
Computing manuscript No.
(will be inserted by the editor)

Hinode: Implementing a Vertex-centric Modelling
Approach to Maintaining Historical Graph Data

Andreas Kosmatopoulos · Anastasios
Gounaris · Kostas Tsichlas

the date of receipt and acceptance should be inserted later

Abstract Over the past few years, there has been a rapid increase of data
originating from evolving networks such as social networks, sensor networks
and others. A major challenge that arises when handling such networks and
their respective graphs is the ability to issue a historical query on their data,
that is, a query that is concerned with the state of the graph at previous time
instances. While there has been a number of works that index the historical
data in a time-centric manner (i.e. according to the time instance an update
event occurs), in this work, we focus on the less-explored vertex-centric stor-
age approach (i.e. according to the entity in which an update event occurs).
We demonstrate that the design choices for a vertex-centric model are not
trivial, by proposing two different modelling and storage models that leverage
NoSQL technology and investigating their tradeoffs. More specifically, we ex-
perimentally evaluate the two models and show that under certain cases, their
relative performance can differ by several times. Finally, we provide evidence
that simple baseline and non-NoSQL solutions are slower by up to an order of
magnitude.

Keywords Historical Queries · Historical Graphs · Evolving Graphs ·
Vertex-centric

A. Kosmatopoulos (�) · A. Gounaris · K. Tsichlas
Department of Informatics, Aristotle University of Thessaloniki, Greece
E-mail: akosmato@csd.auth.gr

A. Gounaris
E-mail: gounaria@csd.auth.gr

K. Tsichlas
E-mail: tsichlas@csd.auth.gr

2 Andreas Kosmatopoulos et al.

1 Introduction

A key characteristic of the past decade in data management is the ever increas-
ing amount of data generated by real world applications on a daily basis. A
significant portion of the produced data originates from networks, i.e. distinct
entities and the relationships formed between them. Most of these networks
such as social media networks (Facebook, Twitter etc.), communication net-
works, collaboration networks and others can be modeled using a graph data
structure with entities corresponding to vertices and the relationships between
them corresponding to edges in the graph; both the vertex and edge elements
may be annotated by attributes such as name and weight respectively.

A common feature of such graphs is their dynamic nature with vertices and
edges constantly being inserted, removed or altered as time progresses and en-
tities interact with each other. By studying the evolution of these dynamic
graphs we can obtain useful information and metrics regarding the nature of
the originating network itself. As a result, one of the greatest challenges that
arises in the presence of such evolving graphs is maintaining the state of the
graph at different time instances (snapshots) in a spatially and temporally effi-
cient way. More specifically, consider a graph corresponding to a social network
that is comprised of millions of users (vertices) and the friendship relationships
between them (edges). By examining the graph through two subsequent days
we witness a number of newly created, removed and altered vertices or edges
and a significant fraction of the graph that has remained the same across the
two days. A system that aims to efficiently store all the snapshots of such a
graph should employ techniques that mitigate the presence of unaltered data
between different snapshots (i.e. take advantage of the commonalities between
snapshots and refrain from storing duplicate data across snapshots).

There have been two main approaches with regard to a system’s design
[7], the time-centric approach and the entity-centric approach. In the former
case the system is indexed according to the time instances (i.e. changes are
organized by the time instance they occur in), while in the latter case the
system is indexed according to the entities, their relationships and their re-
spective history throughout the snapshots (i.e. changes are organized based
on the vertex or edge they refer to). Most of the previous research work con-
ducted so far aims at storing the changes themselves (known as deltas) that
occur between different snapshots. A system that maintains sets of deltas is
thus able to reconstruct any particular snapshot by sequentially applying all
the deltas up to the desired time instance.

Another viewpoint concerning a system’s design is based on the type of
queries that the system should be able to evaluate. Local queries are based on a
particular vertex or a limited selection of vertices (e.g. the 2-hop neighborhood
of a vertex) while global queries consider the majority or the entirety of a
graph’s vertices (e.g. global clustering coefficient). Furthermore, both local
and global queries should be able to be executed on either a single snapshot or
on a range of snapshots. In the first case, a query aims to evaluate a measure
at a particular time instance (e.g. shortest path length between two vertices

Hinode: Implementing a Vertex-centric Modelling of Historical Graphs 3

at a particular time instance), while in the latter case a query’s objective is to
extract information regarding a measure’s evolution through snapshots (e.g.
average shortest path length between two vertices in the ten first snapshots).

From the above paragraphs we expect that systems built following the time-
centric approach are more suited towards evaluating global queries. At the
same time, in order to efficiently handle local queries an entity-centric approach
seems to be the natural choice. While there has been plenty of work revolving
around the usage of deltas and (variants of) the time-centric approach, entity-
centric systems are at their infancy and have not been thoroughly studied.

In our previous work in [9], we introduced the first purely entity-centric,
and more specifically, vertex-centric model for maintaining graph historical
data, termed as HiNode. Its strongest point is that it builds upon a theoretical
storage model that is asymptotically space-optimal. Its initial implementation,
hereafter termed as HiNode-G∗1, was based on extensions to the G∗ [10,18]
parallel graph database. This design choice incurred severe limitations regard-
ing the efficiency and scalability of the HiNode-G∗ prototype. In this work, we
propose to leverage NoSQL as the underlying database technology thus form-
ing the second version of HiNode, called HiNode-NoSQL hereafter. However,
simply switching to a different underlying technology does not necessarily im-
ply performance improvements in retrieval tasks. The technical contribution
of this work is to (i) investigate and compare different NoSQL design tech-
niques for the HiNode-NoSQL system, and (ii) provide concrete insights into
the strengths and weaknesses of each alternative in terms of supporting re-
trieval queries on evolving networks.

More specifically:

1. We investigate two approaches to vertex-centric modelling and storage with
different strengths and weaknesses.

2. We propose querying models on top of these models.
3. We show that under certain cases, their relative performance can differ by

several times.
4. Finally, we provide evidence that simple baseline and non-NoSQL solutions

are slower by up to an order of magnitude.

The rest of the paper is structured as follows: Section 2 provides a detailed
background on the vertex-centric approach in [9]. Section 3 reviews related
work in the field of historical graph data. Section 4 describes the alternative
models in detail. Section 5 compares the proposals through extensive experi-
mental evaluation. Finally, in Section 6 we conclude our work.

2 Background and Motivation

We begin by more formally defining the terms used throughout the rest of this
work and then move on to describe the overall problem motivation and our
approach.

1 Source code available at https://github.com/hinodeauthors/hinode

4 Andreas Kosmatopoulos et al.

Let G = (V,E) be a graph consisting of a set of vertices V and a set of
edges E. The state of the graph G at a particular time instance t, that is, the
active vertices and edges of G at a time instance t, is termed as snapshot and
is denoted by Gt. We regard time as strictly increasing quantities of indivisible
time intervals that follow a linear direction. Under this notion of time G =<
G1, G2, . . . > corresponds to an evolving graph sequence of snapshots that
are to be stored and maintained appropriately. The absence of a “final” or
last snapshot in G denotes that the sequence is constantly evolving as time
progresses. Note that given the definition of deltas, a snapshot Gi can be
conceptually obtained by applying a set of deltas (vertex or edge insertions or
removals) to snapshot Gi−1 and vice versa.

