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Abstract Efficient join processing plays an important role in big data anal-
ysis. In this work, we focus on generic theta joins in a massively parallel en-
vironment, such as MapReduce and Spark. Theta joins are notoriously slow
due to their inherent quadratic complexity, even when their selectivity is low,
e.g., 1%. The main performance bottleneck differs between cases, and is due
to any of the following factors or their combination: amount of data being
shuffled, memory load on reducers, or computation load on reducers. We pro-
pose an ensemble-based partitioning approach that tackles all three aspects.
In this way, we can save communication cost, we better respect the memory
and computation limitations of reducers and overall, we reduce the total exe-
cution time. The key idea behind our partitioning is to cluster join key values
following two techniques, namely matrix re-arrangement and agglomerative
clustering. These techniques can run either in isolation or in combination. We
present thorough experimental results using both band queries on real data
and arbitrary synthetic predicates. We show that we can save up to 45% of the
communication cost and reduce the computation load of a single reducer up
to 50% in band queries, whereas the savings are up to 74% and 80%, respec-
tively, in queries with arbitrary theta predicates. Apart from being effective,
the potential benefits of our approach can be estimated before execution from
metadata, which allows for informed partitioning decisions. Finally, our solu-
tions are flexible in that they can account for any weighted combination of the
three bottleneck factors.
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1 Introduction

Traditionally, analytical queries have played a significant role in a wide spec-
trum of data analysis techniques, spanning from simple statistics generation
to data warehousing and support for data mining algorithms. For very large
data volumes, like those derived from scientific experiments or extracted from
web-server logs, one of the most common approaches is to perform the anal-
ysis according to the MapReduce programming model, and its descendants,
such as Spark. Not surprisingly, analytical query processing in MapReduce
has attracted a lot of interest, and the relevant work has investigated several
issues, including indexing, data placement, data layouts, optimizations, itera-
tive processing, fair load allocation and interactive processing to name some of
them [11,19]. In this work, we focus on improving the efficiency of join queries
executed in a massively parallel setting, and more specifically, we target se-
lective binary theta-joins. Selectivity is defined as the ratio of the join result
records to the results of the cartesian product; selective binary joins are those
with low selectivity values. Theta-joins generalize equi-joins in the sense that
the join condition between two datasets is arbitrarily complex rather than a
simple equality constraint.

Join processing in a MapReduce environment has been extensively investi-
gated recently [21,3,30]. The reference algorithm for partitioning the work of
binary theta-joins to MapReduce reducers, presented in [21], is accompanied
by optimality theoretical guarantees [16]. The fact that the solution in [21]
is optimal according to the analysis in [16] may be deemed as discouraging
for conducting further research on this topic. But in this work we show that,
when we consider selective theta-joins of the form S ⊲⊳θ T , there is a signifi-
cant space for improvement in terms of (i) the communication cost between the
map and the reduce phase and (ii) the maximum memory and computational
load a single reducer receives. The memory load is measured in terms of the
input size of each reducer, and the computational load is measured in terms
of the tuple pairs for which the theta predicate is checked at runtime (either
implicitly or explicitly depending on the actual join algorithm employed at
each reducer locally). These aspects are directly related to the total cost and
the running time of a MapReduce/Spark application for theta joins. In this
work we manage to significantly enhance the reference algorithm in [21] for
joins with relatively low selectivity, e.g., up to 30%.

The main challenge in efficient processing of a parallel theta join stems
from the inherent trade-off between the (maximum) number of records a re-
ducer becomes responsible for and the replication factor between the map and
the reduce phase. The replication of the map output across several reducers is
necessary to ensure result correctness [21,22,2] and determines the communi-
cation cost between mappers and reducers. The replication issue is mitigated
if fewer reducers are used. In the extreme case, where there is a single reducer,
there is no replication; however, since a single reducer becomes responsible for
the whole dataset, it may run out of memory both during processing its input
and producing its output.
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Current solutions, including the reference algorithm mentioned above, tar-
get a single criterion at a time, e.g., maximum reducer input [21,12] with the
exception of [27], which considers both input size and computation load per
reducer. Our first main novelty is that we consider all three important factors,
namely the replication rate, the maximum reducer input and the maximum
computation load per reducer in a configurable way. Furthermore, we signif-
icantly improve efficiency even when a single criterion is taken into account.
Broadly, the problem we examine is, given the number of reducers that are
available, to derive a partitioning that yields improvements in both the repli-
cation factor and the maximum workload allocated to a reducer in terms of
memory and computation load.

A key element of our approach is the manipulation of the join matrix (JM);
the JM is a binary two-dimensional array that captures the information about
which set of values from S match those from T according to the θ condition.
It is straightforward to construct such a JM, where the values of S and T are
ordered, and then, to pass it as an input to the algorithms in [21] to partition
it to sub-matrices, one for each reducer (see Section 2 for more details).

