
Exact Set Similarity Joins for Large Datasets in the
GPGPU paradigm

Christos Bellas
Aristotle University of Thessaloniki, Greece

chribell@csd.auth.gr

Anastasios Gounaris
Aristotle University of Thessaloniki, Greece

gounaria@csd.auth.gr

ABSTRACT
We investigate the problem of exact set similarity joins using
a co-process CPU-GPU scheme. We focus on large instances
of the problem, i.e., using datasets of >1M entries, which may
take hours to complete if not approached with care, due to
the inherent quadratic complexity of the problem. We intro-
duce a novel CPU-GPU co-process scheme, which performs
initial filtering and indexing on the CPU and delegates final
verification to the GPU. Further, we show that this scheme
improves upon the state-of-the-art in both the CPU and GPU
standalone solutions in several cases.

CCS CONCEPTS
• Information systems→ Data management systems;
ACM Reference Format:
Christos Bellas and Anastasios Gounaris. 2019. Exact Set Similar-
ity Joins for Large Datasets in the GPGPU paradigm. In Interna-
tionalWorkshop on DataManagement on NewHardware (DaMoN’19),
July 1, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3329785.3329919

1 INTRODUCTION
In this work, we deal with exact set similarities joins, are
used in a range of applications, such as plagiarism detection,
web crawling, clustering and data mining and have been the
subject of extensive research recently, e.g., [3, 5, 13, 18, 23].
The goal of exact set similarity joins is to find all the pairs of
sets that overlap above a user-defined threshold. We focus
on datasets that are large, i.e., they contain over 1M sets,
which results in billions of pairs that need to be checked in
practice. Most of the techniques to date for large datasets
target the MapReduce paradigm e.g., [2, 9, 19, 23, 24]. In this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
DaMoN’19, July 1, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6801-8/19/07. . . $15.00
https://doi.org/10.1145/3329785.3329919

work, we explore the case to efficiently employ a GPU to
enhance sequential algorithms, as these are investigated in
[13, 18].
To date, the problem of exact set similarity on GPUs has

been addressed in [22]; however, as we will show later, there
are specific cases where this technique is not suitable for
large datasets. In the literature, there exist several proposals
for approximate set similarity or for similar problems, such
as nearest neighbor search, e.g., [7, 14, 16]. Therefore, there
is a gap in detailed investigation of exact similarity joins in
GPUs tailored to large datasets. The main contribution of
this work is to fill this gap and propose an efficient solution
after thoroughly investigating several design alternatives.

Our work incorporates a co-process scheme between CPU
and GPU in order to efficiently compute the set similarity
join: the CPU remains responsible for index building and
initial pruning of candidate pairs, whereas the GPU com-
putes the overlap of all remaining pairs. As shown in the
real experiments, this may lead to improvements, although
the maximum speed-ups is bounded because of Amdahl’s
law. Moreover, the GPU part comes with several challenges
regarding the data serialization and layout, the thread man-
agement and the techniques to compare sets of tokens. In our
work, we address these challenges and manage to achieve
speed-ups up to 1.9X compared to the best between the CPU
and the GPU solution in [22].
In summary, the technical contributions of our work are

twofold: (i) We provide a detailed description of a co-process
framework and we propose alternatives that differ in the
workload allocated to each GPU thread. We use the CUDA
programming model, which is proprietary to NVIDIA [15]
but widespread in practice. 1 (ii) We conduct extensive per-
formance analysis on real world datasets. We compare our
findings to the state of art CPU and GPU implementations
and point out strengths and weaknesses of each.
Paper outline. Next, we provide details on the main CPU-

based algorithms and the respective standalone GPU ap-
proach to set similarity joins. We present our solutions and
the design alternatives involved in Section 3. The exper-
imental results are in Section 4. We discuss our findings
and potential future work in Section 5. Finally, we conclude

1the code is publicly available from https://github.com/chribell/gpussjoin

https://doi.org/10.1145/3329785.3329919
https://doi.org/10.1145/3329785.3329919
https://github.com/chribell/gpussjoin

DaMoN’19, July 1, 2019, Amsterdam, Netherlands C. Bellas and A. Gounaris

1 2 ? ? ?5 6 7 ? ?(a)

(b)

(c)

5 6 ? ? ? 5 6 ?

5 8 ? ? ? 7 8 ? ? ??

r :

r :

r : s :

s :

s :

? ?

6 5

Figure 1: Filters used for candidate pruning: (a) prefix,
(b) length, (c) positional

in Section 6. In the appendix, we provide a short CUDA
overview and further implementation details.

2 BACKGROUND
The state-of-the-art main memory set-similarity algorithms
conform to a common filter-verification framework, as ex-
plained in [18], in which seven key representatives2 are com-
pared using real world datasets. The common idea behind
all these algorithms is (i) to avoid comparing all possible
set pairs by applying filtering techniques on preprocessed
data to prune as much candidate pairs as possible; and (ii)
then to proceed to the actual verification of the remaining
candidates. We summarize the key points of the work of [18]
that are relevant to our research below.

2.1 Data layout.
Every dataset is a collection of multiple sets. Each set con-
sists of elements called tokens. The data preprocessing phase
involves a tokenization technique and deduplication of to-
kens. As a result of such a preprocessing phase, all the tokens
of a set are unique. The input data tokens are represented
by integers and are sorted by their frequency in increasing
order, so that infrequent tokens appear first in a set. The
sets of a collection are sorted first by their size and then
lexicographically within each block of sets of equal size.

2.2 Set Similarity functions.
To measure the similarity between sets, Jaccard, Dice and Co-
sine normalized similarity functions are typically used. The
given normalized threshold tn is translated to an equivalent
overlap t , which defines the minimum number of tokens that
need to be shared between two sets to satisfy the threshold
(see Table 1). For example, if the Jaccard similarity thresh-
old of two 10-token sets is set to 0.8, this is translated to an
overlap threshold of 9 tokens that need to be shared.

