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Abstract

Recently, there have been several proposals in the area of geo-distributed
big data processing. In this work, we aim to address a limitation of the
existing solutions, namely to optimize task allocation across geographically
distributed data centers, in a way that both the total traffic and the run-
ning time of the whole processing in complex multi-stage flows are targeted.
Apart from proposing concrete efficient solutions for this combinatorial prob-
lem, we advocate to take a critical stand on the broadly spread claim that
transferring distributed data to a single or fewer places is too costly. In
our proposal, we judiciously reduce the participation of some data centers
in the flow execution, and we show that, in a wide range of settings, this
yields significant benefits. We show that a stochastic solution is superior
to a fast greedy one, at the expense of optimization time of up to a few
minutes. Compared to a state-of-the-art solution, we manage to decrease
total traffic by 44% and running time by 37% on average. In several cases,
the improvements can reach 1-2 orders of magnitude. Moreover, we provide
evidence that simple heuristics are inferior. Our experimental evaluation
comprises both extensive simulations and real runs in Spark.

Keywords: distributed flow optimization, latency minimization,
communication minimization, Iridium

1. Introduction

Data-intensive processing platforms is still a technology in evolution.
The emergence of the MapReduce framework and its descendants, such as
Spark and Flink, has shaped the way in which big data is nowadays processed
and analyzed. However, these technologies are tailored to a single data
center, since they implicitly assume either a powerful multi-core server or a

Preprint submitted to Big Data Research March 19, 2019



Figure 1: Example DAG of stages of a groupBy transformation

shared-nothing cluster, where the communication between the nodes is very
fast. At the same time, the need for analyzing data from geo-distributed
locations is rapidly increasing in several domains, which gives rise to the
need to adjust and extend the big data processing technologies in order to
become applicable across geo-distributed data centers in an efficient manner.

In the recent years, there have been several proposals that aim to address
the problem of transferring MapReduce-like solutions to a geo-distributed
setting, but they suffer from several limitations. According to a recent
survey in [1], a significant such limitation is the lack of solutions that aim to
optimize both the total traffic and the flow completion time in a combined
manner. For example, there exist proposals that minimize the completion
time, e.g., [2], or the total traffic, e.g., [3], but not both. Our work aims to
fill this gap.

More specifically, in this paper we focus on the bi-objective traffic opti-
mization problem in data flows, where we aim to reduce the total traffic of
the network while keeping the running time under a given threshold set by
the user (explained in Section 4.1). We use directed acyclic graphs (DAGs)
to represent data flows. Each node represents a job (for example, in Spark
each node refers to a Spark Stage) that needs to be parallel executed on
different data centers (DCs) while the edges of the graph represent the data
movement between the jobs. For example, Figure 1 shows a DAG in Spark
where each node is a stage and the edge between the stages represents the
data movement that occurs due to the groupBy transformation. Such data
movements incur traffic cost and may contribute to the total running time.
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The goal is, given an arbitrary initial distribution of the data, to distribute
the workload among the DCs for each job, so that both objectives are met.
A naive solution is clearly exponential in the number of the jobs.

The main characteristics of our approach are twofold. On the one hand,
we exploit existing solutions to the largest possible extent. We use the state-
of-the-art Iridium solution in [2] for minimizing running time and we extend
it in two ways: (i) to make it more efficient for multi-job DAGs instead
of simple two-stage MapReduce ones and (ii) to account for total traffic as
well. On the other hand, we challenge the validity of a main motivation
behind geo-distributed data flows, namely that it is too costly to gather
data in a single place, e.g., [1, 4, 5]. We develop a fast Greedy solution and
a more efficient but slower stochastic process that both aim to investigate
task allocations that either decrease or discard the participation of some
DCs to some jobs.

In summary, we make the following four contributions, whereas we also
implemented our solution in Spark:

1. We show that using less DCs is more beneficial than using all the DCs
available in a wide range of cases; the benefits are both in total traffic
and flow execution time.

2. We propose two algorithms, a greedy and a stochastic one, that de-
crease the total traffic by re-arranging the task placement between the
DCs, staying always under a given threshold in running time.

3. We conduct thorough experiments using realistic parameters. We show
that our stochastic solution achieves an average of 37% reduction in the
total running time while reducing traffic by 44% on average compared
to the proposal in [2]. The improvements are higher if a hybrid initial-
ization scheme is followed. In some cases, the improvement margins
are 1-2 orders of magnitude. This is at the expense of optimization
times of up to a few minutes.

4. We show that, similarly to using all available DCs, naive solutions,
such as using a single DC for all job executions, are inferior to our
techniques that more judiciously restrict the participation of all DCs
in the flow execution.

The remainder of the paper is outlined as follows. In Section 2, we
provide two motivation examples to show the challenges in our bi-objective
optimization problem and the benefits from using less DCs. The related
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Table 1: Parameters for the second motivation example

DC1 DC2 DC3 DC4
InputData(MB) 50 60 40 75
Uplink(MB/s) 10 1 10 10
Downlink(MB/s) 1 10 1 10

work is discussed in Section 3. Our proposal and our algorithms are de-
scribed in Section 4. In Section 5, we present our experiments and their
results. Finally, in Section 6, we make a final discussion.