Without loss of generality, throughout the rest of this work we will use
a particular graph as a running example. In this example, each graph vertex
possesses two attributes: a name and a color. Furthermore, graph vertices are
connected through edges with each edge having a label and a weight attribute.
Figure 1 depicts three consequent snapshots of the example graph.2 Snapshot
G1 is obtained by changing the name of v4 in G0 from d to lbl and snapshot
G2 is obtained from G1 by inserting v5 and an edge from v2 to v5.

In order to efficiently store and handle evolving graph sequences we devel-
oped the HiNode system prototype. The primary focus of the HiNode system is
on storage, and more specifically how storage requirements can be minimized
while efficiently supporting retrieval tasks. Retrieval tasks are either complete
queries on evolving graphs or part of them, when more complex graph analyses
on evolving graphs are performed.

The core idea behind HiNode’s solution is that a vertex history throughout
all snapshots is combined into a set of collections called diachronic node. The
diachronic node utilizes external memory Interval Trees and B-Trees to model
a vertex’s history as a collection of intervals that permit geometric operations
upon them. HiNode supports adding or removing vertices and attributes as
fundamental operations upon which more complex operations and queries (e.g.
graph traversal, shortest path evaluation etc.) are constructed. In HiNode, each
change is stored O(1) times, resulting in an asymptotically optimal total space
cost. As an example, for the graph in Figure 1 the diachronic node for b at
the time of G2 would contain an Interval Tree for all changes related to b as
well as three B-Trees for b’s label, color and edge to e. Furthermore, due to
the local handling of history, HiNode performs well on local queries and the
authors further demonstrate that HiNode-G∗ is competitive on global queries
as well [9].

The G∗ parallel graph processing system [10] is, in essence, a combina-
tion of the Copy+Log storage method (see Section 3) and the vertex-centric
modeling approach. The system aims to exploit the commonalities found be-
tween successive snapshots in the history of a graph to reduce the total space
footprint by only storing each version of a vertex only once regardless of the
number of snapshots it can be found in. The indexing mechanism of G∗ is

2 For reasons of clarity edge labels, vertex colors and edge weights are not shown.

Hinode: Implementing a Vertex-centric Modelling of Historical Graphs 5

b

d

a

c

G0

b

a

c

G1

b

lbl

a

c

G2

e

lbl

v1

v2

v3

v4

v5

color : cyan

color : amber

color : blue

color : denim

v1

v2

v3

v4

color : cyan

color : amber

color : blue

color : denim

color : ecru

v1

v2

v3

v4

color : cyan

color : amber

color : blue

color : denim

Fig. 1 Example graph sequence

a set of “(vertexID, diskLocation)” pairs for each vertex version, formed into
collections based on the vertices stored by each G∗ server. As an example,
for the graph in Figure 1 a G∗ server assigned to store vertex b would store
two versions of b: One for {G0, G1} and one for G2. Finally, it is worth not-
ing that the index of G∗ resides in memory while the vertex data is stored
on disk. HiNode-G∗ was essentially built on top of the G∗ query evaluation
modules by substituting the above indexing and storage modules with a pure
vertex-centric module.

This work aims to substitute the storage technology of HiNode-G∗ with
NoSQL databases in order to avoid the underlying limitations of the G∗ stor-
age engine. More specifically, the G∗ system was built on the premise of stor-
ing the aforementioned pairs in a distributed fashion utilizing slotted pages.
HiNode-G∗ could only operate on datasets of restricted size due to the over-
all architecture and implementation of the storage and indexing modules. By
adopting the use of NoSQL databases as the fundamental method of storing
data we aim to achieve a threefold goal: (i) take advantage of the natural key-
value nature found in a graph’s entities (e.g. an edge has a specific name and
weight at a specific time instance), (ii) take advantage of the NoSQL database’s
inherent scalability especially for data-intensive applications and graphs; and
(iii) to benefit from the engineering maturity of NoSQL tools. With regard
to HiNode-NoSQL we propose two design techniques (Single-Table and Multi-
Table) that each possesses its own tradeoffs between queries.

Finally, to underline the necessity of a NoSQL approach we present some in-
dicative results in Figure 2. Both of the two vertex-centric models for HiNode-
NoSQL that will be described in Section 4 significantly outperform HiNode-
G∗3 even in the case of a dataset4 with a relatively limited number of vertices
and edges thus solidifying the need for a more scalable approach. The adoption
of a NoSQL approach in favor to HiNode-G∗ is not a trivial task and comes
with several design and query execution issues for which their addressing con-
stitutes the result of this work.

3 The queries executed were Average Vertex Degree, Degree Distribution and One-Hop
Neighborhood Retrieval on the last snapshot of the sequence - see Section 5.1

4 citHep-Th SNAP Dataset [11] - see Section 5.1

6 Andreas Kosmatopoulos et al.

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
HN-NoSQL (Single Tbl)

HN-NoSQL (Multiple Tbl)
HN-G*

Average Vertex
Degree

Vertex Degree
Distribution

One Hop Neighborhood
Retrieval

10−3

10−2

10−1

T
im

e
(s
ec
o
n
d
s)

Fig. 2 Comparison of HiNode-G∗ and HiNode-NoSQL

3 Related Work

Over the past few years there has been a plethora of graph processing sys-
tems or libraries developed to handle the increasingly large graphs that are
produced by modern real world applications. Systems such as GraphX [4], Gi-
raph [2], Pregel [12], Trinity [17] and others are mainly used to efficiently store,
retrieve and query single snapshots of large graphs. However, in most cases
these systems do not naturally support historical graph data and are gener-
ally not suited to handling evolving graphs. The proposals that are the closest
to our work are systems and modelling approaches that are able to handle
graphs together with their historical information. A survey that reviews work
conducted in maintaining historical graph data can be found in [8].

One of the first approaches to handling historical graph data originates
from Salzberg and Tsotras [14]. In their work, they present the Copy and
Log methods which suggest storing the entire snapshot whenever a change is
performed and storing a list of all the changes as they occur in the graph re-
spectively. These two methods usually serve as guidelines and can be combined
into the Copy+Log method (i.e. periodically storing the entire snapshot every
set number of changes) that serves as a compromise between total time and
space cost.

Khurana and Deshpande proposed DeltaGraph [6] a system which em-
ploys a tree-like index structure that can perform singlepoint and multipoint
graph retrieval. The authors furthermore proposed the Temporal Graph Index
(TGI) [7] which extended DeltaGraph by incorporating mechanisms that en-
abled vertex-centric operations. Labouseur et al. [10,18] proposed the parallel
graph database G∗ which takes advantage of the commonalities found between

Hinode: Implementing a Vertex-centric Modelling of Historical Graphs 7

snapshots to reduce the total space cost. As explained in detail in the previous
section, Kosmatopoulos et al. developed HiNode [9], which is asymptotically
space-optimal and the first implemented purely vertex-centric system but has
been only implemented in a simplified form on top of G∗. The main novelty
of this work is that it makes a deep dive into implementation issues and re-
lated design choices when switching to NoSQL technology in order to improve
efficiency and scalability.