2.3 Filters.
The most widely used filter, called prefix-filter, exploits the
given threshold and similarity function by examining only
2AllPairs [3], PPJoin and PPJoin+ [27], MPJoin [21], MPJoin-PEL [17], Adap-
tJoin [25] and GroupJoin [5].

Table 1: Similarity Functions (adapted from [18])

Similarity function Definition Equivalent Overlap
Jaccard |r∩s |

|r∪s | ⌈
tn

1+tn (|r | + |s |)⌉

Cosine |r∩s |√
|r | |s |

⌈tn
√
|r | |s |⌉

Dice 2 |r∩s |
|r |+ |s | ⌈

tn (|r |+ |s |)
2 ⌉

Overlap |r ∩ s | t

two subsets, one from each set in the candidate pair, and
discards the pair if there is no overlap between the subsets.
For example, in Figure 1(a), there is no overlap between the
respective set prefixes, thus, even if there is an overlap on the
remaining tokens, any overlap threshold set to 4 or higher
cannot be reached, and in such cases, the candidate pair (r , s)
can be safely pruned.
Another filter, noted as length filter, takes advantage of

the normalized similarity functions dependency on set size.
Hence, a candidate pair can be pruned if the set size inequal-
ity tn · |r | ≤ |s | ≤ |r |/tn is not satisfied. In Figure 1(b), if
tn = 0.8, the shown candidate pair (r , s) can be pruned de-
spite the prefix equality because a 6-token r set requires a s
set of size 4 ≤ |s | ≤ 6.
The last filter used in the examined algorithms is the po-

sitional filter. Given the first match position, it evaluates if
a candidate pair can reach the similarity threshold. As an
example, in Figure 1(c), if the threshold implies that at least 6
tokens should be shared, the pair is pruned since the remain-
ing tokens from set s are not enough to reach the similarity
threshold.

2.4 Algorithm outline.
The set similarity join operation is achieved by executing
an index nested loop join consisting of three steps. First,
through an index lookup and a length filter application, a
preliminary candidate set (pre-candidates) is generated. In
the second step, pre-candidates are deduplicated and filtered.
The pairs that pass all filters form the final candidates. These
two steps compose the filtering phase. In the third and final
step, also noted as verification in the literature, the similarity
score for each of the remaining candidate pair is computed
and if it exceeds the threshold, the pair is added to the output
result.

Most commonly, the set similarity join is a self-join using
only a single collection of sets. In that case, a token set is first
probed against the current index contents and then added to
the index itself. This allows for incremental index building
that is interleaved with verification. Also, the fact that a set

Exact Set Similarity Joins for Large Datasets in the GPGPU paradigm DaMoN’19, July 1, 2019, Amsterdam, Netherlands

Table 2: Notation

R, S Collections of sets to be joined
ri (resp.sj) a token set from R (resp. S)

τn Normalized similarity threshold
C ⊆ R × S Set of candidate pairs

O Device output
RT , ST Token arrays

RO , SO , CO Offset arrays
| |RT | |, | |ST | |,| |C | |,| |O | | Size of arrays in bytes
| |RO | |, | |SO | |,| |CO | |

Hi The ith host thread, i ∈ 0, 1, 2
T Number of device threads
B Thread block size
Mh Host memory
Md Device memory

Mc < Md Device memory for candidate pairs

that probes the index is always no shorter than the current
indexed sets can be leveraged to speed-up verifications.

2.5 GPU standalone approach
The authors in [20] propose a standalone GPU framework,
noted as fgSSJoin, in which the complete workload is dele-
gated to the GPU. To be able to conduct the set similarity join,
a block partitioning scheme is adopted in order to process
collections of arbitrary size. In summary, the input collection
is divided into blocks of size n. Through an iterative process,
a block is indexed and probed against itself and all its pre-
decessors. Each probe is processed in two separate kernel
calls in O(n2) memory space, (i) a filtering kernel in which
partial intersection counts between indexed and probed sets
prefixes are calculated and stored in global memory; and
(ii) a verification kernel in which every pair that has a non-
zero partial intersection count undergoes full verification,
whereas the rest are pruned. In addition, an entire pair of
blocks may be pruned before invoking the GPU due to length
filter. The output result is stored in linear global memory
and is transferred back to main memory via the PCI-E bus.

3 OUR APPROACH
Let R and S be two collections of token sets, Sim() be a sim-
ilarity function and τn ∈ [0, 1] the user-defined threshold.
The set similarity problem is formally defined as follows.

Definition 3.1. Problem Definition of set similarity joins:
Find all pairs (r , s), r ∈ R, s ∈ S such that Sim(r , s) ≥ τn .

In a naive solution, the set of candidate pairs C to be
checked in the verification phase is all pairs R × S . However,
due to the filtering phase, for thresholds not close to 0, C is
typically a small subset of the cartesian product. The output
of the verification is denoted as O .

In our solution, we assume that the host (resp. device) is
equipped with Mh (resp. Md) memory capacity. The host
runs 3 threads (H0, H1, H2), while the device executes T
threads in blocks of size B. The collections of token sets are
transferred in the device main memory in a linearized form,
denoted as RT and ST , and are accompanied by offset arrays
RO and SO in order to distinguish the set boundaries. Table
2 summarizes the notation.

3.1 Main Rationale
As already explained, the CPU-based algorithms solving
the set similarity problem efficiently conform to the filter-
verification framework. The filtering phase involves probing
index structures such as a hashtable. Although there has
been some work on implementing hashtables and inverted
lists on GPUs [1], which can be employed in exact set sim-
ilarity joins as in [20], we choose this phase to remain a
CPU task. On the other hand, the verification phase is more
suitable for parallelization, as it involves a merge-like loop,
where the overlap of candidate pairs is computed. As soon
as the overlap threshold is met or cannot be reached, the
operation terminates. True positives must be verified and
the necessary overlap is still computed, while the rejection
of pairs in this stage leads to less token comparisons without
sacrificing accuracy. Even though the average verification
runtime is reported as constant for most datasets, employing
the GPU for this part with a view to improving the overall
performance is the main goal of this work.