2. Motivation Example

Assume that we have a simple two stage graph running on two DCs,
DC1 and DC2. That means that each stage of the graph is executed on
both DCs in parallel. The overall size of data is 30MB. Initially, the data of
the first stage are divided to the DCs as follows: 10 MB on DC1, and 20 MB
on DC2. The uplink and downlink of DC1 (resp. DC2) are 5 MB/sec and
10 MB/sec (resp. 10 MB/sec and 10 MB/sec). The first allocation equally
splits the workload for the second stage. This means that DC1 has to upload
5 MB and DC2 has to upload 10 MB. Also, DC1 downloads 10MBs and DC2
downloads 5 MB. Since data transmissions run in parallel, the running time
is determined by the slowest link. As such, the total running time is 1 sec
and the total traffic is 15MB, as can be seen in Figure 2a. However, there is
a better configuration, in which the first DC has to upload 7.5 MB and the
second 5 MB only; this is achieved by allocating 25% of tasks of the second
stage on DC1 and 75% on DC2. This results in total running time of 1.5
sec and total movement of 12.5MB. This means that, in general, traffic time
and running time can be contradicting objectives, thus it requires particular
attention when trying to optimize both.

Now let’s consider a more complex case, where 4 DCs participate (the
key parameters are shown in Table 1). If we assign an equal fraction of
tasks in each DC, then each DC has to upload and download some data.
The time for these moves depends on the DC’s uplink and downlink speed.
The total running time of the job is the maximum of all the link finish times,
as previously. In our example, the total running time is 46.25 secs and the
total amount of data moved is 168.75 MB. This time is due to the bottleneck
DC, DC3, the downlink speed of which is 1 MB/sec and the amount of data
it has to download is 0.25*185=46.25 MB. If we assign the task allocation to
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(a) Equal task allocation (50%-50%)

(b) Unequal task allocation (25%-75%)

Figure 2: Data movement costs and times for the first motivation example

Iridium [2], the new allocations are 0%, 78.5%, 0%, and 21.5%, respectively.
This means that DC1 and DC3 do not execute any tasks at the second flow
stage and therefore, they do not download any data; however, they need
to distribute their data to the other DCs that have non-zero allocation.
This scheme reduces time to only 12.95 secs and data movement to 161.78
MB. This example shows that it is possible to improve regarding both the
running time and the total data movement by not using all DCs throughout
the execution.

Our work can be seen as an extension to Iridium. In our extensions,
both objectives are targeted more systematically and efficiently, whereas we
also target more complex flows, i.e., flows with multiple stages. As shown
in Section 5, our techniques are more efficient than Iridium in both metrics.
We continue the discussion of the related work in the next section.
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Table 2: Summary of the most relevant related work (*) Not both metrics simultaneously;
(**) tailored to SQL queries; (***) tailored to graph processing.

Proposal Aggregate traffic
reduction

Running time
reduction

WANalytics[3]
Shuffle Optimazation[6]
Pixida[4]
G-MR[7] (*) (*)
Meta-MapReduce[8]
Jetstream[9]
Geode[5] (**) (**)
Iridium[2]
Nebula[10]
G-Cut[11] (***) (***)
Rout[7]
THIS WORK

3. Related Work

An extensive survey of geo-distributed extensions to MapReduce has
appeared in [1]. The most relevant research to our work consists of proposals
that target either the total traffic or the flow running time, summarized in
Table 2.

Regarding the works that target the total traffic, a prominent example
is the WANalytics proposal in [3]. Similar to our work, it targets generic
DAGs but does not consider running time. [6] focuses also on data traf-
fic and suggests a Spark-based framework that targets the best placement
of data, but does not set an upper threshold on running time. Pixida[4]
converts the data traffic reduction problem to a graph repartitioning one.
G-MR[7] is a Hadoop-based framework that detects the best task placement
through solving a shortest path problem considering either running time or
data movement, but not both; moreover its complexity is exponential in the
number of nodes.

There are also some more specific solutions. For example, Meta-MapRed-
uce[8] focuses on decreasing the data movement by avoiding to move data
that will not participate in the final output. Jetstream[9] decreases the data
traffic using degradation, aggregation and filtering operations on the data
at the expense of lower accuracy. Geode[5] targets both data traffic and
running time reduction in SQL queries using caching and copies of the data,
but the proposed technique cannot be extended to generic DAGs.
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Regarding the proposals that target running time, we have already intro-
duced Iridium [2], against which we directly compare our proposal. Iridium
has been compared against [3], and is found that it achieves much lower
times at the expense of small increases in total traffic; on the contrary,
we show that we can improve both metrics. However, Iridium also deals
with the problem of initial data placement, whereas we assume that this
placement is fixed. Nebula[10] tries to find the optimal task allocation to
minimize the running time but does not consider the overall data traffic.
Rout[7] also tries to minimize the running time by selecting the most ben-
eficial data placement but does not focus on data traffic either. G-Cut[11]
aims to minimize the running time re-arranging the tasks while keeping the
traffic below a threshold, but it is specific to geo-distributed graph process-
ing. The proposal in [12] targets both metrics but is tailored to a single
MapReduce flow with the reducer being executed on a single DC.

