
Noname manuscript No.
(will be inserted by the editor)

Optimization of Data Flow Execution in a Parallel
Environment

Georgia Kougka · Anastasios Gounaris

Received: date / Accepted: date

Abstract Although the modern data flows are executed in parallel and dis-
tributed environments, e.g. on a multi-core machine or on the cloud, current
cost models, e.g., those considered by state-of-the-art data flow optimization
techniques, do not accurately reflect the response time of real data flow execu-
tion in these execution environments. This is mainly due to the fact that the
impact of parallelism, and more specifically, the impact of concurrent task ex-
ecution on the running time is not adequately modeled in current cost models.
The contribution of this work is twofold. Firstly, we propose an advanced cost
model that aims to reflect the response time of a data flow that is executed
in parallel more accurately. Secondly, we show that existing optimization so-
lutions are inadequate and develop new optimization techniques targeting the
proposed cost model. We focus on the single multi-core machine environment
provided by modern business intelligence tools, such as Pentaho Kettle, but
our approach can be extended to massively parallel and distributed settings.
The distinctive features of our proposal is that we model both time overlaps
and the impact of concurrency on task running times in a combined man-
ner; the latter is appropriately quantified and its significance is exemplified.
Furthermore, we propose extensions to current optimizers that decide on the
exact ordering of flow tasks taking into account the new optimization metric.
Finally, we evaluate the new optimization algorithms and show up to 59%
response time improvement over state-of-the-art task ordering techniques.

1 Introduction

Nowadays, data flows constitute an integral part of data analysis. The modern
data flows are complex and executed in parallel systems, such as multi-core

G. Kougka, and A. Gounaris
Department of Informatics, Aristotle university of Thessaloniki, Greece
E-mail: {georkoug,gounaria}@csd.auth.gr

2 Georgia Kougka, Anastasios Gounaris

machines or clusters employing a wide range of diverse platforms like Pen-
taho Kettle1, Spark2 and Flink3 to name a few. These platforms operate in a
manner that involves significant time overlapping and interplay between the
constituent tasks in a flow. However, there are no cost models that provide
analytic formulas for estimating the response time (wall-clock time) of a flow
in such platforms. Cost models, apart from being useful in their own right, are
encapsulated in cost-based optimizers; currently, for example, cost-based op-
timization solutions for task ordering in data flows employ simple cost models
that may not capture the flow execution running time accurately, as shown
in this work. For example, the sum cost metric, which is employed by many
state-of-the-art task ordering techniques [18,21,31], merely sums the cost of
individual tasks. This results in an execution cost computation that may de-
viate from the real execution time, and the corresponding optimizations may
not be reflected on response time. Consequently, there is a need for employ-
ing new data flow optimization solutions that take into consideration a cost
model during the optimization decision phase that is tailored to response time
minimization.

Typically, cost models rely on the existence of appropriate metadata re-
garding each task, which are combined using simple algebraic formulas with
the sum and max operations. Most often, task metadata consider the cost of
each task, which is commensurate with the task running time if executed in
a stand-alone manner. The main challenges in devising a cost model for run-
ning time that is appropriate for modern data flow execution stem from the
following factors: (i) many tasks are executed in parallel employing all three
main forms of parallelism, namely, partitioned, pipelined and independent,
and the resulting time overlaps, which entail that certain task executions do
not contribute to the overall running time, need to be reflected in the cost
model; and (ii) computation resources are shared among multiple tasks, and
the concurrent execution of tasks using the same resource pool impacts on
their execution costs.

In this work, we initially focus on a single multi-core machine environment,
such as Pentaho Data Integration (PDI, aka Kettle). First, we devise a cost
model that can be used to estimate the response time, when the dataflows
are executed in parallel and distributed execution environments. Then, we
show the inadequacy of the existing task ordering optimization algorithms and
propose a new optimization algorithm that decides the best order of executing
the tasks of a flow employing the proposed cost model. Regarding the proposed
model, we build upon existing cost modeling techniques that tend to consider
time overlapping (e.g., [24,6,34,1,2,32]), but not the interplay between task
costs. In order to achieve this, we propose a solution in which the cost of
each task is weighted according to the number of concurrent tasks taking into
account constraints of execution machines, such as capacity in terms of number

1 http://community.pentaho.com/projects/data-integration
2 http://spark.apache.org/
3 http://flink.apache/

Optimization of Data Flow Execution in a Parallel Environment 3

of cores. Then, we show cases, in which the existing optimization solutions fail
to improve the response time of a flow execution and, to ameliorate this, we
introduce new optimization techniques that utilize the more advanced cost
model and build upon the effective combination of optimization techniques in
[21] and [34]. The results of the optimization improvements are thoroughly
validated. More specifically, the contribution is as follows:4

1. We explain and provide experimental evidence on why the existing cost
models provide estimates that may widely deviate from the real execution
time of modern workflows.

2. We propose a model that not only considers overlapping task executions
but also quantifies the correlation between task costs due to concurrent allo-
cation to the same processing unit. The model is execution engine software-
and data flow type-independent.

3. We show how our model applies to example flows in PDI, where inac-
curacies of up to 50% are observed if the impact of concurrency is not
considered.

4. We explain why the state-of-the-art optimization algorithms may fail to
optimize the response time of a data flow execution.

5. We propose new task ordering optimization techniques that leverage the
cost model to decrease running time.

6. We conduct a thorough evaluation of the new optimization techniques and
the results show that improvements can reach 59% over state-of-the art
techniques that aim at minimizing response time indirectly, through mini-
mizing resource consumption (sum cost metric). The average improvements
over a group of random initial valid flows can be up to 4.87 times for flows
with 24 tasks.

In the remainder of this section we provide background on flow paralleliza-
tion, the assumptions regarding the execution environment that we consider
and a discussion about the inadequacy of cost models employed in data flow
optimization. We continue the discussion of related work in Sec. 2. In Sec. 3
we introduce the notation. Our modeling proposal is presented in detail in Sec.
4, while the in Sec. 5, we introduce the new task ordering optimization solu-
tions. In Sec. 6, we show experimental evaluation findings based on extensive
simulation. We discuss the barriers and challenges of applying and incorporat-
ing the proposed optimization techniques in tools such as PDI in Sec. 7. We
summarize the conclusions in Sec. 8.

1.1 Parallelizing Data Flows

The parallel execution of a data flow exploits three types of parallelism, namely
inter-operator (pipelined), intra-operator (partitioned) and independent paral-
lelism. Here, we use the terms task and operator interchangeably. These types

4 An early version of this work containing the modeling material but no optimization
solutions has appeared in [20]. The novel material in this work compared to the preliminary
version is in Sec. 5, 6 and 7, while Sec. 2 has been also extended accordingly.

4 Georgia Kougka, Anastasios Gounaris

Fig. 1 A data flow graph before and after partitioned parallelism; circles with the same
color correspond to partitioned instances of the same flow task.

of parallelization are well-known in query optimization [9], and used to de-
crease the response time of a data flow execution.

The intra-operation parallelism considers the parallelization of a single task
of a data flow. This type of parallelization is defined by the instantiation of a
logical task as a set of multiple physical instances, each operating on a different
portion of data, i.e. each task can be executed by several processors and data
is partitioned. An example of partitioned parallelism is depicted in Figure 1.
There is a set of different methods of partitioning, such as round-robin and
hash-partitioning. In this work, we assume that the degree of intra-operation
parallelism is fixed; e.g., in Figure 1, the degree for the green task is set to 3.