Our approach is to cast the problem of partitioning parallel theta-joins
as the task of partitioning the JM according to multiple criteria. In order to
partition the JM, we follow two methodologies. The first one uses an exist-
ing partitioner but pre-processes the JM, so that its contents are clustered
with a view to facilitating the partitioner to take better decisions. The sec-
ond methodology, contrary to existing approaches [21,12,27], departs from
assigning consecutive parts of the JM to a single partition, and performs ag-
glomerative clustering on the JM contents based on a series of policies. Apart
from being effective in improving on all bottleneck factors, some additional
strong characteristics of our proposal are as follows:

– It is flexible in that it can consider any weighted combination of replication,
and memory and computation load on reducers.

– The impact of our techniques can be accurately estimated before real exe-
cution. This means that the proposed partitioning need not be enforced if
estimated to be non-satisfactory.

– In principle, the two main methodologies can be combined, i.e., they need
not be regarded as antagonistic to each other.

– Our techniques are platform-independent and can apply to frameworks,
such as Hadoop, Spark, Flink and any other framework that implements
or extends the MapReduce paradigm. However, here we provide example
running times only for Spark.

In summary, the contribution of our work is three-fold:1

1. We investigate ensemble matrix re-arrangement techniques that perform
clustering of JM values. The rationale behind the re-arrangement is that
clustered JMs are amenable to more efficient workload distribution among
reducers (see Section 4).

1 In our 4-page abstract [16], we provide a preliminary version of the material in Section
4. All the remainder material in this work is novel.
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2. We also propose a new ensemble methodology to partition the work among
reducers that employs hierarchical agglomerative clustering. This method-
ology is capable of performing arbitrary partitioning and thus departs from
the straightforward approach that allocates adjacent JM cells to a single
reducer (see Section 5).

3. We thoroughly evaluate our techniques using joins with two types of theta
predicates, namely predicates for band queries on real data and random
ones. For band queries, the results show that we can save up to 45% com-
munication cost, and reduce the maximum load a reducer receives by 50
%. These improvements are further increased in random theta-joins queries
(74% and 80%, respectively). Finally, the running time of our approach is
low, in the order of a few seconds, when executed on a single machine (see
Section 6).

The remainder of this article is structured as follows. In Section 2, we
provide background material on theta join processing in a massively parallel
setting. The high level description of our approach and evidence of the impact
of each of the bottleneck factors on Spark application running time are pre-
sented in Section 3. The details of the afore-mentioned contribution are in the
following three sections. We discuss related work in Section 7 and we conclude
in Section 8.

2 Background

We briefly describe the approach in [21] for evaluating binary theta joins
S ⊲⊳θ T in MapReduce, which is also applicable to Spark and other simi-
lar frameworks. The key underlying data structure is the join matrix (JM).
The JM, in its simple form, has as many rows as the cardinality of S and as
many columns as the cardinality of T . Each cell of the JM thus corresponds
to a pair of records from both datasets. The JM can take a more concise form
where each row (resp. column) represents an equi-depth bucket and can thus
refer to a range of values of the joining predicate of S (resp. T ); this allows
for a fixed JM size regardless of the cardinalities of the initial datasets.

Assuming a MapReduce setting, a parallel theta-join is executed as follows:
Map phase. For each tuple, assign the reducer it will be sent to as the first
part of the complex map output key. The second part will refer to the candidate
cells that will be explained shortly.
Shuffling phase. Assign keys to reducers based on their first part only.
Reduce phase. Execute local theta-joins.

Essentially, in the map phase, the JM is split into several regions, where
each region is mapped to a reducer2. For each region, we can compute the
amount of tuples that belong to it, which is the input cost of that region and is

2 In the remainder of this work we will use the terms region, partition and group inter-
changeably; we will also use the term reducer for the worker node, where local join processing
takes place, but this does not imply that we are tailored to a MapReduce setting only.
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Fig. 1: Partitioning the JM in 1-Bucket-Theta (left) and M-Bucket (right).

directly related to the computation and memory load of the associated reducer.
For perfect load balancing, we want these regions to have equal input cost
and computation load. In order to accomplish the latter objective, two main
algorithms are presented: 1-Bucket-Theta and M-Bucket-I (and its variation
M-Bucket-O).

2.1 1-Bucket-Theta

1-Bucket-Theta is a generic algorithm that examines, either implicitly or ex-
plicitly, all tuple pairs and requires minimal statistical information, namely
just the cardinalities of the input. A randomized technique is used during the
partitioning process, according to which each value of S and T is randomly
mapped to rows and columns, respectively. The JM is divided beforehand into
regions of same size, based on the number of reducers available. The strong
point of the algorithm is the principled way that it partitions the JM, in a way
that all JM cells are covered and, at the same time, the maximum reducer
input is minimized. The randomization alleviates the need of running an extra
MapReduce pre-processing step to assign unique row and column numbers on
each S and T tuple. Although this technique does not formally guarantee the
desired input and output size for each reducer, there are insignificant statistical
variations for large data sizes.