There have also been various attempts at indexing the historical data so as
to enable evaluation of specific queries and measures. Ren et al. [13] and Huo
et al. [5] focus on shortest path query evaluation and its evolution through the
graph history. Akiba et al. [1] focus on evaluating historical distance queries
between two vertices and reporting the time instances of distance change. Yang
et al. [19] target the problem of finding the most frequently changing compo-
nents in an evolving graph. Finally, Semertizidis et al. tackle the problem of
historical reachability queries [16] and durable graph pattern queries [15].

4 Modelling

In this section, we propose two vertex-centric models for maintaining historical
graph data and provide an implementation through Apache Cassandra. We
describe the logic behind each model and discuss advantages and potential
trade-offs using the example graph sequence found in Figure 1.

4.1 Single Table Model

The first vertex-centric model, called the Single Table model (ST), uses a
single table to model all history in the graph. More specifically, each row in
the table corresponds to a particular vertex’s entire history and is equivalent
to the contents of a diachronic node in HiNode.

CREATE TYPE histgraph.attribute (value text, start text,
+ end text);

CREATE TYPE histgraph.edge (label text, weight text,
+ otherEnd text, start text, end text);

CREATE TABLE histgraph.dianode (vid text,
+ start text, end text,
+ name list<frozen<attribute>>,
+ color list<frozen<attribute>>,
+ incoming_edges map<text, frozen<list<edge>>>,
+ outgoing_edges map<text, frozen<list<edge>>>,
+ PRIMARY KEY (vid, start, end));

In Apache Cassandra we create new data types for attributes and edges
and name the single table “dianode”. The “attribute” data type corresponds to

8 Andreas Kosmatopoulos et al.

vid start end name color incoming_edges outgoing_edges

1 0 2
[{value: ’a’,
start: ‘0’, end: ‘2’}]

[{value: ’amber’,
start: ‘0’, end: ‘2’}]

null

‘2’: [{label: ’elbl1’,
start: ‘0’, end: ‘2’}],
‘4’: [{label: ’elbl2’,
start: ‘0’, end: ‘2’}]

2 0 2
[{value: ’b’,
start: ‘0’, end: ‘2’}]

[{value: ’blue’,
start: ‘0’, end: ‘2’}]

‘1’: [{label: ’elbl1’,
start: ‘0’, end: ‘2’}],
‘3’: [{label: ’elbl5’,
start: ‘0’, end: ‘2’}]

‘4’: [{label: ’elbl3’,
start: ‘0’, end: ‘2’}],
‘5’: [{label: ’elbl4’,
start: ‘2’, end: ‘2’}]

3 0 2
[{value: ’c’,
start: ‘0’, end: ‘2’}]

[{value: ’cyan’,
start: ‘0’, end: ‘2’}]

null
‘2’: [{label: ’elbl5’,
start: ‘0’, end: ‘2’}]

4 0 2

[{value: ’d’,
start: ‘0’, end: ‘1’},
{value: ’lbl’,
start: ‘1’, end: ‘2’}]

[{value: ’denim’,
start: ‘0’, end: ‘2’}]

‘1’: [{label: ’elbl2’,
start: ‘0’, end: ‘2’}],
‘2’: [{label: ’elbl3’,
start: ‘0’, end: ‘2’}]

null

5 2 2
[{value: ’e’,
start: ‘2’, end: ‘2’}]

[{value: ’ecru’,
start: ‘2’, end: ‘2’}]

‘2’: [{label: ’elbl4’,
start: ‘2’, end: ‘2’}]

null

Table 1 The contents of ST for the graph sequence of Figure 1. To facilitate readability,
the “otherend” and “weight” edge attributes are not shown

an interval of a particular value that is valid between “start” and “end”. The in-
coming edges of a vertex are maps that store “(source_vertex, list_of_edges)”
key-value pairs where “list_of_edges” is a collection of all the edges that have
occurred at some time in the history between these two vertices. A similar
definition applies to the outgoing edges.

Finally, we note that by this primary key declaration, the rows are parti-
tioned to a server according to their vertex ID thus resulting in each vertex’s
history completely residing in a single server. This results in each change be-
ing stored only once in the corresponding vertex row and enables faster single
vertex query and local query evaluation since we avoid any unnecessary com-
munication between servers. The downside when using ST is that whenever
we need to access a vertex at a particular time instance the system must “un-
pack” all the collections after retrieving the relevant row. Even though this is
performed on the client side it adds a significant time cost. Additionally, for
application domains that are characterized by a high attribute update rate,
the collection size might exceed the maximum collection size supported by
Cassandra. This can be aleviated by stopping the use of a particular collection
after a set amount of items and creating a new one, thus retaining the space
efficiency of the ST model in general.

The contents of ST for the graph sequence of Figure 1 are shown in Table 1.

4.2 Multiple Tables Model

To avoid the time slowdowns that occur with the employment of collections, we
propose the second vertex-centric model called Multiple Tables model (MT).
In MT we use a single table for each vertex attribute and we differentiate
between incoming and outgoing edges by using a single table for each of their

Hinode: Implementing a Vertex-centric Modelling of Historical Graphs 9

corresponding attributes. Additionally, MT uses three tables to denote the
“lifetime” of vertices and outgoing edges and incoming edges respectively.

CREATE TABLE histgraph.vertex (vid text,
+ start text, end text,
+ PRIMARY KEY (vid, start, end));

CREATE TABLE histgraph.vertex_name (vid text,
+ name text, timestamp text,
+ PRIMARY KEY (vid, timestamp)
+) WITH CLUSTERING ORDER BY (timestamp DESC);

CREATE TABLE histgraph.vertex_color (vid text,
+ color text, timestamp text,
+ PRIMARY KEY (vid, timestamp)
+) WITH CLUSTERING ORDER BY (timestamp DESC);

CREATE TABLE histgraph.edge_outgoing (
+ start text, end text,
+ sourceID text, + targetID text,
+ PRIMARY KEY (sourceID, start, end, targetID));

CREATE TABLE histgraph.edge_label_outgoing (
+ label text, timestamp text,
+ sourceID text, targetID text,
+ PRIMARY KEY (sourceID, timestamp, targetID)
+) WITH CLUSTERING ORDER BY (timestamp DESC,
+ targetID DESC);

CREATE TABLE histgraph.edge_weight_outgoing (
+ weight text, timestamp text,
+ sourceID text, targetID text,
+ PRIMARY KEY (sourceID, timestamp, targetID)
+) WITH CLUSTERING ORDER BY (timestamp DESC,
+ targetID DESC);

CREATE TABLE histgraph.edge_incoming (
+ start text, end text,
+ sourceID text, targetID text,
+ PRIMARY KEY (targetID, start, end, sourceID));