In summary, we allocate the initial indexing and filtering
to the CPU and the verification phase to the GPU. Based on
the results both from [18] and our tests, in the following,
we focus solely on the best three CPU algorithms: (i) All-
Pairs(ALL) [3] (naive, applies prefix and length filters), (ii)
PPJoin(PPJ) [27] (applies positional filter as well) and (iii)
GroupJoin(GRP) [5] (additionally groups sets with identical
prefix). We experiment with 5 real datasets (full details are
provided in Section 4). The key observation of our tests is
that filtering phase contributes to the total running time
significantly. Therefore, due to the Amdahl’s law, employing
the GPU for the verification in an ideal setting is expected to
yield improvements of several times, but lower of an order
of magnitude.

When looking for similar sets in a single collection, which
is the most common case, instead of looking for similar pairs
between two different collections, the whole join process
can be done incrementally, i.e. for a probing set, first its can-
didates are verified and then the algorithm proceeds to the
next set. Naively allocating and copying small chunks of data
on the GPU through a different kernel invocation per prob-
ing set, would incur an enormous overhead penalty. A more
efficient alternative is to copy a large chunk of data stored

DaMoN’19, July 1, 2019, Amsterdam, Netherlands C. Bellas and A. Gounaris

time

H0

H1

H2

Figure 2: Execution overlap between host (H0,H2) and
device (H1)

in linear memory space to the GPU, process it there and
copy back the results. Adopting this approach also improves
overall runtime as the CPU builds candidate pair collections
in waves and feeds them in a non-blocking manner to the
GPU, which conducts the verification. Thus, time overlap-
ping between the CPU and GPU tasks can be achieved. More
specifically, we propose a multithreaded framework regard-
ing both the host and device tasks. We thoroughly analyze
each side below. The most dominant constraining factor is
the limited GPU memory. Due to this, the workload must be
divided into chunks and the GPU should be invoked several
times. The memory limitation mostly relates to the output
size. As we have no prior knowledge about the output size, to
ensure correctness the most straightforward solution is to al-
locate enough memory for the worst case, which isO(|R | |S |).

3.2 Host Tasks
The host side is responsible for the filtering phase and works
as the coordinator. Specifically, the host runs three threads
(see Figure 2). The first thread, H0, conducts any filtering
and builds chunks of candidates. When each chunk is built,
the second thread, H1, noted as device handler, enacts the
verification phase by copying the chunk to device memory
and launching the kernel code. Meanwhile, H0 continues to
build the next chunk of candidates. As soon as the device
output is copied back to host memory, the third thread H2
post-process it to form the final pairs result. Note that H2
may not be invoked if an aggregation is performed on top of
the join, i.e., if only the count of pairs is needed instead of
the actual pairs. In such a case, the device counts the number
of pairs and returns the result to H1.

3.3 Device Tasks
The device side is responsible for the verification phase. It is
invoked when the host prepares a chunk of candidate pairs.
We present our data layout approach and discuss its impact
on device memory.
There are two levels of concurrency in CUDA, grid and

kernel. Grid level concurrency concerns mostly the overlap
between computation and data transfers, while kernel level
concurrency refers to how a single task is executed in paral-
lel by many threads [6]. On the grid level, we further divide
each input chunk of candidates into smaller chunks, each

5 8 5 9 8 12 16

2 4

RT

RO

r1 = f5; 8g
r2 = f5; 9g7
r3 = f8; 12; 16g

r1 r2 r3 r4 r5

R

Figure 3: Example layout of a collection of threes sets
in the device memory

assigned to a different block. Thus we enhance the overlap-
ping between device computation and host-to-device data
transfer. On the kernel level, we summarize our approaches
as high-level verification alternatives below.

3.3.1 Data Layout. By default, we pass data to device as
arrays stored in consecutive memory space. This is preferred
because parallel execution benefits from coalesced global
memory accesses. However, due to the nature of the problem,
divergence in global memory access patterns is unavoidable,
therefore the exploitation of on-chip memories is required
to alleviate performance bottlenecks.
According to the linear memory layout, a collection R is

physically implemented as the composition of two arrays:
tokens RT and offsets RO . The former holds every token of
every set in the collection in a sequence, while the latter is
used to delimit each set boundaries. In practice, this layout
has the less memory access overhead. Figure 3 depicts how a
collection of sets R is stored in the device memory. Collection
S is stored in similar fashion. We transfer any collection of
sets once in the beginning of the process. When the device is
invoked to perform the verification phase, the host transfers
an array of set IDs, noted as C , alongside with an array
of offsets (CO) which indicates the candidate pairs to be
evaluated. In addition, an array of equal length toC , noted as
O , is allocated on the device and it is used to store the output
result. Essentially, O is an array of boolean flags where true
indicates that the corresponding candidate pair similarity is
equal or greater than the given threshold.

3.3.2 Verification alternatives. We introduce three alter-
native scenarios which differ in the workload assigned to
a single thread. For example, as shown in Figure 4, in al-
ternative A, a single device thread verifies probe set r3 and
all its corresponding candidates {s1, s3, s4, s7}. In the slightly
altered alternatives B and C, a single device thread block
verifies probe set r3 and all its corresponding candidates. For
alternative B, each thread verifies independently a candidate
pair, whereas in alternative C threads collaborate to verify a
candidate pair.

In order to analyze the design choices for each alternative,
we define three main kernel-level concurrency layers or di-
mensions of our problem as follows: grid layout (GL), which
corresponds to thread execution; memory hierarchy (MH),

Exact Set Similarity Joins for Large Datasets in the GPGPU paradigm DaMoN’19, July 1, 2019, Amsterdam, Netherlands

r3 ./ s1

r3 ./ s3

r3 ./ s4

r3 ./ s7

r3 ./ s1

r3 ./ s3

r3 ./ s4
r3 ./ s7 r3 ./ s1

r3 ./ s3

r3 ./ s4

r3 ./ s7

A B C

Figure 4: Thread workload per alternative

which corresponds to efficient exploitation of the fastest on-
chip memories; and last output writing (OW), which deals
with result output. The latter is also distinguished into two
cases depending on the type of querying being performed:
output count (OC) for an aggregate query and output select
(OS) for a full select of the similar pairs query. These layers
are tightly coupled and often intertwined, which means that
certain options on a layer can rule out available options on
the next ones. We further present each verification alterna-
tive below.