The independent parallelism is achieved when the tasks of the same data
flow may be executed in parallel because there are no dependency constraints
or communication between them. An example is the two branches at the right
part of the flow in Figure 1(left).

The pipeline parallelism takes place when multiple tasks are executed in
parallel with a producer-consumer link and each producer sends part of its
output, which is a collection of records, as soon as this output is produced
without waiting the processing of its input to complete and, therefore, the
whole output to be produced.

In this work, we present a cost model for data flow execution plans that
accurately estimates the response time considering the pipeline parallelism
and independent types of parallelism, which are relevant to a single machine
PDI execution. However, it is straightforward to extend our work to cover
partitioned parallelism as well, as briefly discussed in Sec. 4.

1.2 Assumptions regarding a single multi-core machine execution
environment

Our main assumptions are summarized as follows:

– Data flows utilize all the available machine cores. The number of cores
depends on the execution machine.

Optimization of Data Flow Execution in a Parallel Environment 5

– The execution machine is exclusively dedicated to the data flow execution.
I.e., we assume that an execution machine executes only one data flow and
the execution of the next flow can be started only after the completion of
the previous flow. So, the available machine executes tasks and stores data
for a single data flow at a time.

– Multiple tasks of a data flow are executed simultaneously through multi-
threading that allows multiple threads to be employed during flow pro-
cessing. More specifically, we assume a form of multi-threaded execution,
in which each task spawns a separate thread, running on a core decided by
the underlying operating system scheduler. Obviously, if two task threads
share the same core, they are executed concurrently but not simultaneously.

– The execution engine exploits pipeline and independent parallelism to the
largest possible extent; i.e., the default engine configuration regarding task
execution operates in a mode, according to which flow tasks are aggressively
scheduled as soon as their input data is available.

The assumptions above hold also for massive parallel settings. The main
difference is that, in massive parallelism settings, partitioned parallelism typ-
ically applies.

1.3 Motivation for devising a new cost model for task ordering optimization

A main application of cost models is in cost-based optimization. One of forms
of data flow optimization that has been largely explored in the data manage-
ment literature is task re-ordering. Taking this type of optimization as our
case study, we can observe from the survey in [21] that the corresponding
techniques target one of the following optimization objectives:

1. Sum Cost Metric of the Full plan (SCM-F): minimize the sum of the task
and communication costs of a data flow [18,13,29,37,23,31,17,32].

2. Sum Cost Metric of the Critical Path (SCM-CP): minimize the sum of the
task and communication costs along the flow’s critical path [1,2].

3. Bottleneck : minimize the highest task cost [34,1,2,32].
4. Throughput : maximize the throughput (number of records processed per

time unit) [8].

The first three metrics and the associated cost models can capture the
response time under specific assumptions only. The response time represents
the wall-clock time from the beginning until the end of the flow execution.
SCM-F defines the response time when the tasks of a data flow are executed
sequentially; for example when all tasks are blocking. Another case is when
tasks are pipelined but are executed on the same CPU core (processor). In
that case, the SCM-F may serve as a good approximation of the response
time. SCM-CP reflects the response time when the data flow branches are
executed independently and the tasks of each branch are executed sequentially.
Finally, bottleneck represents the response time when all the tasks of the flow

6 Georgia Kougka, Anastasios Gounaris

are executed in a pipelined manner and each task is executed on a different
processor assuming enough cores are available.

So, why do we need another cost model? PDI, Flink, Spark and similar
environments aggressively employ pipeline parallelism potentially on multiple
processors. Consequently, the SCM-F and SCM-CP cost metrics do not corre-
spond to the response time of the flow execution. In general, SCM-F indirectly
aims to capture resource consumption; since the modern execution engines are
advanced enough to perform sophisticated resource usage and avoid resource
under-utilization, minimizing the resource consumption may be correlated to
minimizing the response time in some cases on a single multi-core machine,
but as shown later, this does not always hold and moreover, it is rare in a
setting employing multiple machines. The bottleneck cost metric is not appro-
priate either. This is because there are pipelined tasks that are executed on
the same processor, but also there are tasks that are blocking, e.g., sort. So, for
estimating response time, we need to employ a new cost metric that explicitly
considers parallelism and the corresponding overlaps in task execution.

Furthermore, a more accurate cost model for describing the response time
is significant in its own right even when not used to drive optimizations. It
allows us to better understand the flow execution and provides better insights
into the details involved. Moreover, as will be shown in the subsequent section,
merely considering time overlaps does not suffice, because the task costs are
correlated during concurrent task execution.

2 Related Work

We split the related work into two parts to discuss cost models and task re-
ordering, respectively.

Cost modeling. The main limitation of existing cost models is that, even
if they consider overlapped execution, they assume that the cost of each task
remains fixed independently of whether other tasks are executing concurrently
sharing CPU, memory and other resources. Examples that fall in this category
are the work in [24], which targets a cloud environment for scientific workflow
execution, and in [6]. The cost model in the latter considers that the flow is
represented by a graph with multiple branches (or paths), where the tasks
in each path are executed sequentially and multiple branches are executed in
parallel. In contrast, we cover more generic cases.

Additionally, several proposals based on the traditional cost models have
been presented in order to capture the execution of MapReduce jobs. For exam-
ple, a performance model that estimates the job completion time is presented
for ARIA Framework in [36]; this solution accounts for the fact that the map
and reduce phases are executed sequentially employing partitioned parallelism
but do not take into account the effect of allocation of multiple map/reduce
tasks on the same core. The same rationale is also adapted by cost models
introduced in proposals, such as [38] and [33]. Nevertheless, an interesting
feature of these models is that they model the real-world phenomenon of im-

Optimization of Data Flow Execution in a Parallel Environment 7

balanced task partition running times. In the MapReduce setting, the authors
in [30] propose the Produce-Transporter-Consumer model to define the par-
allel execution of MapReduce tasks. The key idea is to provide a cost model
that describes the tradeoffs of four factors (namely, map and reduce waves,
output compression of map tasks and copy speed during data shuffling) con-
sidering any overlaps. As previously, the impact of concurrency is neglected.
Other works for MapReduce, such as [3], suffer from the same limitations.

Task ordering. Data flow optimization is a multi-dimensional area; broadly,
optimizations are divided into two main categories, those referring to the logi-
cal (or conceptual) level and those referring to the low-level physical execution
layer [21]. In the first category, the corresponding techniques employ task or-
dering, introduction, removal, merge and decomposition. In the latter, they
focus on choosing the task implementation, execution engine and its config-
uration among several alternatives. In this work, we focus on task ordering,
which refers to the logical level of the flow description but requires an under-
lying cost model that considers the low-level physical execution details.

A significant number of techniques that optimize the flow execution plan
through changes in the structure of the flow graph including task ordering
mechanism have been presented in the literature. The key characteristic of
these proposals is that they consider other cost models than response time
during optimization decisions, such as bottleneck and sum cost metric. For
example, there are flow optimization solutions that are inspired by query pro-
cessing techniques. In [10], an optimization algorithm for query plans with de-
pendency constraints between algebraic operators is presented. The techniques
in [18] build on top of [15,22], and are shown to be superior to approaches,
such as [31,37,12,5,16,23,27] when SCM-F is targeted. In [19], an exhaustive
optimization proposal for data flows is presented that aims to produce all the
topological sortings of the tasks in a way that each sorting is produced from
the previous one with the minimal amount of changes. This technique can be
adapted for minimizing the response time, but is not scalable for data flows
with high number of tasks and especially, for flows that preserve only a few
dependency constraints between tasks. An early idea of metric combination
was presented in [32], where the pipelining segments are grouped and for these
sub-flows, the response time equals to the bottleneck metric. Then SCM-F is
minimized for these segments of pipelining tasks. However, the pipelined seg-
ments are not optimized and independent parallelism is not considered.