CREATE TABLE histgraph.edge_label_incoming (
+ label text, timestamp text,
+ sourceID text, targetID text,
+ PRIMARY KEY (targetID, timestamp, sourceID)
+) WITH CLUSTERING ORDER BY (timestamp DESC,
+ sourceID DESC);

CREATE TABLE histgraph.edge_weight_incoming (
+ weight text, timestamp text,
+ sourceID text, targetID text,
+ PRIMARY KEY (targetID, timestamp, sourceID)
+) WITH CLUSTERING ORDER BY (timestamp DESC,
+ sourceID DESC);

10 Andreas Kosmatopoulos et al.

vid start end
1 0 2
2 0 2
3 0 2
4 0 2
5 2 2

(a) vertex

vid timestamp name
1 0 a
2 0 b
3 0 c
4 0 d
4 1 lbl
5 2 e

(b) vertex_name

vid timestamp name
1 0 amber
2 0 blue
3 0 cyan
4 0 denim
5 2 ecru

(c) vertex_color

targetid start end sourceid
2 0 2 1
2 0 2 3
4 0 2 1
4 0 2 2
5 2 2 2

(d) edge_incoming

sourceid start end targetid
1 0 2 2
1 0 2 4
2 0 2 4
2 2 2 5
3 0 2 2

(e) edge_outgoing

targetid timestamp sourceid label
2 0 1 elbl1
2 0 3 elbl5
4 0 1 elbl2
4 0 2 elbl3
5 2 2 elbl4

(f) edge_label_incoming

sourceid timestamp targetid label
1 0 2 elbl1
1 0 4 elbl2
2 0 4 elbl3
2 2 5 elbl4
3 0 2 elbl5

(g) edge_label_outgoing

Table 2 The contents of MT for the graph sequence of Figure 1. Since the edge “weight”
tables are similar to their edge “label” counterparts they are not shown

In MT we elect to store time instances of change on a vertex or edge
attribute (“timestamp”) as opposed to explicit intervals since the underlying
intervals can be trivially inferred. The strong point of MT is that basic queries
can be directly evaluated through querying Apache Cassandra with minimal
client involvement as opposed to ST (e.g. to retrieve a particular vertex at
a specific time instance the system queries “vertex_name”, “vertex_color”
and “edge_label_outgoing|incoming”, “edge_weight_outgoing|incoming” for
all the relevant edges). Two weak points of MT are that in order to guarantee
that the system partitions all the vertex information into the same server some
of the data need to be repeated. Furthermore, even though MT avoids the use
of collections, it requires a greater amount of read operations to implement a
basic operation compared to ST. This could result in a significant time cost if
the underlying graph has vertices or edges with a large number of attributes.

The contents of MT for the example in Figure 1 are shown in Table 2.

4.3 Querying Modes

The two models proposed in the previous section are vertex-centric and thus
inherently suited for the execution of local queries. In order to adequately

Hinode: Implementing a Vertex-centric Modelling of Historical Graphs 11

support global type of queries (i.e. queries that involve a significant part of a
snapshot’s vertices), the two models offer two querying modes for the retrieval
of all vertices relevant to a specified query.

Let [ts, te] be a specified time range for which a query is about to be
executed. In the first mode (termed retrieve_all), and regardless of the given
time range, we retrieve all vertices from each model and then perform a client-
side filtering operation, where we discard any vertices that do not belong in
[ts, te] (Algorithm 1).

Algorithm 1 retrieve_all

Input: Time range [ts, te]
Output: Data from vertices that exist in [ts, te]
1: if model == ST then
2: S ← “SELECT * FROM dianode”
3: for each diachronic node Dv ∈ S do . Performed client-side
4: if Dv .end ≤ ts or te ≤ Dv .start then
5: S ← S \ {Dv}
6: end if
7: end for
8: else if model == MT then
9: for each table T in MT (i.e. “vertex”, ”edge_outgoing” etc.) do
10: S ← “SELECT * FROM T ”
11: for each row r ∈ S do . Performed client-side
12: if r.end ≤ ts or te ≤ r.start then
13: S ← S \ {r}
14: end if
15: end for
16: Join remaining results from each table T on vertex ID . Performed client-side
17: end for
18: end if
19: return S

In the second mode (termed retrieve_relevant), each model first deter-
mines the vertices that are “alive” at [ts, te] and then retrieves them. More
specifically, in the ST model, we first query for the “start” and “end” times-
tamp of each diachronic node in “dianode” and then, we retrieve from “dianode”
all diachronic nodes whose “start” or “end” value belong in [ts, te], while in the
MT model we follow a similar approach using the vertex table (Algorithm 2).
Mode retrieve_relevant takes into account the provided time range and is
more versatile compared to retrieve_all which should be mainly used for
queries that involve the majority of the vertices in the sequence (i.e. “What is
the average vertex degree in each snapshot of the sequence stored so far?”).

While in ST the implementation of retrieve_relevant is straightforward,
MT requires additional work since retrieving a particular (set of) attribute(s)
during a certain time interval [ts, te] would translate to a range query and
the retrieval of all data with a “timestamp” value between ts and te (i.e. we
are not interested in any updates that occur outside [ts, te]). Since Cassandra
does not natively permit range queries for two or more clustering columns (i.e.
“start” and “end”) for the sake of efficiency, we fetch the relevant data with

12 Andreas Kosmatopoulos et al.

Algorithm 2 retrieve_relevant

Input: Time range [ts, te]
Output: Data from vertices that exist in [ts, te]
1: if model == ST then
2: V ← “SELECT vid, start, end FROM dianode”
3: for each row r ∈ V do . Performed client-side
4: if r.end ≤ ts or te ≤ r.start then
5: V ← V \ {r}
6: end if
7: end for
8: S ← “SELECT * FROM dianode WHERE vid IN V”
9: else if model == MT then
10: V ← “SELECT * FROM vertex ”
11: for each vertex v ∈ V do . Performed client-side
12: if v.end ≤ ts or te ≤ v.start then
13: V ← V \ {v}
14: end if
15: end for
16: S ← “SELECT * FROM MT.{all tables} WHERE {vid, sourceID, targetID} IN V”
17: Filter from S all data with timestamp 6∈ [ts, te] . Performed client-side
18: end if
19: return S

a timestamp larger than ts and then filter, all data with a timestamp less
than te at the client side. In the following experimental evaluation section,
we primarily employed the retrieve_relevant method due to its overall time
efficiency (see Section 5.6).

5 Experimental Evaluation

In this section, we experimentally evaluate the two proposed vertex-centric
models and compare their relative efficiency.5 We begin by providing query
definitions, dataset descriptions before moving on to the models’ comparison
on a single node setting. We start with a single-node setting in order not to al-
low automated parallelism and elasticity features of Cassandra to be involved
and therefore, draw clearer observations about each model’s performance. Fur-
thermore, we repeat the experiments in the presence of a cluster data center
and report our findings. Finally, we outline the efficiency of a state-of-the-art
graph DBMS in the context of historical graph data and conclude with some
overall observations.