Note that there are several proposals in geo-distributed processing that
focus on other issues than performance; for example, [13] focuses on re-
silience, and [14] deals with DC configuration. Other topics that are tan-
gential to our research involve understanding of wide-area data transfer per-
formance, e.g., [15], flow modeling and performance prediction, e.g., [16],
accesses to geo-distributed Web Services, e.g., [17], and advances in edge
computing, e.g., [18].

Finally, our stochastic solution has been inspired by a randomized so-
lution for determining the appropriate degree of parallelism in Spark flows,
where it was proven that such stochastic solutions are a powerful tool for
finding local optimal solutions in bi-objective problems [19]. Here, we cap-
italize on this experience and we successfully apply a stochastic solution to
a new setting.

4. Our proposal

Our proposal aims to tackle the two main limitations of existing works:
(i) it considers generic DAG flows in a more comprehensive and efficient
manner through taking into consideration the impact of the decisions taken
regarding a specific stage of the flow on the other ones; and (ii) it aims to
decrease both the overall running time and the total communication across
inter-DC connections. The rationale behind the design of the techniques is
that, in several scenarios, it is more beneficial to allocate (the largest part
of) the workload to less DCs than those initially holding the data.

We make three salient assumptions: (i) as in [2], the inter-DC communi-
cation cost is the dominant one; (ii) a limited number of DCs is adequate to
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perform the main processing corresponding to a DAG vertex; and (iii) the
initial distribution of input data across DCs is fixed.

4.1. Notation and Problem Definition

A geo-distributed data flow is represented as a DAG G(V,E). Each node
vj ∈ V , where j = 1 . . . N and N = |V |, represents a job and each edge
represents a shuffle data movement between the jobs. For example, in Spark
data flows, a job corresponds to a Spark stage; in between such stages, data
shuffling takes place. Each job runs in parallel in M DCs: i.e., each DC
becomes responsible for a fraction of the job execution with the magnitude
of the fraction devised by our algorithms. Conceptually, the workload of a
job is split into small units of work, each allocated to a specific processing
element, e.g., a multi-core server of a specific DC, as an atomic unit. We refer
to these splits as tasks. Due to shuffling, in the generic case, it is necessary
to move data between DCs before the execution of each task. This data
movement is the dominant factor regarding the running time of the jobs,
while the actual execution time of the job is considered to be negligible.

In this work we deal with the allocation of sets of tasks to each DC for
each job. Let Ij be the input dataset size of vj . If the selectivity of the
job is aj , then the output dataset is of size Sj = aj ∗ Ij . If vj has outgoing
edges in G, Sj is divided into M parts to be sent to the jobs downstream,
denoted by rjiS

j , i = 1 . . .M , s.t.
∑
rji = 1. Essentially, rji corresponds to

the fraction of tasks of the children nodes of vj assigned to the ith DC (tasks

are assumed to be infinitesimally divisible). In other words, rji values affect
the workload allocation of jobs vk, where (j, k) ∈ E. Overall, each DC has
to transfer a fraction of (1− rji ) of its local output data Sj

i , and to receive a

total of rji ∗ (Sj −Sj
i ) data from all the other DCs.1 Following the rationale

in [2], we specify the uplink (resp. downlink) bandwidth of the ith DC as Ui

(resp. Di). Table 3 summarizes the main notation.
Based on the above, the time for a site to send data regarding the output

of a job is TU j
i = (1 − rji ) ∗ S

j
i /Ui, and the time to receive data is TDj

i =

rji ∗ (Sj − Sj
i )/Di. The running time RTj of vj is max{TU j

i , TD
j
i }.

The total data movement from a node vj is equal to DMj =
∑M

i=1(1 −
rji ) ∗ S

j
i . The total data movement is DM(G) =

∑N
j=1DMj , where vj has

1Note that in general, Sj
i 6= rjiS

j , i.e., the distribution of the intermediate results in
a job is not necessarily the same as the way these results are shuffled in the next jobs.
However, assuming a uniform distribution of results, it holds that Sj

i = mean(rki ) ∗ Sj ,
where (k, j) ∈ E
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Table 3: Notations used in the paper.

Symbol Meaning

G(V,E) the data flow DAG
N,M number of jobs and DCs
Ij amount of input data of a job vj ∈ V
αj selectivity of a job vj
Sj amount of intermediate output data of a job (Sj = aj ∗ Ij)
Ui uplink bandwidth on DC i
Di downlink bandwidth on DC i

Sj
i amount of intermediate data of vj on DC i

rji fraction of tasks executed on DC i for jobs succeeding vj
TU j

i , TD
j
i running time of intermediate data transfer on up and down

link of DC i
RT (G) total running time of G
DM(G) total data movement between DCs in G
RTj running time of job vj
DMj total data movement between DCs of job vj
allocations A N × M array holding in each row allocations[j] the

rji , j = 1 . . . N, i = 1 . . .M values

at least one outgoing edge.
The running time of a G, RT (G) is the maximum sum of RTj values

across any path from a source job (vj without incoming edges) to a sink one
(vj without outgoing edges); sink nodes have zero running time by default.

In this paper we aim to the bi-objective traffic optimization of the data
flow. That means that we try to minimize the total data movement consid-
ering the execution time of G. At a nutshell, we follow a two-step approach:

1. We use Iridium[2] as our guideline for the initial assignment of tasks,
i.e., computation of the rji values, to the DCs. Iridium decides the al-
location for each job separately, after performing a topological sorting
on G and considers the nodes from the upstream to the downstream
ones.