Figure 1(left) shows an exemplary partitioning across 3 reducers, where
there are 6 tuples from S and 6 tuples from T , and the input cost of each
reducer is 7 (4 tuples from S and 3 from T ), 7 (4 from S and 3 from T )
and 8 (2 from S and 6 from T ), respectively. Overall, the reducers receive 22
tuples, whereas the total size of input is 12. The ratio of these two metrics
22
12 denotes the replication rate for this specific partitioning and reveals the
trade-off between lowering the input cost of each reducer through the increase
in the number of reducers and increasing the number of reducers an input
tuple has to be copied to. In the example, each tuple from T has to be copied
twice, once for either the 1st or the 2nd reducer and once for the third one.
Similarly, the first 4 tuples from S are copied twice to the first 2 reducers and
only the 5th and 6th tuples from S are sent to a single reducer, the 3rd one.
The computation load of a reducer denotes the number of pairs for which the
θ condition needs to be checked and is equal to the number of JM cells. In the
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example, all reducers are responsible for 12 cells, i.e., there is perfect balancing
regarding this criterion.

The algorithm is shown to be perfect for all-pairs comparisons and also
suitable for high join selectivities. For lower selectivities, where a big portion
of JM cells do not correspond to valid results (i.e., results that satisfy the
theta join predicate), significant improvements can be attained capitalizing
on the observation that some JM cells need not be assigned to any reducer.
M-Bucket-I, discussed below, follows such an approach.

2.2 M-Bucket-I

The M-Bucket-I algorithm, which uses more statistical information, outper-
forms 1-Bucket-Theta in cases of low selectivity. M-Bucket-I employs a pre-
processing step of histogram computation. This step runs two consecutive
MapReduce jobs. The first job samples the values of the two sets and com-
putes approximate k-quantiles, which are then used as the bucket boundaries
of the equi-depth histogram, and the second job simply counts the actual num-
ber of tuples in each bucket. The JM denotes pairs of histogram buckets rather
than pairs of tuples. Moreover, each pair of buckets is checked as to whether
it can contain tuples that satisfy the join condition; the check is based on the
bucket boundaries and the resulting cells are termed as candidate cells.

An example is shown in Figure 1(right). As previously, the JM is parti-
tioned into rectangular regions which correspond to reducers input, but now
the regions need not cover all the JM cells but only the candidate ones (shaded
in the figure). In the example, if we assume that the depth of histograms are
equal for both relations, the input of the three reducers is 5,4 and 5 buckets,
respectively. Also, the replication rate is reduced to 14

12 . The computation load
is 4 for all reducers.

The exact partitioning algorithm employs a binary search method to find
the smallest upper bound on the reducer input for which a region splitting
sub-routine can find a valid solution given the number of regions (i.e., reduc-
ers). That sub-routine splits the JM into several consecutive blocks of rows,
and each such horizontal fragment is further split vertically. Each horizontal
fragment is given a score which is equal to the average number of candidate
cells in the vertical strides within the fragment. The subroutine detects the
horizontal fragment with the maximum score starting from the top of the JM,
and continues until either all rows are covered or the number of regions ex-
ceeds the number of reducers; the latter denotes an infeasible solution for the
specific maximum reducer input bound.

The authors of [21] also propose a variation of M-Bucket-I algorithm called
M-Bucket-O. The difference is that the former targets the minimization of
the maximum reducer input, whereas the latter targets the minimization of
the maximum reducer output. Note that estimating the reducer output based
on histograms is prone to significant errors, even when the histograms are
accurate. However, it holds that output is O(number of candidate cells),
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and as such, the number of candidate cells can be used as an approximate
metric for the output. In this work, we adopt a slightly different usage of
O(number of candidate cells), namely to denote the reducer computational
load in terms of the number of tuple pairs that need to be checked, either
explicitly or implicitly, during the actual query execution at the reducers. The
reducers may employ any local join algorithm; the selection and/or develop-
ment of the most efficient join algorithm for the local θ-predicate evaluation
is orthogonal to our research.