5.1 Query Definitions, Experimental Environment and Dataset Description

We demonstrate the different trade-offs by each of our proposed models by
performing experiments using four different queries. More specifically, we im-
plemented the queries shown on Table 3 and executed them on query ranges

5 Source code available at https://github.com/akosmato/HinodeNoSQL

Hinode: Implementing a Vertex-centric Modelling of Historical Graphs 13

Query Query Description
Vertex History Retrieval
VerHist(vID, <Snapshots>)

For a given vertex vID and a given range of snapshots,
return the state of vID at each snapshot

One Hop Neighborhood
OneHop(vID, <Snapshots>)

For a given vertex vID and a given range of snapshots,
return the neighbors of vID at each snapshot

Average Vertex Degree
AvgDeg(<Snapshots>)

For each snapshot in the query range, compute the
average degree of its vertices and report it

Vertex Degree Distribution
DegDistr(<Snapshots>)

For each snapshot in the query range, count the
vertices with each possible degree and report them

Table 3 Query Definitions

Dataset Vertices Edges Snapshots
hep-Th 27770 352807 156
hep-Ph 34546 421578 132
US Patents 3774768 16518948 444
Synthetic 5100000 30600000 100

Table 4 Evaluation datasets. The number of vertices and edges refer to the last snapshot
of the sequence

of varying size (i.e. 1 snapshot of the sequence and 10%, 20%, 50%, or 100%
of the sequence’s snapshots).

We performed experiments on real world datasets originating from the
SNAP Dataset Collection [11]. We selected three datasets with the first two
constituting a graph representation of an arXiv citation network for two differ-
ent scientific domains; “hep-th” (from January 1990 to April 2003) and “hep-
ph” (from February 1992 to February 2003) and the last one (“USPatents”) a
cross-citation network of US utility patents granted between 1963 and 1999. In
each case, we split the citations based on their date of occurrence and ended
up with a sequence of monthly snapshots.6

In addition to the aforementioned settings, we aimed to discover how the
two models handle synthetic scale-free graphs. To this end, we produced a
synthetic dataset that follows the Barabási-Albert (BA) [3] scale-free graph
model and simulates plenty of real world phenomena and circumstances. In the
Barabási-Albert model, each snapshot in the sequence is generated by inserting
new vertices that are connected with a set of already existing vertices. The
selection of the already existing vertices that will serve as endpoints is done in
a preferential manner with vertices having a large degree being more probable
of being selected. Table 4 summarizes the datasets used in this work.

The two models were implemented using Apache Cassandra and all exper-
iments were performed through a client application written in Java. All the
single-node experiments were run on an Intel Xeon CPU E5-2620, 64GB RAM
machine while the multi-node experiments were run on two machines AMD
FX-9370 and Intel Core i7-3770K with 32GB RAM each respectively. In the
single-node setting the client application was run on a i7-3770K, 32GB RAM

6 Due to difficulties in assigning some specific edges to a particular snapshot we removed
0.4% of the total edges in the “hep-th” and “hep-ph” datasets and 0.04% edges of the “US-
Patents” dataset

14 Andreas Kosmatopoulos et al.

machine while in the multi-node setting in a E5-2620, 64GB RAM machine. In
all cases the Apache Cassandra nodes were connected through a private 1Gbit
network.

As a final note, this work serves as a study of different implementation
approaches to vertex-centric models and a comparison between their behavior
under different type of queries. As a result, matters of efficient query execu-
tion (such as data distribution and replication, asynchronous query execution,
paging etc.) are beyond the scope of this paper and will be tackled in future
work. Furthermore, in order to maintain a design that is independent of the
graph domain, we omitted using specific data types for any vertex or edge
attributes.

5.2 A Baseline Approach

We implemented a modified version of the ST model that will serve as a
simple baseline algorithm called HiNode-Baseline. This version, which can be
conceived as a model similar to the Copy+Log model, splits the data to be
indexed according to a set amount of time instances (e.g. every 20 snapshots).

For each resulting subset of the sequence’s snapshots we build an indepen-
dent ST model index based only on the entities (and their data) that exist
on the corresponding snapshot range. Each vertex or edge that spans multiple
snapshot ranges is indexed in each ST model for which it is valid. The result-
ing HiNode-Baseline index is comprised of multiple smaller ST indices each
corresponding to its own set of assigned snapshots that are akin to smaller
subsequences.7 In the event of a query that spans multiple snapshot ranges,
we query each ST index for their respective answer and combine the results.
The baseline approach permits a lateral comparison between our two proposed
models and a model designed on vertex-centric principles that also incorpo-
rates time as a design mechanism.

5.3 Results in a Single-Node Setting

We begin by reporting the results for the two local queries of Table 3 (VerHist
and OneHop) in Figure 3, where the range of queried snapshots varies from a
single snapshot to the complete history. To avoid any randomness induced by
the query range selection, we repeated the experiments on query ranges from
approximately the start, the middle and the end of the sequence and averaged
over their times. Our primary focus is to investigate the relative difference in
execution time (each execution time decrease is defined with respect to the
slower model in each case). The key observations drawn from Figure 3 are the
following:

7 As an example, a sequence of 100 snapshots that gets indexed every 20 snapshots would
be comprised of five smaller ST indices whereas a vertex that exists in the first 75 snapshots
would only be present in the first 4 smaller ST indices

Hinode: Implementing a Vertex-centric Modelling of Historical Graphs 15

Single 10% 20% 50% 100%

Query Percentage

0.00

0.02

0.04

0.06

0.08

0.10

0.12

T
im

e
 (

s
e
c
o
n
d
s
)

hep-th Dataset : VerHist

Single Table Multiple Tables Baseline

Single 10% 20% 50% 100%

Query Percentage

0.000

0.005

0.010

0.015

0.020

0.025

0.030

T
im

e
 (

s
e
c
o
n
d
s
)

hep-th Dataset : OneHop

Single Table Multiple Tables Baseline

(a) Hep-th Dataset

Single 10% 20% 50% 100%

Query Percentage

0.00

0.01

0.02

0.03

0.04

0.05

T
im

e
 (

s
e
c
o
n
d
s
)

hep-ph Dataset : VerHist

Single Table Multiple Tables Baseline

Single 10% 20% 50% 100%

Query Percentage

0.000

0.005

0.010

0.015

0.020

T
im

e
 (

s
e
c
o
n
d
s
)

hep-ph Dataset : OneHop

Single Table Multiple Tables Baseline

(b) Hep-ph Dataset

Single 10% 20% 50% 100%

Query Percentage

0.00

0.01

0.02

0.03

0.04

0.05

0.06

T
im

e
 (

s
e
c
o
n
d
s
)

USPatents Dataset : VerHist

Single Table Multiple Tables Baseline

Single 10% 20% 50% 100%

Query Percentage

0.00

0.01

0.02

0.03

0.04

0.05

T
im

e
 (

s
e
c
o
n
d
s
)

USPatents Dataset : OneHop

Single Table Multiple Tables Baseline

(c) US Patents Dataset

Single 10% 20% 50% 100%

Query Percentage

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

T
im

e
 (

s
e
c
o
n
d
s
)

Synthetic Dataset : VerHist

Single Table Multiple Tables Baseline

Single 10% 20% 50% 100%

Query Percentage

0.000

0.002

0.004

0.006

0.008

0.010

T
im

e
 (

s
e
c
o
n
d
s
)

Synthetic Dataset : OneHop

Single Table Multiple Tables Baseline

(d) Synthetic Dataset

Fig. 3 Local queries on the datasets of Table 4 - Left Col.: VerHist, Right Col.: OneHop

16 Andreas Kosmatopoulos et al.

1. There is no clear winner between the two models for the two queries. ST
outperforms MT in VerHist by up to 56%, 44%, 50% and 69% lower execu-
tion time in “hep-th”, “hep-ph”, “USPatents” and “Synthetic”, respectively.