Alternative A. In our first alternative, the workload we
assign to each thread is a probing set and the evaluation
of all its corresponding candidate pairs, i.e., a single thread
becomes responsible for the verification of all candidate pairs
involving a specific probing set.
GL: We launch a 1D grid of 1D blocks, with the overall num-
ber of threads executed across all blocks (T) being equal
to the input set collection size (R). Each thread is responsi-
ble for a probing set ri and conducts all the joins with the
corresponding candidates sj .
MH: In this alternative, we do not use the shared memory.
Since there is no fixed set size, blocks which handle sets of
thousand tokens require larger amount of shared memory.
For example, a thread block of 32 threads and average probing
set size equal to 1000, would require 32 × 1000 × 4 = 128KB
of shared memory which exceeds the maximum of 48KB that
modern GPUs can support.
OC: As every thread verifies its own candidate pairs indepen-
dently, it can also count the amount of pairs satisfying the
threshold using a register. After finishing the verification,
each counter can be stored in shared memory in order for a
fast reduction on block level to be performed. The result of
each block is then stored in global memory for a grid level
reduction to output the global count. The amount of shared
memory required depends on the block size, but it is small
(e.g., for 32 threads per block we need 128 bytes).
OS: Having allocated the memory required for output array
O , a device thread updates specific cells of the array. Incor-
porating the shared memory in this output is not straight-
forward because each thread does not know beforehand the
length of its output pairs and in the worst case it may exceed
the maximum allowed space. As a result, the shared memory
cannot be employed to speed-up the output generation.

Alternative B. In this technique, we allocate less work to
each thread by shifting the workload of a single probing set
from a single thread to a single thread block. By assigning
the comparisons referring to a probing set to a thread block,
threads evaluate only a portion of the candidate pairs in par-
allel. The main benefit of this alternative is that the workload
of threads within a block is more evenly distributed.
GL: We launch a 1D grid of 1D blocks, with the number
of blocks being equal to the input set collection size. Each
thread block is responsible for a probing set and each thread
is assigned with a portion of candidate pairs to verify.
MH: First, the block threads load the corresponding probing
set ri to shared memory, then each thread verifies a portion
of candidate pairs by accessing the corresponding candidate
sets sj from global memory. Because we use shared mem-
ory for one probing set per block, unlike alternative A, the
maximum supported probing set size also increases.
OC/OS: Same as Alternative A.

Alternative C. In our previous scenario, we try to im-
prove performance on the warp level. We further extend the
rationale of alternative B, and more specifically, each block
is assigned with a probing set but with the difference that all
the block threads cooperate to evaluate a candidate pair using
the intersect path algorithm proposed in [12]. This further
mitigates the problem of balancing, since the threads do not
only become responsible for an equal number of candidates,
but also perform a roughly equal number of operations.
GL: We launch a 1D grid of 1D blocks, with a number of
thread blocks equal to the input set collection size. Each
thread block is responsible for a probing set and multiple
threads contribute to each candidate pair verification. A con-
trol thread outputs the result to global memory.
MH: Extending alternative B, due to thread cooperation, by
default we also load candidate sets to shared memory. If there
is not enough space to hold all candidates, we load data in
chunks, perform the verification, and then proceed to the
next chunk.
OC: Since all threads within a block cooperate to verify a
candidate pair, we assign only a single thread to increment
the block’s counter. Thus there is no need for a thread block
counter reduction. However, grid level reduction is still re-
quired.
OS: The same applies for updating the output array O . If
a candidate pair meets the threshold, only a single thread
updates the corresponding array cell.

In the appendix, we provide the full implementation details
covering aspects such as candidate serialization, thread and
memory management, block size, merge and intersect path
computation, set intersection count and count reduction.
We also explain that in practice, it is beneficial to employ
alternative B for sets of small size in terms of the tokens they
include, and alternative C otherwise.

DaMoN’19, July 1, 2019, Amsterdam, Netherlands C. Bellas and A. Gounaris

Table 3: Datasets characteristics

Dataset Cardinality Avg set size # diff tokens
AOL 1.0 · 107 3 3.9 · 106

DBLP (2-grams) 6.5 · 106 88.5 2.8 · 104

DBLP (4-grams) 6.5 · 106 90.5 8.7 · 105

DBLP (6-grams) 6.5 · 106 92.5 9.1 · 106

DBLP (8-grams) 6.5 · 106 94.5 3.7 · 107

LIVEJOURNAL 3.1 · 106 36.5 7.5 · 106

ORKUT 2.7 · 106 120 8.7 · 106

TWITTER 1.6 · 106 75 3.7 · 104

100 101 102 103 104
Set Size

100

101

102

103

104

105

106

Co
un

t

AOL
DBLP(2-grams)
DBLP(4-grams)
DBLP(6-grams)
DBLP(8-grams)
LIVEJOURNAL
ORKUT
TWITTER

Figure 5: Datasets set size distribution

4 EVALUATION
The goals of our experiments are threefold: (i) to compare
our co-process scheme against the state of the art standalone
implementations; (ii) to give concrete evidence about the
speed-ups achieved in practice, and (iii) to provide explana-
tions about the observed behavior.