Another interesting approach to flow optimization is presented in [14],
where the optimizations are based on the analysis of the properties of user-
defined functions that implement the data processing logic. This work focuses
mostly on techniques that infer the dependency constraints between tasks
through examination of their internal semantics rather than on task re-ordering
algorithms per se. In general, automated extraction of statistical and semantic
task metadata is of key significance in order task re-ordering techniques to
find their way into business data flow execution platforms.

8 Georgia Kougka, Anastasios Gounaris

3 Preliminaries

A data flow is represented as a Directed Acyclic Graph (DAG), where each ver-
tex corresponds to a task of the flow and the edges between vertices represent
the communication among tasks (intermediate data shipping among tasks).
In data flows, the exchange of data between tasks is explicitly represented
through edges. We assume that the data flows can have multiple sources and
multiple sinks. A source of a data flow corresponds to a task with no incoming
edges, while a sink corresponds to a task with no outgoing edges. The main
notation and assumptions are as follows:

Let G = (V,E) be a Directed Acyclic Graph (DAG), where V = t1, t2, ..., tn
denotes the vertices of the graph (data flow tasks) and E represents the edges
(flow of data among the tasks); n is the total number of vertices. Each vertex
corresponds to a data flow task and is responsible for one or both of the
following: (i) reading or storing data, and (ii) manipulating data. The tasks
of a data flow may be complex data analysis tasks, but may also execute
traditional relational operations, such as union and join. Each edge equals to
an ordered pair (vj , vk), which means that task tj sends data to task tk.

Each data flow is characterized by the following metadata:

– Cost (ci), which applies to each task. The ci corresponds to the cost for
processing all the input records that the ti task receives taking into consid-
eration the required CPU cycles and disk I/Os. In distributed systems, the
cost of network traffic needs to be considered as well, and may be the most
important factor. An essentially similar consideration is ci to denote the
cost per single input record. In the latter case, the selectivity (sel) informa-
tion of all tasks is needed in order to derive the size of the task input and
then, the task cost for its entire input; the selectivity denotes the average
number of returned data items per source tuple.

– Communication Cost (cci→j), which may apply to edges. The communi-
cation cost of data shipping between the ti and tj depends on either the
forward local pipelined data transfer between tasks or the data shuffling
between parallel instances of the same data flow. It does not include any
communication-related cost included in ci; it includes only the cost that is
dependent on both ti and tj rather than only on ti.

– Parallelism Type of Task (pti), which describes the type of parallelism of
a task i, when the task is executed. More specifically, the parallelism type
characterizes if a data flow task is executed in a pipelined, denoted as p
or no pipelined manner (blocking task), denoted as np. A blocking task
requires all the tuples of the input data in order to start producing results;
i.e., the parallelism type of a task reflects the way a task process the input
data and produces its output.

Note that the modeling of the flow as described above is independent of the
input data types, which can be relational records, semi-structured documents
or plain text items.

Optimization of Data Flow Execution in a Parallel Environment 9

4 A cost model for data flow response time

First, we describe a model for a single-machine setting and finally, we generalize
to distributed settings.

4.1 Models for a single multi-core machine

We start by examining simple flows and we gradually extend our observations
to larger and more complicated ones.

4.1.1 A linear flow with a single pipelined segment of n tasks

A pipeline segment is defined by a sequence of n tasks in a chain, where the
first task is either a source or a child of a blocking task. The last task is either a
sink or a blocking task; both types of tasks do not allow flow of output records
in a pipelined manner downstream. Additionally, the tasks in between are all
of p type. Also, pipeline segments do not overlap with regards to the vertices
they cover. Such segments benefit from inter-operator parallelism. The key
point of our approach is to account for the fact that there is non-negligible
interference between tasks. This interference is captured by the variable α.
Let us suppose that our machine has m cores. In the case where n ≤ m, each
task thread can execute on a separate core exclusively. The cost model that
estimates the response time (RT) of a data flow execution is defined as follows,
which aims to capture the fact that the running times of tasks overlap.

Response Time (RT) = αmax{c1, ..., cn} (1)

In general, the parameter α is a weight that aims to abstract the impact of
multi-threading in a single metric. Multi-threading may lead to performance
overhead due to several factors, such as the context switching between threads,
as the flow tasks are executed concurrently and need to switch from one thread
to another multiple times. An additional factor for response time increase is
due to the locks that temporarily restrict tasks sharing memory to write to
the same memory location. Finally, the most significant factor in the terms of
affecting the response time is the contention that captures the interference of
the multiple interactions of each data flow task with memory and disk. Specifi-
cally, when there are multiple requests to memory, this may result in exceeding
memory bandwidth and consequently, to RT increase. Finally, allocating and
scheduling threads incurs some overhead, which, however, is negligible in most
cases. Instead of devising complex cost models for all the above factors, in this
work, we have decided to cover all of them by using a single parameter, which
can be computed empirically through experiments.

Nevertheless, multi-threading execution leads to execution cost improve-
ment because of the parallel task execution. So, we may observe RT minimiza-
tion, when all or more of the available cores are exploited by the data flow
tasks and one copy of data is used by multiple threads at the same time. Also,

10 Georgia Kougka, Anastasios Gounaris

the delays occurred by transferring data from memory and disk are overlapped
by the task execution, when the number of tasks is higher than the available
execution units. In general, cache-level configuration may heavily impact on
RT . As previously, all these factors are reflected on the α parameter.

Let us consider now the case where n > m and the task threads need to
share the available cores in order to be executed. In this case, each core may
execute more than one task and the RT is determined by all the flow tasks.
An exception is when there is a single task with cost higher than the sum of
all the other costs (similarly to the modeling in [36]):

Response Time (RT) = αmax{max{c1, .., cn},
∑

{c1, ..., cn}
m

} (2)

4.1.2 Experiments in PDI

In the following, we present a set of experiments that we conducted in or-
der to understand the role of α in RT estimation according to Equations (1)
and (2). We consider synthetic flows in PDI with n = 1, . . . , 26 tasks and
an additional source task. The input ranges from 2.4M to 21.8M records.
Two machines are used, with (i) a 4-core/4-thread i5 processor; and (ii) a
4-core/8-thread i7 processor, respectively. Finally, the task types are two,
either homogenous or heterogeneous. In the former case, all tasks have the
same cost (denoted as equal). In the latter case (denoted as mixed), half of
the tasks have the same cost as in the equal case, and the other tasks have
another cost, which is lower by an order of magnitude. All the tasks apply
filters to the input data, but these filters are not selective in the sense that
they produce the same data that they receive; they just incur processing cost.
The data input is according to the TPC-DI Benchmark[26] and we consider
records taken from the implementation in http://www.essi.upc.edu/dtim/

blog/post/tpc-di-etls-using-pdi-aka-kettle. Each experiment run was
repeated 5 times and the median times are reported; in all experiments the
standard deviation was negligible.

The left column of Figures 2 and 3 shows how the response time of the two
different types of data flows evolves as the number of tasks, and consequently
the number of execution threads, increases. It also shows what the cost model
estimates would be if no weights were considered. The main observation is
twofold. First, the response time, as expected from Eqs. (1) and (2), stays
approximately stable when n ≤ m, and then, grows linearly when n > m.
This behavior does not change with the increase in the data size. Second,
estimates with no weights can underestimate the running time by up to 50%,
whereas there are also cases when they overestimate the running times by
a smaller factor (approx. 5%). More importantly, the main inaccuracies are
observed in the mixed-cost case, which is more common in practice.