2. MT executes OneHop faster than ST by up to 71%, 75%, 58% and 69% in
“hep-th”, “hep-ph”, “USPatents” and “Synthetic”, respectively.

3. ST gradually outperforms the baseline in VerHist as query ranges grow
larger by up to 70%, 65%, 64% and 66% lower execution time in “hep-th”,
“hep-ph”, “USPatents” and “Synthetic” respectively. In OneHop, a similar
pattern occurs with ST outperforming the baseline by up to 73%, 76%,
67% and 66% lower execution time in the four previous datasets.

4. ST and MT execution times remain relatively unaffected by the query
range.

The above results can be attributed to the following reasons. With re-
gard to VerHist, ST fetches the relevant row’s contents directly from its single
table “dianode”, while MT queries each of its tables for any rows related to
the queried vertex thus inducing an additional slowdown due to the extra
Cassandra queries compared to ST. In OneHop, we only fetch the relevant
column from ST (“dianode.outgoing_edges”) and we only query the relevant
table (“edge_outgoing”) from MT, thus ST is burdened by the extra cost of
handling and flattening a collection. Since we follow the retrieve_relevant
querying method (Lines 8, 16, 17 in Algorithm 2) and the total execution time
is dominated by the time required to fetch the relevant data from Cassandra,
the local query times for ST and MT remain practically the same regardless
of the query range. Finally, the baseline’s time cost can be attributed to the
total number of smaller indices that have to be queried as query ranges become
progressively larger and span multiple snapshot ranges

We move on to the results for the two global queries of Table 3 (AvgDeg
and DegDistr) in Figure 4. The key observations to be made are:

1. MT is the best performing model in both global queries AvgDeg and
DegDistr. MT outperforms ST in AvgDeg by up to 41%, 52%, 39% and
54% lower execution time in “hep-th”, “hep-ph”, “USPatents” and “Syn-
thetic”, respectively.

2. Furthermore, MT executes DegDistr faster than ST by up to 63%, 57%,
58% and 59% lower execution time in “hep-th”, “hep-ph”, “USPatents” and
“Synthetic”, respectively.

3. Baseline becomes progressively slower as the query range becomes larger.

The observed results can be explained by the following reasons. In both
AvgDeg and DegDistr, we follow the retrieve_relevant querying method and
retrieve the outgoing edges of all relevant vertices (“dianode.outgoing_edges”
in ST and “edge_outgoing” in MT). Since we restrict the fetched data to these
particular columns and ST is burdened by the use and flattening of collections,
MT outperforms ST in each case with both models requiring more time for
larger snapshot ranges due to the fact that more results are returned as part of
each Cassandra query. Additionally, similarly to the local queries, the baseline

Hinode: Implementing a Vertex-centric Modelling of Historical Graphs 17

40

60
hep-th Dataset : AvgDeg

Single Table Multiple Tables Baseline

Single 10% 20% 50% 100%

Query Percentage

0

5

10

15

20

T
im

e
 (

s
e
c
o
n
d
s
)

40

60
hep-th Dataset : DegDistr

Single Table Multiple Tables Baseline

Single 10% 20% 50% 100%

Query Percentage

0

5

10

15

20

T
im

e
 (

s
e
c
o
n
d
s
)

(a) Hep-th Dataset

30

40

50

hep-ph Dataset : AvgDeg

Single Table Multiple Tables Baseline

Single 10% 20% 50% 100%

Query Percentage

0

5

10

15

20

T
im

e
 (

s
e
c
o
n
d
s
)

40

60
hep-ph Dataset : DegDistr

Single Table Multiple Tables Baseline

Single 10% 20% 50% 100%

Query Percentage

0

5

10

15

20

T
im

e
 (

s
e
c
o
n
d
s
)

(b) Hep-ph Dataset

2500

5000

US Patents Dataset : AvgDeg

Single Table Multiple Tables Baseline

Single 10% 20% 50% 100%

Query Percentage

0

200

400

600

800

T
im

e
 (

s
e
c
o
n
d
s
)

2000

4000

US Patents Dataset : DegDistr

Single Table Multiple Tables Baseline

Single 10% 20% 50%

Query Percentage

0

200

400

600

800

T
im

e
 (

s
e
c
o
n
d
s
)

(c) US Patents Dataset. DegDistr(100%) did not run due to insufficient memory

2000

4000

Synthetic Dataset : AvgDeg

Single Table Multiple Tables Baseline

Single 10% 20% 50% 100%

Query Percentage

0

200

400

600

800

1000

T
im

e
 (

s
e
c
o
n
d
s
)

2000

4000

Synthetic Dataset : DegDistr

Single Table Multiple Tables Baseline

Single 10% 20% 50% 100%

Query Percentage

0

250

500

750

1000

1250

T
im

e
 (

s
e
c
o
n
d
s
)

(d) Synthetic Dataset

Fig. 4 Global queries on the datasets of Table 4 - Left Col.: AvgDeg, Right Col.: DegDistr

18 Andreas Kosmatopoulos et al.

approach becomes slower as the query ranges grow larger due to the need of
fetching and handling more data (vertex “versions”) as more snapshots become
involved in each query.

Overall MT can improve on ST in all queries apart from the vertex history
retrieval by a factor up to 4X. In addition, the improvements over the baseline
approach is of an order of magnitude, which provides evidence that the problem
of efficiently designing vertex-centric storage models for NoSQL is not trivial
and different design choices have a high impact on performance.

5.4 Results in a Multi-Node Setting

In this section, we study the relative performance of the two proposed models
when employed in a Cassandra multi-node environment. More specifically, we
measure the performance ratio of ST’s execution time compared to MT’s ex-
ecution time8 for varying query ranges. In a multi-node Cassandra approach
each machine serves as an independent Cassandra node that is interconnected
to other similar Cassandra nodes through a peer-to-peer architecture. To avoid
any optimization issues that may arise from replication strategies as well as
query node destination, each Cassandra node maintains a full replica of each
dataset. The results for the local queries are presented in Figure 5 while those
of the global queries are depicted in Figure 6.

The main observations that can be derived are the following:

1. In the “Synthetic” dataset, each snapshot has relatively few changes with its
predecessor/successor snapshot compared to the other three datasets which
leads to less significant changes of the performance ratio over different
query ranges.

2. In almost all cases of “VerHist” the two environment settings exhibit similar
relative performance across all query ranges (with ST requiring approxi-
mately half the time of MT in most cases).

