM

while RT(G) remains under the threshold. The ILS-based solution
is shown to be capable of yielding much better results at the ex-
pense of overhead that is higher by an order of magnitude; e.g.,
in large flows it took 2-3 minutes on a modern PC to check 75
random perturbations, each running SHC 75 times. The extremal
optimization-inspired technique and the new greedy that we in-
troduce in the next section manage to achieve similar quality in
the results running much closer to the initial greedy technique, as
discussed in the experiments.

4 OUR PROPOSAL

The aim is to devise fast algorithms being as effective as the ILS-
one in [19].

4.1 A greedy solution that is less shortsighted

The first algorithm we implemented is a greedy one described
in Algorithm 1 (termed Greedy-full). The algorithm works using
an initial solution derived by Iridium [23] (we also examine using
a random solution in Section 5.2.3). The input of the algorithm is
(i) the initial allocation of tasks on the DCs, (ii) the running time
threshold RTthreshold = (1 + ¢)RTbase, where RTbase is the ini-
tial RT(G), (iii) the initial DM(G), (iv) the initial RT(G) and (v) the
number of iterations. The output is the new allocation of tasks opti-
mized for lower DM(G) with the new RT(G) to be under the thresh-
old.

The algorithm consists of two loops. The external one is re-
peated 20 times while the internal one iterates over all the jobs.
The number of the external iterations is configurable but unless
otherwise stated, we set them to 20 (see Section 5.2.2). For each
job in topological order it finds the bottleneck DC. More specifi-
cally, the findBottleneckDC(job) function in the algorithm returns
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the DC that has the least, non zero, task placement ratio. For this
task placement ratio, the algorithm further removes a proportion
of § and distributes it to the rest of the DCs that already have tasks
proportionally. In this work, we set f equal to 1/3. Then, it assesses
the global impact of such a local change. It re-calculates the task
placement of the downstream nodes and if the new RT(G) is un-
der the threshold and the DM(G) is minimized, then the solution
becomes the best one.

In our previous work [19], we also implemented a greedy algo-
rithm. The main difference with the algorithm of this work is that,
when a job’s task placement is altered, the affects are not trans-
ferred to the downstream nodes in the internal loop; i.e., the initial
greedy solution focuses on local changes in a shortsighted man-
ner. However, addressing this limitation comes at the expense of
higher optimization times to derive the final task allocation, but,
as shown later, the trade-off is interesting.

4.2 An EO-based solution

We propose an EO-based solution that will be referred to as Ex-
tremal (see Algorithm 2). Extremal uses also an initial solution, like
Greedy-full. The input and the output remain the same for the two
algorithms. Algorithm 2 consists of one loop. In each iteration, it
finds the slowest job of the graph (through the findSlowestJob(G))
and rearranges its task placement fractions by removing a f frac-
tion of the task ratio of randomly picked DCs. We set f equal to
1/3 and the probability is set to 1/2. This reallocation affects the
downstream nodes as the S/ is re-arranged to the DCs; this reallo-
cation is computed using the Linear Programming technique (LP)
from [23]. Then the new RT(G) and DM(G) are calculated and the
solution becomes the best one so far only if the DM(G) improves
and if the RT(G) is under the given threshold. The number of the
iterations is configurable but unless otherwise stated, we set them
to 100 (see Section 5.2.2). Compared to the Greedy-full solution, its
main difference is that it focuses on the slowest job overall rather
than examining all jobs in turn; then, for the slowest jobs, exam-
ines more extensive random changes.

4.2.1 Example. Suppose a linear G with three nodes and three
DCs on which each node is executed in parallel. The uplink and
downlink of the DCs are U=(10, 1, 10), D=(10, 5, 5). The S} values
are S} =(120, 100, 50) and a =1 for both jobs. Figure 2a shows the
result of Iridium. In the figure, each circle corresponds to a job-DC
pair annotated by the corresponding rl} value.