2. We re-arrange the allocations with a view to decreasing the total move-
ment cost while not allowing running time degradation more than ε.

More formally, the problem we target is defined as follows:
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Problem Statement: Given a dataflow G, a fixed distribution of
the initial data across M DCs, and a running time value RTbase, compute
the rji values s.t. DM(G) is minimized and RT (G) is always less than
(1 + ε)RTbase, where ε is a small constant ε > −1. If 0 > ε > −1, then
we enforce the solutions to seek improvements regarding both DM(G) and
RT (G); when ε is positive, we tolerate increases in RT (G).2

Note that the higher we set ε, the more the problem tends to be a single-
objective optimization (that of minimizing DM(G)) in practice.

In our solution, the first step derives the RTbase value from the result
of the Iridium solution. Then, our main contribution refers to the second
step, for which we propose two techniques, a stochastic and a greedy one.

4.2. A greedy solution

The first solution is a greedy algorithm that is described in Algorithm 1.
The input of the algorithm is (i) the initial allocation of tasks on the DCs
according to [2], (ii) the threshold RTthreshold = (1 + ε)RTbase, where
RTbase is the initial RT (G), and (iii) the initial DM(G) . The output is
the new allocation of tasks optimized for lower DM(G) with the new RT (G)
to be less than the threshold.

Algorithm 1 consists of two loops. The internal one iterates over all
jobs. Its rationale is that the DC with the smallest non-zero rji acts as a
bottleneck, and its fractions of tasks should be further decreased by an β
factor (by default set to 1/3). So the algorithm detects the bottleneck DC
for each job, decreases its rji by β, and distributes the removed workload to
all the remaining DCs proportionally to their own current portions (inactive
DCs remain with zero allocation). After we exit the internal loop, we choose
the most beneficial modification of the task allocation referring to a single job
in terms of DM(G) whose RT (G) is under the threshold. This reallocation
triggers reallocations to all the other nodes downstream, since the data of
the downstream nodes are re-divided (Sj is re arranged to the DCs); the
reallocation is computed through a LP solution as in [2]. This process is
repeated N ∗M times.3

The complexity of the technique loop is dominated by solving the linear
program with M variables of [2] for all the affected jobs, which are O(N).

2We can also regard positive values of ε as the percentage of the performance degra-
dation that is tolerated.

3We can easily modify the number of iterations, but in practice, even if we increase it,
the performance does not improve compared to the next stochastic solution.
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Algorithm 1 Greedy algorithm

Require: allocations,RTthreshold,DM(G)
for i← 1 to N ∗M do
best← allocations //holds the best reallocation for all the jobs
bestRT ← Calculate RT (G) using allocations
bestDM ← DM(G)
for j ← 1 to N do

Reallocate tasks by reducing bottleneck’s fraction by β
Calculate DM(G) reduction due to modifications in Node j

end for
Choose the local change with the highest local DM(G) reduction meet-
ing the RTthreshold
tempAllocations← apply changes to G
Calculate RT (G)′ using tempAllocations
Calculate DM(G)′ using tempAllocations
if RT (G)′ ≤ RTthreshold then
benefit← bestDM −DM(G)′

if benefit > 0 then
best← tempAllocations
bestRT ← RT (G)′

bestDM ← DM(G)′

end if
end if

end for
return best, bestRT , bestDM

Therefore, the total complexity is solving an LP program O(N2M) times.
The number of reallocations considered is also in O(N2M).

4.2.1. Example

Assume that we have a linear DAG G with three nodes running on three
DCs as can be seen in Figure 3; each node is being executed in all the DCs in
parallel. In the figure, each circle corresponds to a job-DC pair annotated by
the corresponding rji value. The uplink and downlink of the DCs are U=(10,
1, 10), D=(10, 5, 5). The S1

i values are S1
i =(120, 100, 50) and α =1 for both

jobs. Figure 3a shows the result of Iridium, which decides the allocation of
r1i =(0, 0.75, 0.25) regarding the results of the first job. Consequently, S2

i

becomes (0, 202.5, 67.5). Iridium then assigns the fractions r2i =(0.06, 0.94,
0) thus, RT (G) = 38.19 sec and DM(G) = 262.15 MB (Figure 3a).
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(a) Iridium’s task allocation

(b) Greedy re-allocation regarding the first
job

(c) Greedy re-allocation regarding the sec-
ond job

Figure 3: Example using the Greedy algorithm

Now, let us suppose that we set RTthreshold = (1 + 0.1)38.19 = 42 secs
and we execute the external loop of Algorithm 1 a single time. First, we
check the first job, for which the 3rd DC forms a bottleneck. We remove
1/3 of its workload and we transfer it to the 2nd DC, which is the only
other DC with non-zero allocation; this results in r1i =(0, 0.83, 0.17). The
new RT (G) is 40.91 sec. The benefit in the data movement is 4 MB (Figure
3b). Then, Greedy proceeds to the second job and reallocates its tasks as
follows: r2i =(0.04, 0.96, 0) (the bottleneck DC is the first one) and the met-
rics become RT (G) = 38.46 sec and DM(G) = 258.1 MB. The new running
time is under the threshold and the benefit for this second re-allocation is
4.05 MB (Figure 3c). As a final result of this iteration, the most beneficial
reallocation is the second one and it is accepted; if it had any downstream
nodes, we would rerun LP for these nodes.