The α factor is shown in the right column of Figures 2 and 3. Values both
lower and higher than 1 are observed. Although α captures the combination
of overhead and improvement causes described in the previous section, the

Optimization of Data Flow Execution in a Parallel Environment 11

0 2 4 6 8 10 12 14 16 18 20 22 24 26
total number of available task execution threads (n)

0

50

100

150

200

250

re
sp

o
n

se
 t

im
e

(s
ec

o
n

d
s)

equal-real
mixed-real
mixed-estimate
equal-estimate

0 2 4 6 8 10 12 14 16 18 20 22 24 26

total number of available task execution threads (n)

1

1.1

1.2

1.3

1.4

1.5
equal
mixed

0 2 4 6 8 10 12 14 16 18 20 22 24 26
total number of available task execution threads (n)

50

100

150

200

250

300

350

400

450

500

re
sp

o
n

se
 t

im
e

(s
ec

o
n

d
s)

equal-real
mixed-real
mixed-estimate
equal-estimate

0 2 4 6 8 10 12 14 16 18 20 22 24 26
total number of available task execution threads (n)

1

1.1

1.2

1.3

1.4

1.5
equal
mixed

0 2 4 6 8 10 12 14 16 18 20 22 24 26
total number of available task execution threads (n)

0

500

1000

1500

2000

2500

re
sp

o
n

se
 t

im
e

(s
ec

o
n

d
s)

equal-real
mixed-real
equal-estimate
equal-estimate

0 2 4 6 8 10 12 14 16 18 20 22 24 26
total number of available task execution threads (n)

0.9

1

1.1

1.2

1.3

1.4

1.5
equal
mixed

Fig. 2 Response Time (RT) and the α factor of linear flows with same and different task
costs for n ∈ [1, 25] executed by the 4-core/4-thread i5 machine for 2.4(top), 4.8(middle)
and 21.8M(bottom) input records.

importance of each cause varies. In values greater than 1, resource contention
is dominating; whereas, in values lower than 1, the fact that waits for resources
are hidden outweighs any overheads. The main observations are as follows: (i)
the α factor varies significantly for the same dataset when the number of tasks
is modified; (ii) α can be of significant magnitude corresponding to more than
50% increase in the task costs; (iii) for flows that consist of up to 4 tasks with
equal cost, the α factor continuously grows (i.e., contention is dominating) and
then, when the number of tasks further increases, the behavior differs between
cases; and (iv) for data flows with different task costs and n > m, the α factor
increases sharply for flows with up to 7-9 tasks depending on the input data
size.

12 Georgia Kougka, Anastasios Gounaris

0 2 4 6 8 10 12 14 16 18 20 22 24 26

total number of available task execution threads (n)

0

50

100

150

200

250

re
sp

o
n

se
 t

im
e

(s
ec

o
n

d
s)

equal-real
mixed-real
equal-estimate
mixed-estimate

0 2 4 6 8 10 12 14 16 18 20 22 24 26

total number of available task execution threads (n)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
equal
mixed

0 2 4 6 8 10 12 14 16 18 20 22 24 26

total number of available task execution threads (n)

50

100

150

200

250

300

350

400

450

re
sp

o
n

se
 t

im
e

(s
ec

o
n

d
s)

equal-real
mixed-real
equal-estimate
mixed-estimate

0 2 4 6 8 10 12 14 16 18 20 22 24 26

total number of available task execution threads (n)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
equal
mixed

0 2 4 6 8 10 12 14 16 18 20 22 24 26
total number of available task execution threads (n)

200

400

600

800

1000

1200

1400

1600

1800

2000

re
sp

o
n

se
 t

im
e

(s
ec

o
n

d
s)

equal-real
mixed-real
equal-estimate
mixed-estimate

0 2 4 6 8 10 12 14 16 18 20 22 24 26
total number of available task execution threads (n)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
equal
mixed

Fig. 3 Response Time (RT) and the α factor of linear flows with same and different task
costs for n ∈ [1, 25] executed by the 4-core/8-thread i7 machine for 2.4(top), 4.8(middle)
and 21.8M(bottom) input records.

4.1.3 A linear flow with multiple independent pipelined segments

In Table 1, we show the running times of flows with the same number of
tasks when all tasks belong to a single pipelined segment and when there are
two segments belonging to two different branches originating from the same
source, according to the fork template in [35]. We can observe that the running
times are similar. From this observation, we can draw the conclusion that the
magnitude of the weights (i.e., the wc and the corresponding α factors) depend
on the number of concurrent tasks and need not be segment-specific; that is,
it is safely to assume that all concurrent tasks share the same factors.

4.1.4 Estimating the response time of a flow: the complete case

Optimization of Data Flow Execution in a Parallel Environment 13

2.4 million records
4cores-4threads 4cores-8threads

n 2 branches 1 branch 2 branches 1 branch

2 38.5 38.1 35.1 35.6
4 42 39.4 42.1 41.9
6 59.3 56.3 56 56.1
8 78 78 67 67
10 96 96 83 82
12 115 115 99 98
14 134 131 115 114
16 153 152 131 129
18 164 170 145 145
20 187 186 160 162

4.8 million records
4cores-4threads 4cores-8threads

n 2 branches 1 branch 2 branches 1 branch

2 78 78 69 71
4 84 83 82 82
6 118 118 109 109
8 155 154 134 132
10 192 189 166 164
12 229 226 197 196
14 265 262 229 228
16 304 305 260 256
18 327 323 287 289
20 380 370 323 318

21.8 million records
4cores-4threads 4cores-8threads

n 2 branches 1 branch 2 branches 1 branch

2 346 356 315 317
4 369 374 370 377
6 530 533 497 499
8 694 677 606 594
10 851 837 735 727
12 1040 991 879 916
14 1210 1151 1006 1019
16 1382 1311 1146 1152
18 1486 1493 1296 1299
20 1720 1662 1454 1437

Table 1 Comparison of running times between flows with the same number of tasks but a)
with 2 independent and b) a single segment (in seconds).

In the previous sections, we showed how we can estimate the response time of a
single pipelined segment in data flows. Now, we leverage our proposal to more
generic data flows with multiple pipeline segments, in order to estimate the
response time of flows that consist of multiple pipeline segments. To this end,
we employ a simple list scheduling simulator. The steps of this methodology
are described, as follows:

1. Receive as input the flow DAG, the cost (ci) of all the tasks of a dataflow,
the number of available cores, and the α factors.

14 Georgia Kougka, Anastasios Gounaris

2. Isolate all the single-pipeline segments of the flow with the help of the
parallelism type task metadata.

3. Split the input in blocks of a fixed size B.
4. Create a copy for the first block for each task directly connected to a source

and insert it in a FCFS (First Come First Serve) queue.
5. Schedule blocks arbitrarily to cores until there are no blocks in the queue

under the condition that a task can process at most one block at time at
any core:
(a) when a block finishes its execution, re-insert it in the queue annotated

by the subsequent tasks in the DAG;
(b) if the task is a child of a source or a block operator, insert its next block

in the queue ;
(c) if a blocking task has received its entire input, start scheduling the

corresponding blocks for the segment initiating from this task.
6. The response time is defined by the longest sequence of block allocations

to a core.