We execute the loop of Algorithm 2 a single time. We set ¢ =
0.1. Thus the threshold is set to RTthreshold = (1 + 0.1)38.19 =
42 sec. First, the algorithm searches for the slowest job which in
that case, is the first one. Then, it chooses a random DC that has a
fraction of tasks larger than 0, let’s say that this DC is the third one.
Then the algorithm removes 1/3 of its workload and transfers it to
the 2nd DC, which is the only other DC with non-zero allocation;
this results in ri1=(0, 0.83, 0.17), which, in turn yields SiZ:(O, 224.1,
45.9) and rl.Z:(O.O4, 0.96, 0). The new RT(G) is 37.18 sec. The benefit
in the data movement is 28.3 MBs (Figure 2b). This new RT(G) is
under the threshold so the solution is accepted. The final reduction
over Iridium is 2.6% in terms of RT(G) and 11% in DM(G) which
is the main metric we try to minimize. In this example, Greedy-
full can reach the same outcome as Extremal, but the latter has
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Algorithm 2 Extremal algorithm

Require: allocations, RTthreshold, DM(G), RT(G), iterations
bestAllocations « allocations
bestRT < RT(G)
bestDM «— DM(G)
for i <1 to iterations do
slowest Job < findSlowestJob(G)
for eachDC do
With probability p, reallocate tasks regarding the slowest
job through distributing a proportion of § of DC’s fraction
to the other DCs
end for
tempAllocations < apply changes to G
Calculate RT(G)’ using tempAllocations
Calculate DM(G)’ using tempAllocations
if DM(G)’ < bestDM && RT(G)’ < RTthreshold then
bestAllocations « tempAllocations
bestRT < RT(G)’
bestDM «— DM(G)’
end if
end for
return bestAllocations, bestRT, bestDM

12.69 sec

=0

(a) Iridium task allocation

(b) Extremal algorithm task allocation

Figure 2: Example using extremal algorithm

performed only one reallocation (for the first job) while Greedy-
full has checked all the jobs.
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5 EXPERIMENTS
5.1 Setting

We have already shown in Section 2 that estimated improvements
correspond to improvements in real runs as well. To cover a broad
range of scenarios, we resort to simulations. We use the simula-
tion setting presented in our previous work [19], which includes
five types of DAGs from [11] (presented in Figure 3) in three sizes
each. The DAGs cover a very broad range of real applications, in-
cluding DAGs produced when running TPC-H on Spark. To allow
for a direct comparison against the results in [19], we experiment
with 3 values of M = 5; 10; 15 and 3 values of ¢ = 0.1 and 0.2 and
0.5. The experiments were performed for every combination of
DAG, number of DCs and ¢ value. Unless otherwise stated, p = 0.5,
iterations = 20 for Greedy-full and 100 for Extremal, and § = 1/3.
For the remainder of the variables, we resort to a setting similar
to the one in [23]. The initial dataset I/ of the source nodes is ran-
domly generated in the range [100MB, 1GB]. The U; and D; of each
DC fall into the range of [100MB/sec, 2GB/sec]. The selectivities «
of the jobs are between 0.01 and 2 with 50% of the job selectivities
ranging from 0.01 to 0.5, 25% of them ranging from 0.5 to 1 and the
rest 25% ranging from 1 to 2 (similar to the selectivities in Facebook
production analytics according to [23]). For each combination of
DAG type, M and ¢, we created random instances according to the
parameters above, and we report the average values.

5.2 Main Experiments

5.2.1  Main comparison. In the first set of experiments, we com-
pare our algorithms namely Extremal and Greedy-full to the ones
presented in our previous work [19], Iterated Local Search and
Greedy, regarding the reduction in RT(G) and DM(G) they achieve
over Iridium, when we set € = 0.2. The results are presented in
Figure 4 and Figure 5 for DM(G) and RT(G), respectively. On aver-
age, Extremal reduces Iridium’s DM(G) by 28.16%, Greedy-full by
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Figure 4: Percentage of DM(G) reduction for M =5, 10 and 15 when ¢=0.2.

37.83%, ILS by 50.12% and Greedy by 3.25%. In most cases, Greedy-
full reduces the RT(G) as well by a mean reduction of 28.26%, Ex-
tremal by 11.03%, ILS by 44.31%, while Greedy increases the RT(G)
by 7.5%.

As we can observe from Figure 4, Extremal is outperformed by
ILS and Greedy-full by a large margin in the DAGs where the slow-
est job turns out to be one close to the sink nodes, e.g., Small E,
where a single node collects data from two previous nodes. In the

other cases, the behavior of Extremal and ILS is similar, whereas
there exist several combinations of DAG types and sizes where
Extremal is the best performing approach in average. The perfor-
mance of Greedy-full is closer to that of ILS, but, as explained later,
with slightly higher overhead than Extremal.