Overall, in a single iteration, even in a very simple graph, we managed
to improve upon Iridium by 1.5% in terms of DM(G) at the expense of 0.7%
increase in RT (G).
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Algorithm 2 Iterated Local Search algorithm

Require: allocations,RTthreshold,DM(G)
Calculate DM(G) using allocations
Calculate RT (G) using allocations
tempAllocations← SHC(tempAllocations,RTthreshold,DM(G))
for i← 1 to iter1 do
tempAllocations← perturbation(allocations)
tempAllocations← SHC(tempAllocations,RTthreshold,DM(G))
Calculate RT (G)′ using tempAllocations
Calculate DM(G)′ using tempAllocations
if RT (G)′ ≤ RTthreshold then

if DM(G)′ ≤ DM(G) then
allocations← tempAllocations
DM(G)← DM(G)′

RT (G)← RT (G)′

end if
end if

end for
return allocations, RT (G), DM(G)

4.3. A stochastic solution

Our stochastic solution is an Iterated Local Search (ILS) algorithm that
uses Stochastic Hill Climbing (SHC) as an internal heuristic mechanism.
The algorithm is described in Algorithm 2. The input of the algorithm is
the initial allocation of tasks on the DCs and the threshold on the RT (G).
The output is the new allocation of tasks optimized for lower DM(G) as well
as the new RT (G) and DM(G). ILS first applies the heuristic mechanism on
the initial solution and then iterates iter1 times. In each iteration, it creates
a perturbation of the current solution, applies the heuristic mechanism to it
and checks if the DM(G) is optimized while RT (G) is under the threshold.
The rationale behind using hill climbing is not to move very far away from
a neighborhood that is considered to be a good starting point, while we
perturb the intermediate solutions to adequately cover the search space.

The perturbation is an algorithm that given the initial allocation and a
parameter d, chooses d random jobs and some random DCs and rearranges
their task placement fractions by β regardless of the resulting RT (G) and
DM(G) values. The Stochastic Hill Climbing heuristic is presented in Al-
gorithm 3. The input of the algorithm is an initial allocation of tasks on the
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Algorithm 3 The SHC algorithm

Require: allocations,RTthreshold,RT (G), DM(G)
for i← 1 to iter2 do

Pick a random job
for eachDC do

With probability 0.5, reallocate tasks regarding the random job
through reducing DC’s fraction by β

end for
tempAllocations ← apply changes to G
Calculate RT (G)′ using tempAllocations
Calculate DM(G)′ using tempAllocations
if RT (G)′ ≤ RTthreshold then
benefit← DM(G)−DM(G)′

if benefit > 0 then
allocations← tempAllocations
DM(G)← DM(G)′

end if
end if

end for
return allocations

DCs, the threshold of the RT (G), the running time of the initial allocation
RT (G) and the initial allocation’s DM(G) It consists of a loop that iterates
iter2 times. In each iteration, it picks a random job and some random DCs.
For each DC, it removes a β fraction of its tasks, while dividing this work-
load to all the other active DCs. If this move is beneficial and the RT (G)
remains under the threshold then the initial allocation array is replaced with
the current allocation.

4.3.1. Example

Continuing on our previous example of Greedy, we now show a possible
way in which ILS can behave (Figure 4a). We assume iter1 = iter2 = d = 1.
At first ILS applies SHC on the initial solution. SHC chooses randomly a
job, for example the second and then chooses a random DC, for example
the second one. The new fractions become r2i =(0.37, 0.63, 0). The new
metrics are RT (G)=100.42 sec and DM(G)=325 (Figure 4b). The running
time is not under the threshold so the new allocation is rejected. Then ILS
perturbates the initial solution. It chooses a random job, for example the
first and its third DC. The new results can be seen in Figure 4c. The next
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(a) Iridium’s task allocation (b) 1st SHC run

(c) Perturbation (d) 2nd SHC run

Figure 4: Example using ILS algorithm

move is to call SHC on that new allocation. SHC randomly chooses the
second job and the third DC that is r2i =(0, 0.97, 0.03). The new RT (G)
decreases to 37.79 sec and the DM(G) to 239.42 MB (Figure 4d). Thus, the
solution is accepted. In this example, we can see that ILS can also decrease
both DM(G) and RT (G).

5. Evaluation

The purpose of the experiments is threefold: firstly to evaluate the rel-
ative efficiency of ILS and Greedy in a wide range of scenarios, secondly, to
provide concrete insights into the benefits expected, and finally, to compare
our solutions against simple techniques, according to which we gather all
data on a single DC. We provide both simulations and real runs on a small
cluster. DM(G) values are the same in both settings. Using simulations, we
can cover a broader range of test scenarios, where we can enforce RT (G) to
depend on the communication cost only. On the other hand, the real setting
shows actual RT (G) values, where CPU processing is lightweight but not
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Figure 5: DAGs considered in the experiments (taken from [19])

negligible.