In Figure 4, we present an example with a flow running on 2 cores, where
all task costs per block are 1, each task receives as input 4 blocks and emits 4
other processed blocks except t3, which outputs a single block. The α factor is
1, when there are up to two concurrent tasks, and 1.25 otherwise. Concurrent
tasks are those for which there is at least 1 block either in the queue or being
executed. In this example, the running time is when the work on the first is
completed.

The methodology above assumes knowledge about the α factors. This
knowledge can be derived through experiments similar to those in the pre-
vious sections (see also the discussion in Sec. 7).

4.2 A Generalized Cost Model for Response Time

The cost models discussed previously can be seen as an instantiation of a more
general model. More specifically, we define the following generalized cost model
for estimating the response time:

Response Time (RT) =
∑

ziw
cci +

∑
zijw

cccci→j (3)

where variable zi = {0, 1} is binary and defined as 1 only for tasks that
determine the RT. Similarly, zij = {0, 1} is set to 1, only when cci→j con-
tributes to the total RT. The ci factor denotes the cost of the ith task, where
i = {1, . . . , n}. The wc and wcc weights generalize the α parameter and thus
cover a set of different factors that are responsible for the increase/decrease
of RT during the task execution and communication between two tasks (data
shipping), respectively. In a nutshell, the z variables capture the time over-
lapping of different tasks, whereas wc and wcc quantify the impact of the
execution of one task on all the other tasks that are concurrently executed,

Optimization of Data Flow Execution in a Parallel Environment 15

Fig. 4 Example of running a generic flow on 2 cores; the dotted borders denote pipeline
segments.

i.e., they capture the correlation between the execution of multiple concurrent
tasks.

Eq. (3) is reduced to Eq. (1) if we set (i) zi = 0 for all tasks, apart from
the task with the maximum cost, for which z is set to 1, since it determines
the RT ; (ii) cci→j is set to 0 for all pairs (i, j) and (iii) wc = α: To derive Eq.
(2), wc equals either to α, as in Eq. (1) or to α/m with zi = 1 for all the flow
tasks

More importantly, the cost model in Eq. (3) generalizes the traditional
ones discussed in Sec. 1.3. For example, based on the proposed formula, if we
consider wc and wcc set to 1 and that all tasks have zi = 1, then the cost model
actually becomes equivalent to SCM-F. If only the tasks that belong to the
critical path have zi = 1, and we keep wc and wcc set to 1, then the cost model
corresponds to SCM-CP. Similarly, if we want to consider the bottleneck cost
metric, we can set zi = 1 in Eq. (3) for the most expensive task and zi = 0 for
all the other tasks.

4.2.1 Considering communication costs

We need to consider communication only in settings where multiple machines
are employed. Broadly, we can distinguish among the following three cases:

1. On each sender, there is a single thread for computation and transmission.
In this case, both zi and zi,j in Eq. (3) are 1 to denote that computation
and transmission occur sequentially.

16 Georgia Kougka, Anastasios Gounaris

2. On each sender, there is a separate thread for data transmission, regardless
of the number of outgoing edges. In this case, depending on which type of
cost dominates, only one of zi and zi,j is set to 1, since computation and
transmission overlap in time.

3. On each sender or receiver, there is a separate thread for each edge. If all
edges share the same network, then we can follow the same approach as in
the case of multiple pipelined tasks sharing a single core.

The first two cases assume a push based data communication model, whereas
the third one applies to both push and pull models.

4.2.2 Considering partitioned parallelism

Partitioned flows running on multiple machines can be covered by our model
as well. More specifically, we can model and estimate the DAG flow instance on
each machine independently using the same approach, and then take the maxi-
mum running time as the final one. The factors may differ between partitioned
tasks. Finally, if a DAG instance does not start its execution immediately, we
need to add the time to receive its first input (which kicks-off its execution)
to its estimated running time.

5 Optimizing a data flow for response time

Informally, the problem of optimizing task ordering is to define a partial order
of tasks, so that dependency constraints are respected and a given objective
function (e.g., SCM − F , bottleneck, and so on) is minimized. A more formal
definition can be given for optimizing linear flows, after introducing the notion
of precedence constraints, as follows.

Definition 1 Let PC = (V,D) be another DAG capturing the precedence
constraints of a linear flow Glinear(V,E). D defines the precedence constraints
(dependencies) that might exist between pairs of tasks in V : D = {d1, ..., dl}
is a set of l ordered pairs: di = (tj , tk), 1 ≤ i ≤ l, 1 ≤ j < k ≤ n, where each
such pair denotes that tj must precede tk in any valid G.

The above definition states that an optimized G should contain a path
from tj to tk, ∀(tj , tk) ∈ D. Essentially, the PC graph defines constraints on
the valid edges of the G graph, where G is linear. This also implies that if D
contains (ta, tb) and (tb, tc), it must also contain (ta, tc). Note that the PC
and G graphs are semantically different, as the PC graph corresponds to a
higher-level, non-executable view of a data flow, where the exact ordering of
tasks is not defined; only a partial ordering is defined instead. With the help
of PC, we can define our task ordering optimization problem of linear G flows.

Definition 2 Our task ordering optimization problem is defined as follows:
Given a set of tasks V , PC(V,D) and the cost per input record ci and se-
lectivity seli metadata for each task ti ∈ V , find a total ordering of V that
minimizes RT .

Optimization of Data Flow Execution in a Parallel Environment 17

Solving the above problem finds an optimized ordering of tasks only regard-
ing a single flow branch in generic data flow structures, since it refers to linear
flows. Our rationale is to split complex flows into their linear components (see
[18] for a discussion), and optimize such linear sub-flows individually.

Even when narrowing our focus on linear flows, the problem is NP -hard.
As explained in Sec. 4, minimizing RT generalizes the problem of minimizing
SCM−F . However, the latter is intractable, and moreover, “it is unlikely that
any polynomial time algorithm can approximate the optimal plan to within a
factor of O(nθ)”, where θ is some positive constant, as explained in [4].

As already discussed in Sec. 1.3, there are several techniques that already
optimize flows but considering other optimization criteria. Nevertheless, their
rationale is useful in order to build our solution. The two key aspects, upon
which we build to avoid re-inventing the wheel, are:

1. To optimize SCM −F , ordering by the rank value yields better solutions.

Rank is defined as rank(ti) =
1−sel(ti)

ci
, where ci refers to the cost of ti per

input record. Such an approach is followed by [18], which further elaborates
on how precedence constraints are satisfied in a scalable manner.

2. To optimize bottleneck, first placing the selective tasks followed by the
non-selective tasks and then ordering the selective tasks by their cost in
ascending order yields better solutions. Such an approach is followed by
[34].

We leverage both these techniques in order to devise a solution that tar-
gets RT. However, before explaining our solution, we explain their inadequacy
through an example.