3. In the case of “OneHop” in the multi-node environment, MT becomes more
efficient than ST as query ranges grow larger (by up to 3.5 times in the
“hep-th” dataset).

4. With regard to “AvgDeg” in both single and multi-node environments, the
relative difference of the two models tends to become smaller as query
ranges grow larger (with the exception of the “Synthetic” dataset).

5. In the two larger datasets, “USPatents” and “Synthetic” the difference be-
tween MT and ST in the multi-node environment for “DegDistr” becomes
more significant in the 50% and 100% query ranges (up to 2.9 times in the
“USPatents” dataset).

6. Overall, MT still dominates in all queries apart from the vertex history,
while improvements over the baseline are at the order of magnitude.

8 e.g. a performance ratio of 2 corresponds to MT requiring half the execution time of ST

Hinode: Implementing a Vertex-centric Modelling of Historical Graphs 19

Single 10% 20% 50% 100%

Query Percentage

0.00

0.25

0.50

0.75

1.00

1.25

P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

hep-th Dataset : VerHist

Single Node Multiple Node

Single 10% 20% 50% 100%

Query Percentage

0

1

2

3

4

5

P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

hep-th Dataset : OneHop

Single Node Multiple Node

(a) Hep-th Dataset

Single 10% 20% 50% 100%

Query Percentage

0.00

0.25

0.50

0.75

1.00

1.25

P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

hep-ph Dataset : VerHist

Single Node Multiple Node

Single 10% 20% 50% 100%

Query Percentage

0

1

2

3

4

5

P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

hep-ph Dataset : OneHop

Single Node Multiple Node

(b) Hep-ph Dataset

Single 10% 20% 50% 100%

Query Percentage

0.00

0.25

0.50

0.75

1.00

1.25

P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

US Patents Dataset : VerHist

Single Node Multiple Node

Single 10% 20% 50% 100%

Query Percentage

0

1

2

3

4

P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

US Patents Dataset : OneHop

Single Node Multiple Node

(c) US Patents Dataset

Single 10% 20% 50% 100%

Query Percentage

0.00

0.25

0.50

0.75

1.00

1.25

P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

Synthetic Dataset : VerHist

Single Node Multiple Node

Single 10% 20% 50% 100%

Query Percentage

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

Synthetic Dataset : OneHop

Single Node Multiple Node

(d) Synthetic Dataset

Fig. 5 Performance ratio on local queries (Table 4) - Left Col.: VerHist, Right Col.: OneHop

20 Andreas Kosmatopoulos et al.

Single 10% 20% 50% 100%

Query Percentage

0

1

2

3

4
P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

hep-th Dataset : AvgDeg

Single Node Multiple Node

Single 10% 20% 50% 100%

Query Percentage

0

1

2

3

4

P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

hep-th Dataset : DegDistr

Single Node Multiple Node

(a) Hep-th Dataset

Single 10% 20% 50% 100%

Query Percentage

0

1

2

3

4

P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

hep-ph Dataset : AvgDeg

Single Node Multiple Node

Single 10% 20% 50% 100%

Query Percentage

0

1

2

3

4

P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

hep-ph Dataset : DegDistr

Single Node Multiple Node

(b) Hep-ph Dataset

Single 10% 20% 50% 100%

Query Percentage

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

US Patents Dataset : AvgDeg

Single Node Multiple Node

Single 10% 20% 50% 100%

Query Percentage

0

1

2

3

4

P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

US Patents Dataset : DegDistr

Single Node Multiple Node

(c) US Patents Dataset. DegDistr(ST-100%) did not run due to insufficient mem-
ory

Single 10% 20% 50% 100%

Query Percentage

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

Synthetic Dataset : AvgDeg

Single Node Multiple Node

Single 10% 20% 50% 100%

Query Percentage

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
e
rf

o
rm

a
n
c
e
 R

a
ti

o
 (

S
T
/M

T
)

Synthetic Dataset : DegDistr

Single Node Multiple Node

(d) Synthetic Dataset

Fig. 6 Performance ratio on global queries (Table 4) - Left Col.: AvgDeg, Right Col.:
DegDistr

Hinode: Implementing a Vertex-centric Modelling of Historical Graphs 21

Model \Query AvgDeg VerDistr OneHop
MT Model 7.5 seconds 7.5 seconds ∼0.001 seconds
Neo4j 9 seconds 8.7 seconds 0.1 seconds

Table 5 Neo4j Time Cost Comparison

5.5 Results Compared to a State-of-the-Art Graph DBMS

A question may arise as to whether Cassandra is the most appropriate NoSQL
system. To investigate this issue, we employ Neo4j9, which is tailored to graph
data management. More specifically, we modeled the SNAP “hep-th” dataset
(Section 5.1) using Neo4j in two ways.

First, we explicitly store each of the sequence snapshots as new, single
graphs, implicitly ignoring the commonalities between vertices and edges. This
resulted in a prohibitive space cost since just the two last snapshots acquired
space that was nearly equal to that of the ST model for the whole history (see
Section 5.6 - Table 6).

Second, we implemented a vertex-centric representation of the sequence
with each Neo4j graph node maintaining all of its relevant data by utilizing
range intervals in a similar fashion to the ST model and the diachronic nodes of
HiNode-G∗. This resulted in a comparable (albeit higher) space cost to that of
ST and MT (Section 5.6 - Table 6): 61MBs which is twice as much space as the
ST model and 33% more compared to MT. The main drawback however was
slower query execution time for the queries and settings depicted in Figure 2;
Table 5 summarizes the results.

Overall, the vertex-centric model we advocate is more efficiently imple-
mented in state-of-the-art key-value-based NoSQL systems, such as Cassan-
dra rather than using graph-oriented systems, which, albeit, are incapable of
handling the graph evolution.

5.6 Concluding Remarks

Complementary to the previous experiments, we investigated the potential
trade-offs between the two retrieval methods that were defined in Section 4.3
(i.e. retrieve_all and retrieve_relevant). Figure 7 shows a selection of in-
dicative results in the MT and ST models for two of the datasets used in
this section. In both datasets and models, retrieve_relevant was faster than
retrieve_all for almost all query ranges with the relative performance of the
two approaches becoming smaller as the query range got wider. The two mod-
els exhibit roughly similar times when handling query ranges of 100% sequence
snapshots, with retrieve_all being slightly faster than retrieve_relevant in
the MT model.