5.1. Experimental Simulation Setting

The experiments we performed were on a range of DAGs as shown in
Figure 5 taken from [19]. The DAGs are in three sizes and five types.
Type(A) represents a flow in a form of chain and refers to applications that
use an initial dataset and produce a final one. In Type(B), more than one
final datasets are produced. Type(C) is an extension to Type(A), where
some nodes have multiple input datasets. Type(B) and Type(C) are binary
tree graphs. Type(D) contains jobs with three input datasets. The graphs
have the form of a mesh. Type(E) extends (B) and represents more generic
DAGs and not only trees. Each type comes in three sizes, small, medium
and large with 5, 10, 15 number of non-source nodes, respectively. Overall
there are 15 DAGs. The types are generic enough to capture arbitrary
computations, such as those from the TPC-DS and TPC-H benchmarks.
For example, as Figure 6 shows, running TPC-H in Spark is equivalent to
running multiple Type(B) DAGs.

We also experimented with 3 values of M = 5, 10, 15 and 3 values of
ε = 0.1, 0.2, 0.5. The experiments were performed for every combination
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Figure 6: Two representative TPC-H DAGs running in Spark and their corresponding
higher-level representation

of DAG, number of DCs and ε value. Unless otherwise stated, d = 3,
iter1 = iter2 = 75 and β = 1/3. For the remainder of the variables, we
resort to a setting similar to the one in [2]. The initial dataset Ij of the
source nodes is randomly generated in the range [100MB, 1GB]. The Ui and
Di of each DC fall into the range of [100MB, 2GB]. The selectivities α of the
jobs are between 0.01 and 2 with 50% of the job selectivities ranging from
0.01 to 0.5, 25% of them ranging from 0.5 to 1 and the rest 25% ranging
from 1 to 2 (similar to the selectivities in Facebook production analytics
according to [2]). For each combination of DAG type, M and ε, we created
60 random instances according to the parameters above, and we report the
average values.

5.2. Experimental Results and Key Remarks

5.2.1. Main comparison

In the first set of experiments, we compared Greedy to ILS regarding
their improvements upon the technique in [2], when we set ε = 0.2. The
results are presented in Figure 7 and Figure 8 for DM(G) and RT (G),
respectively. As we can observe from Figure 7, ILS is more beneficial than
Greedy regarding the total DM(G). Greedy reduces data traffic by a mean
of 1.24% while ILS by 44%. More importantly, ILS reduces, most of the time,
the RT (G) as well, with a mean reduction of 37% while Greedy increases
the RT (G) by 4%. Especially, for the (E) type of DAG, the reductions are
over 90%, which corresponds to improvements by an order of magnitude.
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Figure 7: Percentage of DM(G) reduction for M =5, 10 and 15 when ε=20%

In general, the more complex types (C), (D) and (E) benefit more than
the simpler ones; this is because, in complex DAGs, there are more inter-

18



Small-A

5 10 15
-50

0

50

100

150
Greedy

ILS

Medium-A

5 10 15
-50

0

50

100

150
Greedy

ILS

Large-A

5 10 15
-50

0

50

100

150
Greedy

ILS

Small-B

5 10 15
-50

0

50

100

150
Greedy

ILS

Medium-B

5 10 15
-50

0

50

100

150
Greedy

ILS

Large-B

5 10 15
-50

0

50

100

150
Greedy

ILS

Small-C

5 10 15
-50

0

50

100

150
Greedy

ILS

Medium-C

5 10 15
-50

0

50

100

150
Greedy

ILS

Large-C

5 10 15
-50

0

50

100

150
Greedy

ILS

Small-D

5 10 15
-50

0

50

100

150
Greedy

ILS

Medium-D

5 10 15
-50

0

50

100

150
Greedy

ILS

Large-D

5 10 15
-50

0

50

100

150
Greedy

ILS

Small-E

5 10 15
-50

0

50

100

150
Greedy

ILS

Medium-E

5 10 15
-50

0

50

100

150
Greedy

ILS

Large-E

5 10 15
-50

0

50

100

150
Greedy

ILS

Figure 8: Percentage of RT (G) reduction for M =5, 10 and 15 when ε=20%

dependencies between the DAG nodes that prevent simple greedy heuristics
to perform efficiently.
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Figure 9: Percentage of DM(G) reduction for the Small-A (top) and Large-E (bottom)
DAGs when running ILS for different M (horizontal axis), ε and β values
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Figure 10: Percentage of RT (G) reduction for the Small-A (top) and Large-E (bottom)
DAGs when running ILS for different M (horizontal axis), ε and β values

5.2.2. Sensitivity to the β and d parameters

In the next experiment, we test the impact of β, and more specifically, we
experiment with decrease factors of 1/2, 1/3, 1/4 and 1/5. We show results
for the Large-E and Small-A DAG types in the Figures 9 and 10. From these
figures, we can see that the higher the β the more the reduction of the data
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Figure 11: Percentage of DM(G) reduction for the Small-A (top) and Large-E (bottom)
DAGs when running ILS for different M (horizontal axis), ε and d values

traffic and running time. More specifically, for Large-E, the average data
traffic reductions are 96%, 91%, 81%, 75% and the time reductions 95%,
89%, 70%, 63% when β is 1/2, 1/3, 1/4, 1/5, respectively. Additionally, the
reduction is significant higher in Large-E than in Small-A. When running
the experiments for Small-A, the data traffic reductions are 37%, 32%, 30%,
28% and the time reductions 29%, 24%, 21%, 18%, for the same β values.