4.1 Experiment setting.
The experiments were conducted on a machine with an Intel
i7 5820k clocked at 3.3GHz, 32 GB RAM at 2400MHz and an
NVIDIA Titan XP. This GPU has 3840 CUDA cores, 12 GB
of global memory and a 384-bit memory bus width.
The overall runtime is the composition of candidate gen-

eration and serialization performed by H0 host thread, and
the verification conducted by the device. We do not include
any data preprocessing time spent for tokenization and de-
duplication, which are perfomed exactly as in [18] and are
considered not relevant to the join time. We conduct exper-
iments for all datasets using five thresholds in the range
[0.5, 0.9]. We focus on self-joins using the Jaccard similarity
and perform an aggregation on top of the set similarity join.
The reported time for each experiment is an average over

3 independent runs (no significant deviation was observed).
We measure the index/filtering and total join time with the
std::chrono library. For the verification time we use the CUDA
event API. The times for allocating device memory and trans-
ferring chunks of candidates to the device were negligible
for all the experiments and furthermore were completely
hidden due to the execution overlap.

We experiment with five real world datasets; four of them
were also employed in [18] and we also employed the TWIT-
TER dataset found in [10]. We further process the DBLP
dataset to measure the performance impact of the number of
different tokens. Table 3 shows an overview of each dataset
characteristics. Some datasets follow a Zipf-like distribution
of set sizes, as shown in Figure 5, but in general the distribu-
tion types differ.

4.2 Main Experiments.
We compare the state-of-the art CPU standalone implemen-
tation of Mann [18] against its GPU-accelerated version pre-
sented in this work, noted as CPU-GPU, and the best GPU
standalone solution described in [20]. As can be observed in
Table 4, there is not a dominant technique. For high threshold
values ([0.8, 0.9]), the CPU remains very competent due to
the effective filtering, while GPU-based solutions seem ben-
eficial for lower threshold values ([0.5- 0.7]), where billions
of candidate pairs are evaluated. Nevertheless, there is no
clear pattern even when the threshold are in [0.5- 0.7]. For
AOL and DBLP (6, 8 grams), our CPU-GPU solution is faster.
The GPU standalone solution performs better for the rest of
datasets. We explain that later. In general, when CPU-GPU
is faster, the maximum observed speed-up is 1.9X compared
to the best between the CPU and the GPU solution in [22].
When compared solely against fgSSJoin, the speed-ups can
be up to 1-2 orders of magnitude, e.g., for the AOL dataset.

4.3 Performance Analysis.
Motivated by the fact that neither technique is the most
dominant one, we analyze the impact of three key dataset
characteristics, (i) set size distribution; (ii) average set size
and (iii) number of different tokens, on the GPU-enabled
techniques’ performance.

4.3.1 Set size distribution. For datasets with a high pro-
portion of similar set sizes, such as AOL as shown in Figure
5, length filtering on block probe level is ineffective. When
applying fgSSJoin on AOL, this results in a higher number
of GPU calls, which, in turn, increases the clear operation
overhead of the quadratic memory space. The bottom line
is that in large datasets, especially when, due to the dataset
size and high number of similar set sizes, the length filter
cannot prune many pairs, the overhead associated with the

Exact Set Similarity Joins for Large Datasets in the GPGPU paradigm DaMoN’19, July 1, 2019, Amsterdam, Netherlands

Table 4: Comparison between the best times for different thresholds (in seconds)

τn
0.5 0.6 0.7 0.8 0.9

CPU CPU-GPU fgSS CPU CPU-GPU fgSS CPU CPU-GPU fgSS CPU CPU-GPU fgSS CPU CPU-GPU fgSS
AOL 276 207 694 69 50 466 10 7 311 3.1 2.7 240 1 1.1 202

DBLP (2-grams) many hours many hours many hours 91049 36358 7437 8117 3152 241
DBLP (4-grams) 51069 21005 2915 19398 8750 1571 5998 2877 576 1292 686 231 103 135 80
DBLP (6-grams) 2776 1334 1449 934 583 658 279 147 301 73 76 175 14 15 75
DBLP (8-grams) 441 287 out of memory 149 145 581 59 58 276 21 22 170 5.8 6.2 78
LIVEJOURNAL 277 188 65 70 49 37 17 13 21 5 4 13 1.35 1.36 7

ORKUT 161 129 78 59 57 39 24.1 23.7 19 9 10 10 3 3.3 5
TWITTER 36318 24401 838 15154 9857 371 4698 3002 146 898 557 48 63 46 10

quadratic space complexity is not outweighed by any ben-
efits compared to the CPU solution, and, overall fgSSJoin
is not the optimal GPU-enabled technique. In contrast, our
CPU-GPU solution does not entail this kind of overhead
and performs better, especially in lower thresholds where
execution overlap between both ends becomes prominent.
However, the improvements on a CPU-based solution are up
to 1.39X only.

4.3.2 Average set size. For datasets with small average set
size (≤ 10) such as AOL the global memory access footprint is
also small, which renders alternatives A and B of CPU-GPU
competitive. However, as the average set size increases (in
DBLP, LIVEJOURNAL, ORKUT, TWITTER), alternative C is
preferred to minimize the global memory access bottleneck.
Thus, it is more beneficial to employ alternative B for sets of
small size, and alternative C otherwise. On the other hand,
fgSSJoin remains robust against varying average set sizes.

4.3.3 Number of different tokens. fgSSJoin replicates input
tokens to perform the verification phase faster. In case of
lower thresholds and high number of different tokens the
required memory space to store the replicated data increases
and as a result the available free memory space to process
input sets is decreased (in particular DBLP 8-grams, with
τn = 0.5 cannot run with 12GB of global memory). This
leads to smaller partition blocks, and thus to more GPU
calls with the subsequent overhead costs. In contrary, the
GPU phase of the CPU-GPU solution is independent of the
number of different tokens. In general, CPU-GPU benefits
from the combination of large number of different tokens
and high cardinality. Such a combination appears in DBLP
(6, 8 grams). When the number of different tokens is high
but the cardinality is lower, such as in LIVEJOURNAL and
ORKUT, CPU-GPU does not always outperform fgSSJoin.

5 DISCUSSION
As presented in our evaluation section, the proposed CPU-
GPU hybrid approach performs better than the respective
standalone solutions in several cases. However, in all of the

examined techniques the prefix-based filtering phase dom-
inates the overall runtime and therefore faster candidate
generation techniques should be investigated as indicated
in [18].