5.2.2 Convergence Rate. In this section, we compare the con-
vergence rate of Extremal and Greedy-full. In order to find the
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Figure 5: Percentage of RT(G) reduction for M =5, 10 and 15 when £=0.2.

convergence rate of Greedy-full we set the number of iterations
to N+*+M = 6 x 10 = 60 while Extremal iterates 100 times. Fig-
ure 6 shows the results for the Small-A DAG and 10 machines. We
can observe that Greedy-full converges at around the 10th itera-
tion, which is faster than Extremal which converges at around 50th
iteration. We should also consider the running time of the algo-
rithms. While Extremal iterates more times, it only takes 5.7 sec

but Greedy-full takes 13.08 sec. Taken that into consideration, Ex-
tremal converges at around 2.85 sec and Greedy-full at around 2.18
sec (machine specifications are given when discussing time over-
heads in more detail). This explains our choice to set the number
of iterations of the two algorithms to 20 and 100, respectively. We
further investigate the behavior of Extremal, ranging the number
of iterations from 25 to 150. The results are presented in Figures 7
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Figure 6: DM(G) (left) and RT(G) (right) convergence rate for
the Small-A (top) DAG when running Extremal and Greedy-
full (M=10, £¢=10%)
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Figure 7: Percentage of DM(G) reduction for the Small-A
(top) and Large-E (bottom) DAGs when running Extremal
for different M (horizontal axis), ¢ and number of iterations

and 8. Setting the iterations to 100 offers a good trade-off between
the quality of the output and the running time of the algorithm.

5.2.3 Impact of initial allocation. In this set of experiments, we
tried initializing the Greedy-full and Extremal algorithms with a
random solution rather than the Iridium one. The results show that
the algorithms are quite sensitive to the initial allocation as they
cannot produce a plan that improves on the Iridium’s RT(G) and
DM(G) (no figures are shown due to space constraints). In most
cases, the final results of the algorithms that were initialized with
the random solution are worse than the Iridium ones. Therefore,
the initialization phase in our solution that first optimizes for RT
(though employing Iridium’s approach) and then proceeds to DM
minimization is crucial in the bi-objective optimization solution.

5.24 Time overheads. The running time of each algorithm is
presented in Table 3. The experiments were performed on a ma-
chine with i7-4510U CPU at 2.00GHz with 8 GB of RAM. Two
main observations can be drawn: (i) Extremal and Greedy-full in-
cur lower overhead than ILS by an order of magnitude; and (ii)
Greedy-full is slower than extremal regarding non-small flows.
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Figure 8: Percentage of RT(G) reduction for the Small-A (top)
and Large-E (bottom) DAGs when running Extremal for dif-
ferent M (horizontal axis), ¢ and number of iterations

Algorithm 3 Genetic algorithm

Require: populationSize, recombinationProb, mutationProb, generations

population « initializePopulation(populationSize)
best, bestRT, best DM « getBest(population)
for i < 1to generations do
parents « selectParents(population)
children «— @
for each pair in parents do
childl, child2 « recombination(pair, recombinationProb)
children «— mutate(child1, mutationProb)
children «— mutate(child2, mutationProb)
end for
population «— combine(population, children)
population «— population(1 : populationSize)
best, bestRT, bestDM « getBest(evaluatedPopulation)
end for
return best, bestRT, best DM

5.3 Comparison against an Evolutionary
Solution

In this section, we present how an evolutionary algorithm per-
forms in our setting. Specifically, we have implemented the genetic
algorithm described in Algorithm 3 and compared it to Extremal
and Greedy-full. First, the Genetic algorithm initializes the popu-
lation and finds the best solution among them. In our implemen-
tation, we initialized the population of size 400 with the Iridium’s
solution, about 10% greedy solutions over Iridium and 90% random
ones. Then, the population is divided into pairs from the recombi-
nation of which new solutions (children) are produced. Then, the
children are mutated with a small probability, inserted in the popu-
lation and the best solution is found. This is repeated for a number
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Table 3: Running times of the algorithms for different M values (in sec).