In the next set of experiments, we examine the impact of the variable d
on ILS. More specifically, we run ILS for d =2,3,4. The results in Figure 11
indicate that none value of d outperforms the others, i.e., ILS does not rely
on the value of d. However, a pattern for the complex DAGs of type (E) is
that for limited or many machine choices (i.e., M=5 and 15, respectively),
not allowing too much deviation from the initial solutions through a smaller
value of d yields better results; for the M values in between the opposite
holds.

5.2.3. Impact of initial allocation and convergence

In this experiment, we tested if setting the Greedy algorithm’s solution
as the initial solution in ILS would have better results than initializing ac-
cording to the Iridium’s solution. We also examined the case in which ILS
runs over a random initial allocation. The experiment was performed on the
Small-A and Large-E DAGs. The results in Figure 12 show that, in most
cases, the random initialization results to a worse outcome than ILS and
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Figure 12: Percentage of DM(G) reduction for the Small-A (top) and Large-E (bottom)
DAGs when running ILS on top of Iridium, a random Solution and Greedy for different
M (horizontal axis) and ε values

Greedy. Interestingly, ILS and Greedy not only do not dominate each other,
but, in certain cases, are superior by a large margin.

Following up on investigating the issue of initial allocation, we examined
the convergence rate of ILS with the three different initializations. The
results shown in Figure 13 indicate that ILS closely approaches its final
output well before the 75th iteration, which is the last one. This allows us
to propose a meta-solution, in which ILS runs half of its external iterations
starting from the Iridium solution and the other half starting according to
the Greedy solution. As shown, in Figure 13, this will not lead to significant
performance degradation compared to the results in Figures 7 and 8; and as
shown in Figure 12, it may yield further improvements.

5.2.4. On the need for non-naive heuristics

Up to now, we have concentrated on experiments that can provide evi-
dence on the higher efficiency of ILS over Greedy and Iridium; improvements
over the latter can be 1-2 orders of magnitude. A question may arise as to
whether following a simple approach, such as gathering all data in a single
DC, can yield better results. To test this hypothesis, in our last set of our
experiments, we tried totally removing a DC rather than decreasing its task
allocation proportion while making sure that at least one DC is working,
i.e., β was set to 1. We also tested running all the jobs in only one DC. The
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Figure 13: DM(G) (left) and RT (G) (right) convergence rate for the Small-A (top) and
Large-E (bottom) DAGs when running ILS on top of Iridium, a random Solution and
Greedy for 75 iterations (M=10, ε=10%)

experiments were performed on the Small-A, Large-A and Large-E DAGs.
Running all the tasks in one DC means that the data (except for the source
jobs) will end up being in that DC. The reduction for Large-E when using
ILS or the one DC execution is up to 99% both for traffic and time reduc-
tion. For the linear DAGs like Small-A and Large-A the reductions are not
that high. As we can see in Figure 14 and Figure 15, the naive solution of
running all the jobs in one DC is the most beneficial regarding the traffic
reduction by an average of 49% while the running time reduction is only
3.3%. Our technique, which gradually removes DCs using ILS, is more ben-
eficial regarding the running time with 43.5% but less beneficial on data
traffic with 32.5% of reduction. However, this means that our technique is
applicable when we set ε < −0.1, and in general, yields better improvements
on a combined metric that considers DM(G) and RT (G) as of equal impor-
tance. More specifically, the ratio of the RT (G) reduction to the DM(G)
reduction is 43.5/32.5=1.33 in our case, whereas only 0.067 for the naive
solution. This justifies the need to develop more advanced solutions to the
problem of bi-objective task allocation in geo-distributed flows.
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Figure 14: Percentage of DM(G) reduction of ILS and a naive solution that allocates
all tasks to a single DC for the Small-A (top) and Large-A (bottom) DAGs for different
M (horizontal axis) and ε values
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Figure 15: Percentage of RT (G) reduction of ILS and a naive solution that allocates all
tasks to a single DC for the Small-A (top) and Large-A (bottom) DAGs for different M
(horizontal axis) and ε values

5.2.5. Summary

The main observations are summarized as follows:

1. ILS induces significant larger reduction in DM(G) and RT (G) than
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Greedy. Specifically, ILS succeeds an average of 44% reduction in
DM(G) while Greedy can reduce it by only 1.24%.

2. ILS achieves most of the time both RT (G) and DM(G) reduction
showing that Iridium’s task placement is not optimal for complex
graphs and that re-arranging the tasks between DCs will likely im-
prove both metrics. In our experiments, ILS decreases time by an
average 37%.

3. The β parameter is of high significance. In our experiments, we showed
that removing 1/2 of its tasks is more beneficial than removing smaller
proportions, i.e., 1/3, 1/4, 1/5. Removing larger proportions has a big-
ger effect on the total allocation plan thus providing a more beneficial
solution. Specifically, β = 1/2 is on average, 30% more beneficial on
data traffic reduction and 55% more beneficial on running time reduc-
tion than β = 1/5.

4. ILS and Greedy can be combined, in the sense that Greedy can serve
as the initial allocation further refined by ILS. A complete solution is
to run ILS on top of both Greedy and Iridium; running ILS on top of
a random initial allocation is always inferior.