5.1 Inadequacy of existing techniques: an example

Figure 5 depicts a simple scenario of a real linear data flow, two optimized
plans of the flow using two different optimization techniques that minimize
the bottleneck and the sum of all the task costs, respectively, and the opti-
mal execution order of this data flow. More specifically, this linear data flow
consists of six tasks (or processes) that form a chain, i.e., each non-source and
non-sink task has exactly one incoming and one outgoing edge. The flow aims
to process text data retrieved from Twitter (tweets) that comment products
in order to produce a dynamic report related to the products that users prefer
and advertisement campaigns. Each of the tasks is annotated with a selectivity
and cost value that express the average number of returned data items (tweets)
per source tuple for a flow task and the time cost of each task per record pro-
cessed, respectively. In the case that a task has sel < 0, the corresponding task
produces less output records for each input record, whereas, sel > 0 indicates
the production of more output records than the input records. The first task,
labeled as Tweets, is the task that feeds the flow with data, the following task
(Duplicate Elimination) performs a sort-based duplicate elimination, while the
Filter Positive Feelings task is a filter for extracting only the positive feelings

18 Georgia Kougka, Anastasios Gounaris

Fig. 5 Optimizing a real data flow processing Twitter records.Top: initial plan. Middle:
two plans optimized according to current state-of-the-art techniques. Bottom: our solution.

of the Twitter records. Additionally, the Report Aggregation is a task that
produces reports, the Lookup Campaigns performs a lookup in a static data
source to match each of the tweeted products with a set of related campaigns
for each product and finally, the Report Output task produces the final report.
Based on their semantics, Duplicate Elimination and Report Aggregation are
blocking tasks.

In the figure, we depict the initial plan and the results of the task ordering
optimization when we target minimizing the bottleneck cost (according to the
technique in [34]), the sum cost metric (according to the techniques in [18])
and the response time (this work). On the right, the response time per input
record in each case is shown, where we see that the technique presented hereby
(bottom plan) is capable of yielding significant performance improvements.
When calculating the response time, for simplicity, we assume that the α
factor is set to 1. As such, RT is defined as the sum of the maximum task
costs of each pipeline segment. The pipeline segments are delineated by the
dotted lines in the figure. During optimization, all dependency constraints are
respected; the constraints in this example define that Duplicate Elimination
should always precede Report Aggregation and, trivially, the source and the
sink tasks should not be moved.

The key lesson from this example is that when ordering the selective tasks
by their costs as in [34] or by their rank value, as in [18], neglecting the

Optimization of Data Flow Execution in a Parallel Environment 19

Algorithm 1 Task re-ordering for optimizing RT
Input: G(V,E), PC(V,E), ci, seli, pti ∀ti, α(p), p = 1 . . . |V |

split flow into linear branches
for each branch Glinear(V,E) and its corresponding PC(V,D) do

plan P ← optimize Glinear for SCM − F using the RO − III algorithm in [18]

//Phase-I
identify pipelined segment boundaries in P (i.e., tasks with pt = np)
for each pipelined segment SP (sub-flow of P) do

for i in 1 . . . size(SP) do
tbest ← the task after position i with sel < 1 and the lowest cost
if ∃tbest then

check-moving tbest to position i and shift other tasks to the right

//Phase-II
for each pipelined segment SP (sub-flow of P) do

for i in 1 . . . size(SP) do
check-moving t in position i at the beginning of the next SP

for each pipelined segment SP (sub-flow of P) do
for i in 1 . . . size(SP) do

check-moving t in position i at the end of the previous SP

//Phase-III
Repeat Phase-I

allocation of tasks to pipeline segments, the overall response time may not be
minimized.

5.2 Our solution

The basis of our solution is to split the initial flow into linear segments, each
optimized individually. Algorithm 1 summarizes our approach. We first opti-
mize the linear sub-flows using the best-performing technique in [18], called
RO− III. This optimization is driven by the rank values, as explained above.
Then, each linear sub-flow is decomposed into its pipelined segments.

For each such segment, we repeat a 3-phase process. In the first phase,
inspired by the work in [34], we order the tasks in a way that the selective
ones are moved upstream and their relative order is only by their cost. The
check-moving operation in Algorithm 1 is responsible for (i) checking whether
the move does not violate the constraints in PC; and (ii) running the simulator
in Sec. 4 in order to establish as to whether the move is beneficial or not. In
the second phase, the algorithm attempts to modify the pipelined segments
in the same branch with a view to moving an expensive task of one segment
to an adjacent segment, when the cost of the expensive tasks is going to be
hidden due to overlapped execution. This type of optimization is exemplified
in the bottom plan in Figure 5. Since the second step may have modified the
contents of the pipelined segments, in the third phase we repeat the process
of the first phase.

20 Georgia Kougka, Anastasios Gounaris

Two main features of this solution are: (i) By its design, it cannot yield
worse plans in terms of RT than RO-III ; i.e., our solutions either retains the
solution of RO-III or produces a faster plan. (ii) The optimization is machine-
type specific, since it heavily relies on the simulator in Sec. 4, which is param-
eterized by the machine type-specific α factors (see also the algorithm input).
This implies that it must be repeated for the same flow when the execution
engine host is modified. In practice, the optimization time in dominated by
RO− III and the list scheduler simulator, but is negligible in machines, such
as those used in Sec. 4, i.e., it does not exceed a couple of seconds, even for
flows of 24 tasks.

5.2.1 Analysis

Let a flow with n tasks and its largest linear sub-flow containing nl tasks.
Extracting linear sub-flows and applying RO-III to each such sub-flow takes
O(n) and O(n2

l) time, respectively [18]. check-moving is an O(n2) process
regarding checking violations of the dependencies and O(n) to estimate RT
through simulation. In the worst case, the nested loop in Phase-I in Algorithm
1 is repeated nl times. Therefore, the complexity of Phase-I is O(nln

2) =
O(n3). Similarly, the complexity of the next two phases is also O(n3). Overall,
our solution is of cubic complexity, which is practical for very large flows of
100-200 tasks.

6 Evaluation of the response time optimizations

In the initial set of experiments, we focus on linear flows and we conduct a
thorough evaluation varying three dimensions: (i) the number of tasks in the
flow; (ii) the percentage of the edges in PC(V,D) compared to the case that D
is a complete graph; and (iii) the percentage of blocking operators. The higher
the percentage of PC edges is, the less flexibility in re-ordering tasks exists.
Also, the higher the percentage of blocking operators, the higher the number of
pipelined segments in the flow. For each dimension, we examined three values:
8, 16 and 24 tasks, and 25%, 50% and 75% for the two percentages. Overall, we
investigated 33 = 27 combinations. Each combination is simulated 200 times,
with the a factor being the same as the one in Figure 3(top). In each run,
we assigned random values to the cost and selectivity task metadata; the cost
ranged from 1 to 100, and the selectivity ranged from 0.01 to 1.5.

First, we compare the improvements upon the algorithm RO-III in [18].
As this algorithm is the best one to date in minimizing the sum cost met-
ric, which is roughly equivalent to minimizing resource consumption, someone
would expect to yield very good running times as well. Indeed, this is the
case, i.e., in many tests, there was no improvement. However, there is a sig-
nificant number of cases, in which RT can further drop. Figure 6 shows the
distribution of such numbers per each combination of the three dimensions,
separately. We can observe that, for some combinations, the improvements are

Optimization of Data Flow Execution in a Parallel Environment 21

8/
25

/2
5

8/
25

/5
0

8/
25

/7
5

8/
50

/2
5

8/
50

/5
0

8/
50

/7
5

8/
75

/2
5

8/
75

/5
0

8/
75

/7
5

16
/2

5/
25

16
/2

5/
50

16
/2

5/
75

16
/5

0/
25

16
/5

0/
50

16
/5

0/
75

16
/7

5/
25

16
/7

5/
50

16
/7

5/
75

24
/2

5/
25

24
/2

5/
50

24
/2

5/
75

24
/5

0/
25

24
/5

0/
50

24
/5

0/
75

24
/7

5/
25

24
/7

5/
50

24
/7

5/
75

n/ PCs/ % blocking tasks

0

5

10

15

20

25

5-10%
>10%

Fig. 6 Percentage of cases in which our solutions yielded lower RT than RO-III by at least
5%.

more frequent than in 20% of the cases, whereas in 2/3 of the combinations,
at least 10% of the plans were improved. In the figure, we also distinguish
between small (5-10%) and larger (> 10%) RT improvements, and we totally
omit improvements less than 5%, as non-significant. In general, as expected,
there are more improvements when there are (i) fewer constraints, since there
is more flexibility in re-ordering and moving tasks across pipelined segments,
(ii) the flows are larger.