Another filtering approach in [8], noted as partition-based,
advocates partitioning sets in disjoint subsets. In that work,
two sets are considered as candidates, only if the share a
common subset. In [26], Wang et al. point out the redundant
computational cost due to the incrementally join process.
Thus, by leveraging the relations among sets, they propose a
technique for faster candidate generation, in which inverted
lists are rearranged in order to be able for candidates to be
skipped on lookup. Both [8, 26] are yet to be explored in the
GPGPU paradigm.

Finally, the verification phase should be also further inves-
tigated for additional improvements, e.g., through reducing
idle times for many GPU cores.

6 CONCLUSION
This work describes a thorough investigation regarding the
design alternatives for the verification phase in exact set
similarity joins using a GPU. We conform to the established
filter-verification framework, and we transfer verification to
the GPU. Using real datasets, we show that our co-process
scheme performs better than the state-of-the-art CPU and
GPU approaches in several cases when the datasets are large.
However, there is still room for additional and perhaps hybrid
techniques that combine the strengths of all the techniques
considered in this work to develop a globally better solution.
Acknowledgement. The authors gratefully acknowledge

the support of NVIDIA Corporation through the donation
of the GPU used.

REFERENCES
[1] Saman Ashkiani, Martin Farach-Colton, and John D Owens. 2018. A

dynamic hash table for the GPU. In 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 419–429.

[2] Ranieri Baraglia, Gianmarco De Francisci Morales, and Claudio Lucch-
ese. 2010. Document Similarity Self-Join with MapReduce. In ICDM.
731–736.

DaMoN’19, July 1, 2019, Amsterdam, Netherlands C. Bellas and A. Gounaris

[3] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scal-
ing up all pairs similarity search. In Proceedings of the 16th International
Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada,
May 8-12, 2007. 131–140.

[4] Christos Bellas and Anastasios Gounaris. 2017. GPU processing of
theta-joins. Concurrency and Computation: Practice and Experience 29,
18 (2017).

[5] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. 2012. Spatio-textual
similarity joins. PVLDB 6, 1 (2012), 1–12.

[6] John Cheng, Max Grossman, and Ty McKercher. 2014. Professional
Cuda C Programming. John Wiley & Sons.

[7] Mateus SH Cruz, Yusuke Kozawa, Toshiyuki Amagasa, and Hiroyuki
Kitagawa. 2015. GPU acceleration of set similarity joins. In Interna-
tional Conference on Database and Expert Systems Applications. Springer,
384–398.

[8] Dong Deng, Guoliang Li, He Wen, and Jianhua Feng. 2015. An efficient
partition based method for exact set similarity joins. Proceedings of
the VLDB Endowment 9, 4 (2015), 360–371.

[9] Fabian Fier, Nikolaus Augsten, Panagiotis Bouros, Ulf Leser, and
Johann-Christoph Freytag. 2018. Set similarity joins on MapReduce:
an experimental survey. Proceedings of the VLDB Endowment 11, 10
(2018), 1110–1122.

[10] Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment
classification using distant supervision. CS224N Project Report, Stanford
1, 12 (2009).

[11] Oded Green, Robert McColl, and David A Bader. 2012. GPUmerge path:
a GPU merging algorithm. In Proceedings of the 26th ACM international
conference on Supercomputing. ACM, 331–340.

[12] Oded Green, Pavan Yalamanchili, and Lluís-Miquel Munguía. 2014.
Fast triangle counting on the GPU. In Proceedings of the 4th Workshop
on Irregular Applications: Architectures and Algorithms. IEEE Press,
1–8.

[13] Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. 2014. String
Similarity Joins: An Experimental Evaluation. PVLDB 7, 8 (2014),
625–636.

[14] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale
similarity search with GPUs. arXiv preprint arXiv:1702.08734 (2017).

[15] David Blair Kirk and Wen-mei W. Hwu. 2013. Programming Massively
Parallel Processors - A Hands-on Approach, 2nd Ed. Morgan Kaufmann.

[16] Michael D Lieberman, Jagan Sankaranarayanan, and Hanan Samet.
2008. A fast similarity join algorithm using graphics processing units.
InData Engineering, 2008. ICDE 2008. IEEE 24th International Conference
on. IEEE, 1111–1120.

[17] Willi Mann and Nikolaus Augsten. 2014. PEL: Position-Enhanced
Length Filter for Set Similarity Joins. In Proceedings of the 26th GI-
Workshop Grundlagen von Datenbanken. 89–94.

[18] Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. 2016. An Em-
pirical Evaluation of Set Similarity Join Techniques. Proceedings of the
VLDB Endowment 9, 9 (2016), 636–647. http://www.vldb.org/pvldb/
vol9/p636-mann.pdf

[19] Ahmed Metwally and Christos Faloutsos. 2012. V-SMART-Join: A Scal-
able MapReduce Framework for All-Pair Similarity Joins of Multisets
and Vectors. PVLDB 5, 8 (2012), 704–715.

[20] Rafael David Quirino, Sidney Ribeiro-Junior, Leonardo Andrade
Ribeiro, and Wellington Santos Martins. 2017. Efficient Filter-Based
Algorithms for Exact Set Similarity Join on GPUs. In International
Conference on Enterprise Information Systems. Springer, 74–95.

[21] Leonardo Andrade Ribeiro and Theo Härder. 2011. prefix filtering to
improve set similarity joins. Information Systems 36, 1 (2011), 62 – 78.

[22] Sidney Ribeiro-Junior, Rafael David Quirino, Leonardo Andrade
Ribeiro, and Wellington Santos Martins. 2017. Fast parallel set similar-
ity joins on many-core architectures. Journal of Information and Data

Management 8, 3 (2017), 255.
[23] Akash Das Sarma, Yeye He, and Surajit Chaudhuri. 2014. ClusterJoin:

A Similarity Joins Framework using Map-Reduce. PVLDB 7, 12 (2014),
1059–1070.