5. Running a job in fewer DCs is in general more effective than using all
the DCs. In some cases running all the jobs in one DC is even more
beneficial. In our experiments we found that running all the jobs in
one DC from the start is more beneficial regarding the traffic reduction
but gradually removing the DCs using ILS is more beneficial when
taking into consideration both time and traffic reduction. Therefore,
our solutions are the only option for ε < −0.1.

6. The DAGs which benefit more from our algorithms are the larger and
more complex ones like those of the (C), (D) (E) types, with the latter
having the highest improvements.

5.3. Spark implementation details and experiments on a real cluster

Our approach has been incorporated into Apache Spark 2.3.2. To enforce
our own task placement, we override the TaskSchedulerImpl class, where
we disable the shuffling of the offers the executors make for a task. We also
edited the TaskSetManager class to set the task locality to ‘‘Any‘‘ and
thus prevent Spark from deciding a placement for the tasks based on the
data location.
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Table 4: Network capacity of the machines in the cluster (in MB/sec)

Case A Case B Case C Case D
Machine uplink downlink uplink downlink uplink downlink uplink downlink

1 2 2 5 5 10 10 500 500
2 1 4 2.5 10 5 20 250 1000
3 3 2 7.5 5 15 10 750 500
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Figure 16: Comparing the percentage of estimated and real RT (G) reductions of ILS
for different network configurations (left), different DAG size (middle) and different input
size (right, the star means that we switch to Case-C).

The real experiments complement the simulated ones only with regards
to the RT (G) value; the DM(G) improvements in a real setting are exactly
the same as in the simulations. We use three machines, and we examine
chain workflows of Type (A), where, in each stage, data is simply reparti-
tioned with selectivity set to 1. The number of nodes in the DAG is initially
set to 7 (repartitioning cannot be enforced to the first one), and the in-
put size is 143.6 MB. Table 4 shows the network capacity in four settings.4

The data allocations for each Spark stage are estimated offline before the
execution begins.

In Figure 16, we compare the estimated RT reduction that ILS achieves
over Iridium against the real reduction observed in Spark. On the left hand-
side, we observe that the slowest the network, the highest the actual reduc-
tion in RT (G). Then, we keep the Case-B in the table, and we modify the
DAG size (see Figure 16(middle)); the actual reductions are more significant
for not very small DAGs. Finally, we modify the input size; as shown in
Figure 16(right), real executions are sensitive to this metric. Overall, we see
that the simulations tend to overestimate the RT (G) reductions mainly due
to the non-negligible processing cost in practice, but there are cases, where

4In order to set the bandwidth limits of the executors, we used the Wonder Shaper

script from https://github.com/magnific0/wondershaper
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Table 5: Real times referring to Figure 16(right)

size (in MBs) Iridium Time (in mins) ILS Time (in mins)

29 0.3 0.23

87 1.2 0.58

144 2.6 2.2

288 4.8 4.2

689 7 6.3

Table 6: Running times of the algorithms for different M values (in sec).

Algorithm \M
Small A Medium C Large E

5 10 15 5 10 15 5 10 15

Iridium 2 2 2 3 3 3 3 3 3
Greedy 1 1 1 3 7 12 4 13 17
ILS (75 iterations) 68 72 78 87 97 107 107 133 167

the estimates are accurate. In the real experiments, we observed RT (G)
reductions up to 51%, but if we exclude the minimum and the maximum
values, the mean reduction is 13.75%.

Regarding real times, Table 5 shows the actual running times in our
3-machine cluster. In these cases, the overhead to find the optimized allo-
cation for ILS was 35 secs, which means that the overhead is outweighed by
the benefits for the input sizes larger than 200MB. In the next section, we
provide further overhead information for larger DAGs.

5.4. Optimization Overhead

To assess the runtime overhead of our solutions, we conducted experi-
ments on a machine with i7-4510U CPU at 2.00GHz with 8 GB of RAM.
The running time of each algorithm is presented in Table 6, where we can see
that ILS is significantly slower than the other techniques, but still, it runs
in less than 3 minutes, which renders it a practical option for data-intensive
flows, which typically have larger running times (in general, if the running
time is lower, then the number of iterations can be decreased).

6. Discussion

This work deals with the problem of minimizing both the total traffic
and the communication-bounded flow execution time in multi-stage geo-
distributed data flows. We propose a fast greedy solution and a slower, but
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more efficient stochastic solution. The latter can achieve significant average
reductions of 44% and 37% regarding the two metrics, respectively, com-
pared to the Iridium proposal [2]. In specific cases, the improvements can
reach 1-2 orders of magnitude. Moreover, we show that a hybrid scheme for
the initial allocation refined by the stochastic solution is preferable. Further,
we argue that both using all data centers and using only a single one are
inferior to our techniques, which follow a middle approach. We believe that
this insight is a valuable contribution of our work, since it essentially advo-
cates to take a critical stand on the broadly spread claim that transferring
distributed data to a single or fewer places is too costly. Our solution is
implemented and tested in Spark as well.

Our work can be extended in several ways. Two promising directions
for future work is to extend our solutions for the cases where the processing
capacity of a data center is limited and to account also for the processing cost
on the data centers, which is now assumed to be negligible compared to the
data transmission time. Another line of research could deal with optimizing
for multiple queries, which relates also to the issue of revising the initial data
allocation. Finally, since our solutions rely on accurate statistics, developing
robust techniques that can tolerate inaccuracies in statistical metadata is
important.
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