In Figure 7, we show the maximum magnitude of reductions in RT ob-
served, compared to the plan produced by RO-III. Such reductions can be
higher than 59%, i.e., the plan derived by the proposed solutions runs more
than 2 times faster.

Thus far, we have concentrated on how our solution improves upon the
stat-of-the-art. We now shift our focus on how significant the optimizations
are in general, and we compare against initial valid data flows, which are
randomly generated under the single requirement to respect the dependencies.
Figure 8 shows the median and average times such solutions are slower for
each group of 200 runs. As previously, the size of the flow and the percentage
of the constraints significantly impact on the behavior. The average values are,
as expected, higher than the median ones, and can reach up to 4.87 times.

Finally, we evaluate fork flows [35] with two branches and flows with higher
maximum selectivity, i.e., up to 2. The main observations are twofold: firstly,
the higher the number of non-selective tasks in the flow, the lower the number
of optimizations, and secondly, it is less effective to apply our optimizations to
a two-branch flow with n tasks than to a single-branch (linear) flow of 2n tasks.

22 Georgia Kougka, Anastasios Gounaris

8/
25

/2
5

8/
25

/5
0

8/
25

/7
5

8/
50

/2
5

8/
50

/5
0

8/
50

/7
5

8/
75

/2
5

8/
75

/5
0

8/
75

/7
5

16
/2

5/
25

16
/2

5/
50

16
/2

5/
75

16
/5

0/
25

16
/5

0/
50

16
/5

0/
75

16
/7

5/
25

16
/7

5/
50

16
/7

5/
75

24
/2

5/
25

24
/2

5/
50

24
/2

5/
75

24
/5

0/
25

24
/5

0/
50

24
/5

0/
75

24
/7

5/
25

24
/7

5/
50

24
/7

5/
75

n/ PCs/ % blocking tasks

0

0.1

0.2

0.3

0.4

0.5

0.6

m
ax

im
u

m
 p

er
fo

rm
an

ce

Fig. 7 Maximum reductions in RT compared to the plan of RO-III.

The latter holds because the optimizations in one branch may be reflected on
response time only if this branch dominates the execution time.

7 Discussion on incorporating the solution into a real system

A question that naturally arises is: Are we now ready to incorporate the solu-
tion into a real system, such as PDI? Similarly, why we were not able to test
the optimizer in real flows, such as those of TPC-DI?5 The answer to these
questions is that the solution proposed in this work is a cost-based one, and,
as such, it relies on the existence of the cost and selectivity metadata.

There is early work on statistics collection [11,7,25], but, a practical man-
ner to automatically extract cost and selectivity metadata is still missing, given
also that selectivity values are also typically correlated. However, deriving sta-
tistical metadata using a combination of past logs and micro-benchmarking is
a promising avenue for future research, so that data flow optimization tech-
niques can be encapsulated in execution engines.

Another aspect is how to automatically extract the dependencies between
tasks. Manually deriving them is a feasible yet tedious tasks. However, a com-
plete solution should incorporate techniques for automatically detecting se-

5 We were able to emulate flows in Kettle, where tasks had arbitrary cost and selectivity
values through Javascript user-defined functions. However, for this specific type of transfor-
mation step, the execution of PDI is not parallel as usual, and the response time becomes
more commensurate to the SCM-F. To avoid confusion of the readers, we omitted all these
runs of synthetic flows in a real system.

Optimization of Data Flow Execution in a Parallel Environment 23

8/
25

/2
5

8/
25

/5
0

8/
25

/7
5

8/
50

/2
5

8/
50

/5
0

8/
50

/7
5

8/
75

/2
5

8/
75

/5
0

8/
75

/7
5

16
/2

5/
25

16
/2

5/
50

16
/2

5/
75

16
/5

0/
25

16
/5

0/
50

16
/5

0/
75

16
/7

5/
25

16
/7

5/
50

16
/7

5/
75

24
/2

5/
25

24
/2

5/
50

24
/2

5/
75

24
/5

0/
25

24
/5

0/
50

24
/5

0/
75

24
/7

5/
25

24
/7

5/
50

24
/7

5/
75

n/ PCs/ % blocking tasks

0

0.5

1

1.5

2

2.5

3

3.5

n
o

rm
al

iz
ed

 c
o

st
 (

ti
m

e
u

n
it

s)

8/
25

/2
5

8/
25

/5
0

8/
25

/7
5

8/
50

/2
5

8/
50

/5
0

8/
50

/7
5

8/
75

/2
5

8/
75

/5
0

8/
75

/7
5

16
/2

5/
25

16
/2

5/
50

16
/2

5/
75

16
/5

0/
25

16
/5

0/
50

16
/5

0/
75

16
/7

5/
25

16
/7

5/
50

16
/7

5/
75

24
/2

5/
25

24
/2

5/
50

24
/2

5/
75

24
/5

0/
25

24
/5

0/
50

24
/5

0/
75

24
/7

5/
25

24
/7

5/
50

24
/7

5/
75

n/ PCs/ % blocking tasks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

n
o

rm
al

iz
ed

 c
o

st
 (

ti
m

e
u

n
it

s)

Fig. 8 Median (top) and average (bottom) times the initial data flow with n tasks, % PCs
and blocking tasks is slower than the optimized one.

mantic constraints between tasks. This line of research has also produced in-
teresting but not mature results yet [28].

Overall, due to recent advances in optimization algorithms for data flows,
including the proposal in this work, the main barriers in incorporating the
techniques in a real system have been shifted from the need to devise scal-
able algorithms handling constraints to the problem of deriving the required
statistical and semantic input metadata.

8 Conclusions and Future Work

In this work, we address a limitation of existing data flow cost models that do
not accurately estimate the response time of real data flow execution, which

24 Georgia Kougka, Anastasios Gounaris

heavily depends on parallelism. We propose a model that considers the time
overlaps during the task execution, while it is capable of quantifying the im-
pact of concurrent task execution. The latter is an aspect largely overlooked
to date and may lead to significant inaccuracies if neglected, e.g., we pro-
vided simple examples of deviations up to 50%. Additionally, we propose an
optimization solution that aims to improve the response time of a data flow
by defining the execution order of the flow tasks based on the proposed cost
model. In our experiments, the proposed optimization technique has shown to
yield improvements of up to 59% compared to the state-of-the-art in data flow
task ordering.

Our work can be extended in two complementary ways. Firstly, to work
towards end-to-end solutions with a view to incorporating the techniques in
a real system, as discussed in the previous section. Secondly, applying the
proposed model relies on the existence of accurate machine type-specific weight
information; deriving efficient ways to approximate the weights before flow
execution and generalize over types of execution engine hosts is an open issue.
Finally, another direction for future work is to make a deep dive into the
low-level resource utilization and wait measurements to establish the detailed
cause of contention.

References

1. Kunal Agrawal, Anne Benoit, Fanny Dufossé, and Yves Robert. Mapping filtering
streaming applications with communication costs. In SPAA, pages 19–28, 2009.

2. Kunal Agrawal, Anne Benoit, Fanny Dufossé, and Yves Robert. Mapping filtering
streaming applications. Algorithmica, 62(1-2):258–308, 2012.

3. Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen, Yuanyuan
Tian, Douglas R. Burdick, and Shivakumar Vaithyanathan. Hybrid parallelization
strategies for large-scale machine learning in systemml. Proc. VLDB Endow., 7(7):553–
564, 2014.

4. Jen Burge, Kamesh Munagala, and Utkarsh Srivastava. Ordering pipelined query oper-
ators with precedence constraints. Technical Report 2005-40, Stanford InfoLab, 2005.

5. Surajit Chaudhuri and Kyuseok Shim. Optimization of queries with user-defined pred-
icates. ACM Trans. Database Syst., 24(2):177–228, 1999.

6. Artem M. Chirkin, A. S. Z. Belloum, Sergey V. Kovalchuk, and Marc X. Makkes. Exe-
cution time estimation for workflow scheduling. WORKS ’14, pages 1–10, 2014.

7. Artem M Chirkin, ASZ Belloum, Sergey V Kovalchuk, and Marc X Makkes. Execution
time estimation for workflow scheduling. In Proc. of the 9th Workshop on Workflows
in Support of Large-Scale Science, pages 1–10. IEEE Press, 2014.

8. Amol Deshpande and Lisa Hellerstein. Parallel pipelined filter ordering with precedence
constraints. ACM Transactions on Algorithms, 8(4):41:1–41:38, 2012.

9. David J. DeWitt and Jim Gray. Parallel database systems: The future of high perfor-
mance database systems. Commun. ACM, 35(6), 1992.

10. Daniela Florescu, Alon Levy, Ioana Manolescu, and Dan Suciu. Query optimization
in the presence of limited access patterns. In Proceedings of the 1999 ACM SIGMOD
international conference on Management of data, SIGMOD ’99, pages 311–322. ACM,
1999.

11. Ramanujam Halasipuram, Prasad M. Deshpande, and Sriram Padmanabhan. Deter-
mining essential statistics for cost based optimization of an etl workflow. In EDBT,
pages 307–318, 2014.

12. Joseph M. Hellerstein. Optimization techniques for queries with expensive methods.
ACM Trans. Database Syst., 23(2):113–157, 1998.

Optimization of Data Flow Execution in a Parallel Environment 25

13. F. Hueske, M. Peters, M. Sax, A. Rheinländer, R. Bergmann, A. Krettek, and
K. Tzoumas. Opening the black boxes in data flow optimization. PVLDB, 5(11):1256–
1267, 2012.

14. F. Hueske, M. Peters, M. Sax, A. Rheinländer, R. Bergmann, A. Krettek, and
K. Tzoumas. Opening the black boxes in data flow optimization. PVLDB, 5(11):1256–
1267, 2012.

15. Toshihide Ibaraki and Tiko Kameda. On the optimal nesting order for computing n-
relational joins. ACM Trans. Database Syst., 9(3):482–502, 1984.

16. G. Kougka and A. Gounaris. On optimizing workflows using query processing tech-
niques. In SSDBM, pages 601–606, 2012.

17. Georgia Kougka and Anastasios Gounaris. Optimization of data-intensive flows: Is it
needed? is it solved? In Proc.DOLAP, pages 95–98, 2014.

18. Georgia Kougka and Anastasios Gounaris. Cost optimization of data flows based on
task re-ordering. T. Large-Scale Data- and Knowledge-Centered Systems, 33:113–145,
2017.

19. Georgia Kougka and Anastasios Gounaris. Optimal task ordering in chain data flows:
Exploring the practicality of non-scalable solutions. In Big Data Analytics and Knowl-
edge Discovery - 19th International Conference, DaWaK 2017, Lyon, France, August
28-31, 2017, Proceedings, pages 19–32, 2017.

20. Georgia Kougka, Anastasios Gounaris, and Ulf Leser. Modeling data flow execution
in a parallel environment. In Big Data Analytics and Knowledge Discovery - 19th
International Conference, DaWaK 2017, pages 183–196, 2017.

21. Georgia Kougka, Anastasios Gounaris, and Alkis Simitsis. The many faces of data-
centric workflow optimization: a survey. International Journal of Data Science and
Analytics, 2018.

22. Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. Optimization of nonrecursive
queries. In VLDB, pages 128–137, 1986.

23. Nitin Kumar and P. Sreenivasa Kumar. An efficient heuristic for logical optimization
of etl workflows. In BIRTE, pages 68–83, 2010.

24. Ilia Pietri, Gideon Juve, Ewa Deelman, and Rizos Sakellariou. A performance model to
estimate execution time of scientific workflows on the cloud. WORKS ’14, pages 11–19.
IEEE Press, 2014.

25. Ilia Pietri, Gideon Juve, Ewa Deelman, and Rizos Sakellariou. A performance model
to estimate execution time of scientific workflows on the cloud. In Proc. of the 9th
Workshop on Workflows in Support of Large-Scale Science, pages 11–19. IEEE Press,
2014.

26. Meikel Poess, Tilmann Rabl, and Brian Caufield. TPC-DI: the first industry benchmark
for data integration. PVLDB, 7(13):1367–1378, 2014.

27. Astrid Rheinländer, Arvid Heise, Fabian Hueske, Ulf Leser, and Felix Naumann. SOFA:
an extensible logical optimizer for udf-heavy data flows. Inf. Syst., 52:96–125, 2015.

28. Astrid Rheinländer, Ulf Leser, and Goetz Graefe. Optimization of complex dataflows
with user-defined functions. ACM Comput. Surv., 50(3):38:1–38:39, 2017.

29. Astrid Rheinlnder, Arvid Heise, Fabian Hueske, Ulf Leser, and Felix Naumann. Sofa:
An extensible logical optimizer for udf-heavy data flows. Information Systems, 52:96 –
125, 2015.

30. Juwei Shi, Jia Zou, Jiaheng Lu, Zhao Cao, Shiqiang Li, and Chen Wang. Mrtuner:
A toolkit to enable holistic optimization for mapreduce jobs. Proc. VLDB Endow.,
7(13):1319–1330, August 2014.

31. A. Simitsis, P. Vassiliadis, and T. K. Sellis. State-space optimization of ETL workflows.
IEEE Trans. Knowl. Data Eng., 17(10):1404–1419, 2005.

32. Alkis Simitsis, Kevin Wilkinson, Umeshwar Dayal, and Malú Castellanos. Optimizing
ETL workflows for fault-tolerance. In ICDE, pages 385–396, 2010.

33. R. Singhal and A. Verma. Predicting job completion time in heterogeneous mapreduce
environments. In IEEE IPDPSW, pages 17–27, 2016.

34. U. Srivastava, K. Munagala, J. Widom, and R. Motwani. Query optimization over web
services. In Proc.PVLDB, pages 355–366, 2006.

35. Vasiliki Tziovara, Panos Vassiliadis, and Alkis Simitsis. Deciding the physical imple-
mentation of etl workflows. In DOLAP, pages 49–56, 2007.

26 Georgia Kougka, Anastasios Gounaris

36. Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. Aria: Automatic resource
inference and allocation for mapreduce environments. ICAC ’11, pages 235–244. ACM,
2011.

37. Ramana Yerneni, Chen Li, Jeffrey D. Ullman, and Hector Garcia-Molina. Optimizing
large join queries in mediation systems. In ICDT, pages 348–364, 1999.

38. Zhuoyao Zhang, Ludmila Cherkasova, and Boon Thau Loo. Performance modeling of
mapreduce jobs in heterogeneous cloud environments. CLOUD ’13, pages 839–846,
2013.