Small A Medium C Large E
Algorithm \M 5 10 15 5 10 15 5 10 15
Iridium 0.13 0.17 0.18 0.28 0.29 0.3 0.3 0.31 0.36
Extremal 5.44 5.7 5.71 4.37 4.73 5.95 13.91 18.17 18.77
Greedy-full 3.66 399 4.12 10.8 11.39 11.81 | 20.93 22.32 24.51
Greedy 0.16 0.19 0.21 0.8 1.12 1.31 2.45 3.29 3.6
ILS (75 iterations) | 59.99 69.7 71.98 | 87.73 91.16 93.44 | 130.98 131.26 159.04
150 €=0d - 150 — e Figures 9 and 10 show the results, when the number of gener-
52;:23"“" 52’;’1‘““ ations is set to 400. As can be seen, Genetic is the least beneficial
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Figure 9: Percentage of DM(G) reduction for the Small-A
(top) and Large-E (bottom) DAGs when running Extremal,
Greedy-full and Genetic for different M (horizontal axis)
and ¢
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Figure 10: Percentage of RT(G) reduction for the Small-A
(top) and Large-E (bottom) DAGs when running Extremal,
Greedy-full and Genetic for different M (horizontal axis)
and ¢

of iterations called generations. The output of the algorithm is the
best RT(G) and DM(G).

algorithm for our setting. That indicates that it is more effective to
work on a single solution rather than having a collection of them,
e.g the population in the Genetic. Moreover the random combina-
tion of components from different solutions does not lead to a good
outcome either.

6 RELATED WORK

As the amount of jobs that need to be executed in geo-distributed
data centers is increasing, there have been several proposals for op-
timized task placement. Many works focus on minimizing the to-
tal traffic. For example, WANalytics [27] deals with the task place-
ment in this regard, but does not consider the overall running time.
[17] offers a prediction of job execution time but focuses only on
the minimization of the data movement as well. Clarinet [26] is
a query optimizer that chooses the best execution plan among the
ones provided by multiple query optimizers, considering the WAN-
consumption during scheduling and task placement.

On the other hand, there are solutions that employ the mini-
mization of the running time as their objective. Two earlier pro-
posals, include Nebula [24] and Tetris [12] that overlook issues re-
garding total data movement. Heintz et al. [13] developed a frame-
work that optimizes the data and task placement of each phase of a
mapreduce job focusing on minimizing the makespan of the query
but not on the overall data movement either. Iridium [23], which
is the work against which we compare our solution, also focused
only on the running time. However, Iridium can modify the place-
ment of the initial data as well. In our work, we assume that initial
data allocation is fixed. Tetrium [15] also tries to improve upon Irid-
ium, as we do, in two ways. Firstly, through considering the time
spent due to computations and not only data transmission. Sec-
ondly, through making scheduling decisions at a lower level than
simple decision of the fraction of the tasks to run on each site to
account for the case when the slots available are less than the allo-
cated tasks. Both these extensions are interesting and we plan to
investigate them in the future. Contrary to our proposal, it focuses
mostly on response time but supports constraints on data move-
ment (we treat the two metrics as of equal importance through
first optimizing for response time and then for data movement);
also, in our solutions, we manage to handle stage dependencies
better through not running a stage-by-stage technique only once.

There are also works that consider both metrics. For example,
Flutter [14] is a system that performs bi-objective task placement
online but all tasks of the same stage are allocated to a single data
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center. Works on multi-objective query optimization, such as [25],
suffer from the same limitation. Finally, the work in [30] targets
both metrics but is tailored to a single MapReduce flow with the
reducer being executed on a single DC. In summary, none of these
works can be applied to a generic DAG, where each DAG vertex is
distributed across several nodes.

7 DISCUSSION

In this work, we proposed a fast solution that decides the task
placement in complex analytics workflows targeting the minimiza-
tion of both response time and data movement. The thorough ex-
periments show that we can yield significant improvements over
our main competitor with much less overhead than the previous
proposal to the same end.

In general, there are further open issues in the multi-objective
problem we deal with. Taking into consideration the processing
costs and capacity constraints of the participating nodes, in line
with the work in [15], is a promising direction for future work.
Also, investigating how the required metadata can be efficiently
monitored online is an open issue. Finally, further research is re-
quired for taking into account aspects such as scheduling decisions
when multiple workflows run on the same infrastructure concur-
rently.
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