Furthermore, in the previous sections we focused on the relative time ef-
ficiency of the proposed models without taking into account the total space

9 https://neo4j.com/

22 Andreas Kosmatopoulos et al.

Single 10% 20% 50% 100%

Query Percentage

0

5

10

15

T
im

e
 (

s
e
c
o
n
d
s
)

hep-th Dataset : AvgDeg (ST)

Retrieve All Retrieve Relevant

Single 10% 20% 50% 100%

Query Percentage

0

200

400

600

800

1000

T
im

e
 (

s
e
c
o
n
d
s
)

US Patents Dataset : AvgDeg (ST)

Retrieve All Retrieve Relevant

Single 10% 20% 50% 100%

Query Percentage

0

2

4

6

8

T
im

e
 (

s
e
c
o
n
d
s
)

hep-th Dataset : AvgDeg (MT)

Retrieve All Retrieve Relevant

Single 10% 20% 50% 100%

Query Percentage

0

100

200

300

400

500

T
im

e
 (

s
e
c
o
n
d
s
)

US Patents Dataset : AvgDeg (MT)

Retrieve All Retrieve Relevant

Fig. 7 Querying Modes Execution Times

ST MT Base
Hep-th 31.0 MB 45.7 MB 86.1 MB
Hep-ph 37.4 MB 55.5 MB 104.8 MB
USPatents 1.83 GB 3.10 GB 14.7 GB
Synthetic 929 MB 2.28 GB 4.5 GB

Table 6 Space Utilization

required by each of them. Table 6 showcases the space required by each model
for each of the datasets in Table 4.10 In all cases the ST model (which more
closely represents the original HiNode vertex-centric model of [9]) achieves
better space utilization than its counterparts.

Our overall findings can be summarized as follows:

– The design approach to a vertex-centric system is not straight-forward.
First off, ST outperforms MT in VerHist by up to 69% lower execution
time with respect to the execution time of MT.

– Furthermore, ST has a lower space utilization than MT by up to a 59%
decrease of MT’s space.

– On the other hand, MT achieves faster execution time in OneHop, AvgDeg
and DegDistr by up to a 75%, 54% and 63% lower execution times with
respect to the execution time of ST (i.e., 4X, 2.17X, 2.7X speed-up), re-
spectively.

– In all cases the baseline algorithm was slower than either one or both of
our proposed models by up to an order of magnitude.

10 Measured through the “nodetool” utility

Hinode: Implementing a Vertex-centric Modelling of Historical Graphs 23

– Typical state-of-the-art graph DBMS are not inherently suited for han-
dling historical graph data. In this work, we provide concrete evidence
that Cassandra outperforms Neo4j.

– The querying method retrieve_all offers comparable and sometimes better
execution time than retrieve_relevant for 100% query range sizes but is
slower for all other query ranges.

– The two proposed models tend to have similar performance for local queries
when operating on a single and on a multi-node environment, while their
relative difference for global queries tends to become smaller as query
ranges grow larger.

6 Conclusions and Future Work

In this work, we tackled the design decisions and intricacies that arise when
we follow a vertex-centric approach to handling historical graph data. Vertex-
centric models are inherently more suited to handling local queries; thus, we
adapted our previously suggested HiNode prototype system [9] and made use of
NoSQL technology to propose and implement two alternative storage models.
We performed an experimental evaluation of both models and demonstrated
that the selection of a single design scheme for vertex-centric graph historical
data is not a trivial task due to the potential trade-offs that occur for query
execution times and space utilization.

An interesting future work direction would be optimizing the query ex-
ecution procedures by employing intuitive data partitioning and replication
strategies and making use of asynchronous calls to the underlying NoSQL
DBMS at specific points during each query evaluation. Another fruitful area
for further work would be the study of a user-parameterized hybrid design
model, such as one that does not denormalize vertex and edge attributes,
that could lead to improved results regarding query times and space utiliza-
tion. Finally, the choice between different NoSQL approaches (e.g. Cassandra,
MongoDB, HBase etc.) is not trivial since it could impact the overall system
performance. Thus, a future work objective is to develop practical solutions
that are geared towards exploiting the advantages of each particular NoSQL
database system.

References

1. Akiba, T., Iwata, Y., Yoshida, Y.: Dynamic and historical shortest-path distance queries
on large evolving networks by pruned landmark labeling. In: 23rd International World
Wide Web Conference, WWW ’14, pp. 237–248 (2014)

2. Apache Giraph. http://giraph.apache.org/
3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. science 286(5439),

509–512 (1999)
4. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: Graphx:

Graph processing in a distributed dataflow framework. In: OSDI, vol. 14, pp. 599–613
(2014)

24 Andreas Kosmatopoulos et al.

5. Huo, W., Tsotras, V.J.: Efficient temporal shortest path queries on evolving social
graphs. In: Conference on Scientific and Statistical Database Management, SSDBM
’14, pp. 38:1–38:4 (2014)

6. Khurana, U., Deshpande, A.: Efficient snapshot retrieval over historical graph data.
In: 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane,
Australia, April 8-12, 2013, pp. 997–1008 (2013)

7. Khurana, U., Deshpande, A.: Storing and analyzing historical graph data at scale. In:
Proceedings of the 19th International Conference on Extending Database Technology,
EDBT 2016, pp. 65–76 (2016)

8. Kosmatopoulos, A., Giannakopoulou, K., Papadopoulos, A.N., Tsichlas, K.: An overview
of methods for handling evolving graph sequences. In: Algorithmic Aspects of Cloud
Computing, pp. 181–192. Springer (2016)

9. Kosmatopoulos, A., Tsichlas, K., Gounaris, A., Sioutas, S., Pitoura, E.: Hinode: an
asymptotically space-optimal storage model for historical queries on graphs. Distributed
and Parallel Databases (2017). URL https://doi.org/10.1007/s10619-017-7207-z

10. Labouseur, A.G., Birnbaum, J., Olsen, P.W., Spillane, S.R., Vijayan, J., Hwang, J.,
Han, W.: The g* graph database: efficiently managing large distributed dynamic graphs.
Distributed and Parallel Databases 33(4), 479–514 (2015)

11. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data (2014)

12. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski,
G.: Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data, pp. 135–146. ACM (2010)

13. Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On querying historical evolving graph
sequences. PVLDB 4(11), 726–737 (2011)

14. Salzberg, B., Tsotras, V.J.: Comparison of access methods for time-evolving data. ACM
Computing Surveys (CSUR) 31(2), 158–221 (1999)

15. Semertzidis, K., Pitoura, E.: Durable graph pattern queries on historical graphs. In:
32nd IEEE International Conference on Data Engineering, ICDE 2016, Helsinki, Fin-
land, May 16-20, 2016, pp. 541–552 (2016)

16. Semertzidis, K., Pitoura, E., Lillis, K.: Timereach: Historical reachability queries on
evolving graphs. In: Proceedings of the 18th International Conference on Extending
Database Technology, EDBT 2015, Brussels, Belgium, March 23-27, 2015., pp. 121–132
(2015)

17. Shao, B., Wang, H., Li, Y.: Trinity: a distributed graph engine on a memory cloud. In:
Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2013, pp. 505–516 (2013)

18. Spillane, S.R., Birnbaum, J., Bokser, D., Kemp, D., Labouseur, A.G., Olsen, P.W.,
Vijayan, J., Hwang, J., Yoon, J.: A demonstration of the G∗ graph database system.
In: 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane,
Australia, April 8-12, 2013, pp. 1356–1359 (2013)

19. Yang, Y., Yu, J.X., Gao, H., Pei, J., Li, J.: Mining most frequently changing component
in evolving graphs. World Wide Web 17(3), 351–376 (2014)