[24] Rares Vernica, Michael J. Carey, and Chen Li. 2010. Efficient parallel
set-similarity joins usingMapReduce. In SIGMODConference. 495–506.

[25] Jiannan Wang, Guoliang Li, and Jianhua Feng. 2012. Can we beat
the prefix filtering?: an adaptive framework for similarity join and
search. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 85–96.

[26] Xubo Wang, Lu Qin, Xuemin Lin, Ying Zhang, and Lijun Chang. 2017.
Leveraging set relations in exact set similarity join. Proceedings of the
VLDB Endowment 10, 9 (2017), 925–936.

[27] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and Guoren Wang.
2011. Efficient similarity joins for near-duplicate detection. ACM Trans.
Database Syst. 36, 3 (2011), 15:1–15:41.

APPENDIX
A CUDA OVERVIEW
In CUDA terminology, CPU and the main memory are re-
ferred to as host, while the GPU and its own memory are
referred to as device. In this work, we use the terms CPU and
host (resp. GPU and device) interchangeably.

A.1 Architecture.
CUDA-enabled GPUs have many cores called Streaming Pro-
cessors (SPs), which are divided into groups called Streaming
Multiprocessors (SMs). Each SM includes also other units such
as ALUs, instruction units, memory caches for load/store op-
erations, and follows the Single Instruction Multiple Data
(SIMD) parallel processing paradigm.

A.2 Thread Organization.
Threads are organized in logical blocks called thread blocks.
A thread block is scheduled and executed in its entirety on a
SM in groups of 32 threads called warps. Threads within a
warp are called lanes and share the same instruction counter,
thus they are executed simultaneously in a SIMD manner.
There are two cases of thread divergence, which degrade
performance, namely inter-warp, when concurrent warps
run unevenly and intra-warp, when warp lanes take different
execution paths. The latter is also simply referred to as warp
divergence.

A.3 Memory hierarchy.
There are several memory types on CUDA-enabled GPUs.
They are divided into on-chip and off-chip ones. Off-chip
memories include the global, constant, texture and local mem-
ory. The global memory is the largest (in the order of GBs)
but slowest memory. Data transferred from the host to de-
vice resides in global memory and it is visible to all threads.
The constant memory is read-only and much smaller (in

http://www.vldb.org/pvldb/vol9/p636-mann.pdf
http://www.vldb.org/pvldb/vol9/p636-mann.pdf

Exact Set Similarity Joins for Large Datasets in the GPGPU paradigm DaMoN’19, July 1, 2019, Amsterdam, Netherlands

the order of KBs). It is used for short access times on im-
mutable data throughout the execution. The texture memory
is essentially a read-only global memory and is preferred
when 2-dimensional spatial locality occurs in memory ac-
cess patterns. The local memory is part of the global memory
and is used when the registers needed for a thread are fully
occupied or cannot hold the required data. This is called
register spilling. On-chip memories include the caches, the
shared memory and the registers. For data reuse, there are
caches per SM and the L2 cache is shared across all SMs. The
shared memory is the second fastest memory type. Each SM
has its own shared memory. Data stored in shared memory
can be accessed by all threads within the same block, thus
threads of the same block are allowed to inter-communicate
via shared-memory. The registers are the fastest memory
type and contain the instructions of a single thread and the
local variables during the lifetime of that thread.

A.4 Kernel grid.
Every function to be processed in parallel by the GPU is
called a kernel. Each kernel is executed by multiple thread
blocks, which form the kernel grid. The grid can be regarded
as an array of blocks with up to two dimensions. Each block
is, in turn, an array of threads with up to three dimensions.
CUDA can schedule blocks to run concurrently on a SM
depending on the shared memory and registers used per
block. Increasing either of these factors can lead to limited
concurrent block execution, which results in low occupancy.
Occupancy is defined as the ratio of active warps on a SM
to the maximum allowed active warps per SM. Maximizing
occupancy is a good heuristic approach but it does not always
guarantee performance gain. On the contrary, maintaining
high warp execution efficiency, i.e. the average percentage
of active threads in each executed warp, is a more robust
approach for data-management tasks, as shown in executing
generic theta-joins on GPUs [4].

B IMPLEMENTATION ISSUES
B.1 Host Details
Our framework leverages the work of Mann [18]. The main
difference is that we migrate the verification phase from the
host to the device side via a multi-threaded implementation,
which gives rise to the issues discussed in this section.

B.1.1 Candidate Serialization. The need to transfer can-
didate pairs to device memory highlights the necessity of
efficient serialization methods. Our goal is for the device to
avoid complex global memory accesses. Therefore, the host
is responsible for storing the candidates of a probe set in suc-
cessive memory addresses. We list our options for serializing
candidates C as follows:

(1) Use a sequence container such as std::vector and push
back every new candidate. The main drawback is the
extra memory checks on insertion to determine if a
reallocation is required.

(2) Prior reserve memory space for std::vector to avoid
memory checks.

(3) Use primitive arrays and handle memory operations
manually.

(4) Use a map structure where a key is an integer, i.e. the
probe set ID, and its value is a std::vector containing
the corresponding candidates IDs.

As a complement to C , a separate array CO to delimit
candidate pairs is required. Moreover, the tokens that we
insert to CO are pairs consisting of a probe set ID and its
corresponding offset on C . Omitting the probe set ID and
inserting the candidate offset by itself, thus reducing the CO
size, implies that the probe set ID should be capable to be
extracted from the index of CO . For that to be possible, con-
tinuous probe sets IDs in ascending order must be processed,
which might not always be the case.

The use of map is an intermediate stage to group together
in memory probe set candidates. Before invoking the device,
we must iterate the map and serialize every candidates list
to construct the final C , and also update CO per iteration.

As will be shown in our experiments, primitive arrays, i.e.,
the third option listed above, perform better than std::vector,
i.e., the first two options, and are adequate for ALL and
PPJoin that produce the full candidate set for a single probing
set in a single phase. For GRP, which employs two phases
during candidate generation, a map structure is necessary if
the full verification phase is delegated to the GPU.

B.1.2 Thread & Memory Management. As stated in Sec-
tion 3, our framework consists of three threads. The index-
ing/filtering thread H0 reserves memory space beforehand
and serializes candidates. When the device maximum mem-
ory for candidate pairsMc is filled,H0 triggersH1, the device
handler thread, and assigns a pointer to the current can-
didates to it. In parallel, H1 allocates the required device
memory space, copies the candidates array to device and
launches the join kernel code. Meanwhile, H0 continues to
build the next chunk of candidates. As soon as the join kernel
finishes, if an aggregation on top of the join is requested, H1
launches immediately a separate kernel to perform a count
reduction. In case of output the actual pairs, H1 starts the
H2, which post-processO . When H2 finishes, the memory re-
served for the respective candidates is freed. The same steps
are repeated until no candidate pairs are left to be verified.

B.1.3 GroupJoin Work Split. The three best-performing
algorithms examined can be divided into two categories:
those which generate every candidate pair in one phase, i.e.

DaMoN’19, July 1, 2019, Amsterdam, Netherlands C. Bellas and A. Gounaris

ALL and PPJ, and the one, GRP, which requires an extra
phase (group expanding) to output all candidate pairs.

For each probe set in ALL and PPJ, candidates are guaran-
teed to be stored in successive memory addresses. Thus, we
serialize candidates using primitive arrays. In contrast, GRP
generates candidates that are intertwined due to the expand-
ing phase. Therefore storing candidates in a map structure is
required. However, in our testings serializing the map adds
extra overhead, rendering this option unfeasible.

We choose to split thework for GRP, and for this technique,
allocate part of the verification to the CPU as well. We assign
the verification of every candidate pair generated in the first
phase to the device. Hence, we serialize candidates from this
phase in primitive arrays and transfer them to the device.
Every candidate pair that emerges from the second phase,
i.e. group expanding, is left to be verified in the host side by
H0.

By splitting the work, we alleviate overall performance
as shown in Section 4. In spite of this gain, transferring
the whole GRP verification workload to device remains a
challenge and would further improve the performance.

B.2 Device Details
B.2.1 Block size. We launch grids composed of 1D blocks.

The block size B must be a power of 2 for reduction on the
shared memory to work properly. We prefer B = 32 since a
warp can be considered as the CPU thread equivalent. How-
ever in our evaluation with different block sizes, we show a
correlation between block size and set size, and increasing
the block size should be considered when the third verifica-
tion alternative is the best performing one.

B.2.2 Merge and Intersect Path. Computing a list inter-
section can be derived from a list merge operation. An effi-
cient parallel merging algorithm for GPUs is Merge Path[11].
Given two sorted lists A and B, Merge Path considers the or-
der in which elements are merged, which is equivalent to the
traversal of a grid, noted asMerge Matrix, of size |A| × |B |. Be-
ginning from the top left corner of the grid, the path can only
move to the right if A[i] ≥ B[j] or downwards otherwise,
until it eventually reaches the bottom right corner.

There are two partitioning stages, one on kernel grid level
and the other on block level. On grid level, equidistant cross
diagonals are placed on the Merge Matrix. Using binary
search, the point of intersection for a cross diagonal and the
path is found. As a result, each SM is assigned to merge non-
overlapping portions of the input. On block level, threads
cooperate in loading the required list portions on shared
memory and then merge them in global memory.
By modifying Merge Path in [12], the authors propose a

fast list intersection algorithm, called Intersect Path. They
introduce a new diagonal path move, ifA[i] = B[j]. The same

r

s

5 8 9 12 13 16 18 19 22

5

7

8

9

10

12

16

20

22

11

5

5

5

Figure 6: Intersect path example.

partitioning stages still hold. Each SM outputs a portion of
the intersection to global memory.
Because in our approach thread blocks verify whole can-

didate pairs, we have to modify Intersect Path accordingly.
Thus we perform both partitioning stages on block level.

B.2.3 Set Intersection Count. In order to verify a candi-
date pair, threads must calculate the intersection of two sets.
Each thread in alternatives A and B, independently performs
a merge-like loop and counts the number of intersects. On
the other hand, in alternative C, threads collaborate to out-
put the intersection. Since our problem can be reduced to
finding the intersection count of two sets, we use a modified
Intersect Path algorithm to divide the workload between
block threads, as mentioned above.

Cross diagonals are equally placed apart at ⌈ |ri |+ |sj |B ⌉ [12].
Each thread is assigned with a partition with starting point
the intersection of the path and the corresponding diagonal.
In Figure 6, we show an example of Intersect Path using B = 4
threads (each color corresponds to a different thread). Start-
ing from the top left corner, cross diagonals are placed apart
5-hops away, where hops are along the axes. Each thread
calculates independently its partition intersection count and
stores it in registers memory. When finished, intersection
counts are copied in shared memory for a fast reduction to
output the overall intersection.

B.2.4 Count Reduction. Our primary focus is to minimize
the global memory transactions. Whenever possible, we use
the registers to store counts per thread. Similarly, we store
every thread count to shared memory and use warp shuffle
functions for fast reduction. Hence, when performing an
aggregation on top of the join, only a single write to global
memory is required per block. To output the final count, we
use thrust::reduce on the global memory-resident intermedi-
ate counts.

	Abstract
	1 Introduction
	2 Background
	2.1 Data layout.
	2.2 Set Similarity functions.
	2.3 Filters.
	2.4 Algorithm outline.
	2.5 GPU standalone approach

	3 Our Approach
	3.1 Main Rationale
	3.2 Host Tasks
	3.3 Device Tasks

	4 Evaluation
	4.1 Experiment setting.
	4.2 Main Experiments.
	4.3 Performance Analysis.

	5 Discussion
	6 Conclusion
	References
	A CUDA Overview
	A.1 Architecture.
	A.2 Thread Organization.
	A.3 Memory hierarchy.
	A.4 Kernel grid.

	B Implementation Issues
	B.1 Host Details
	B.2 Device Details