3 Our approach

Consider a JM corresponding to the join S ⊲⊳θ T , the cells of which are
grouped in P partitions. Then, for each partition p ∈ P , we define the input
cost IC(p) and the number of the candidate cells CC(p). IC(p) is equal to
the number of the input tuples. The quality of the partitioning of the JM is
assessed with the help of the following three metrics:

1. replication rate (rep), formally defined as the ratio between the aggregate

reducer input and the mapper input [2]: rep =

∑

P

p=1
IC(p)

|S|+|T | ;

2. maximum reducer input (mri), defined as the maximum number of records
sent to a single reducer: mri = max(IC(p)). Mri denotes the maximum
memory load imposed to a single reducer (given that, for performance
reasons, it is important each reducer to be capable of holding all its input
in main memory);

3. maximum reducer computation load (mrcl), defined as the maximum amount
of pairs a single reducer checks (either implicitly or explicitly) to produce
join results, which is proportional to the number of candidate cells in the
JM (given that cells correspond to a pair of buckets from two equi-depth
histograms):mrcl = |Bucket(S)||Bucket(R)|max(CC(p)). |Bucket(S)| (resp.
|Bucket(R)|) is the size in records of each equi-depth bucket of the his-
togram of S (resp. R).

The above metrics represent important aspects of data processing. In par-
ticular rep represents the communication (I/O) cost, mri corresponds to max-
imum required RAM so that processing takes place in main memory, and mrcl
intends to represent the CPU load.

It is straightforward to measure sizes in bytes rather than number of
records; also to define complementary metrics, by applying some other sta-
tistical function over the building blocks of the JM. In this work, we also
investigate the input imbalance (imb), defined as the ratio of mri to the av-
erage reducer input, considering only the non-idle reducers. Essentially, imb
captures the deviation in input between the reducers3. To show that our three
main metrics, namely rep, mri and mrcl, have a higher impact on performance

3 It is also trivial to express imb as a function of mri and rep through simple algebraic
manipulation.



8 Ioannis Koumarelas et al.

than imb, consider the case in Figure 1 where we have 3 reducers, initially
receiving 7, 7 and 8 records, respectively. If we manage to drop the input
records to 5, 3 and 4, then, as shown in Figure 1(right), both mri and rep will
significantly decrease, although imb will become 1.2 from 1.09. However, it is
desirable to keep imb as close to 1 as possible. In the remainder of this work,
we focus on the first three metrics, but we will also discuss imbalance.

The aim of our approach is to reduce an arbitrarily weighted combination of
the replication rate and the maximum amount of memory and computational
load a reducer receives, given the number of available reducers. Replication of
the mappers’ output to multiple reducers occurs whenever there are multiple
candidate cells, either in the same row or the same column of the JM belonging
to different regions (see for example the 2nd row in Figure 1(right)). Thus our
rationale is to reduce the occurrences of such a situation without loading a
single reducer too much following two types of techniques.

3.1 Theta joins on Spark: the impact of replication and reducer load

Before proceeding into the details of our approach, it is important to argue
that aiming to optimize an arbitrarily weighted combination of rep, mri and
mrcl is more general than aiming to minimize execution time using a set
of queries and/or parallel infrastructures. More specifically, here we provide
evidence that (i) rep, mri and mrcl have an impact on execution time, and
(ii) the relative magnitude of their impact is application- and deployment-
dependent, i.e., they depend on the data, theta predicates and infrastructure
characteristics.

To this end, we conducted a series of experiments to show the impact of
each of these metrics. We used the real-world dataset of the Cloud Dataset and
the queries, as described in Section 6, with the cardinality of the two relations
being 2 million records. For these queries, we created different partitioning
plans according to the techniques in Sections 4 and 5. We randomly chose 32
pairs of plans corresponding to the same queries but differing in up to three
out of the four metrics introduced in Section 3 (the three main metrics and
the imbalance); this selection criterion helped us to verify that all metrics are
important. Finally, we experimented with three flavors of raw datasets: small,
where the raw tuples included only the join field, medium, where the raw tuples
included also fields of size 1KB, and large, where the raw tuples were 5KB in
size. The experiments ran on a Spark cluster at Barcelona Supercomputing
Center, the details of which are described in [26], and employed 20 reducers.
We allocated each reducer on a single core and in order not to cause network
traffic unnecessarily, we made sure that these cores belong to two physical
machines, each equipped with two 8-core Intel Xeon E5-2670 processors. The
actual running times of the queries ranged from 49.9 to 940.6 secs, whereas the
result sizes ranged from 4.1 to 27.6 billion records. Each query was executed
5 times and the median times are presented.
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Fig. 2: Correlation of each of the four metrics and the response time.
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Fig. 3: Correlation between the response time and the combination of rep and
mrcl.

Figure 2 shows some indicative aggregate results, where, for each of the 32
selected pairs, the correlation between the ratio of the response times and the
ratio of the four metrics is examined. Starting from top-left, one can observe
that there is a strong correlation between rep and the response time for the
large dataset. This is expected since, the communication cost is more dominant
when the tuples are larger in size. The correlation is significantly weaker for
the other two datasets. Next, we can observe that mrcl is strongly correlated
with the response time for the small and medium datasets. Mri and imb seem
to be correlated with the response time as well. In addition, they exhibit the
same behavioral pattern and thus we can safely consider only mri.
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Figure 3 provides further insights into the relative impact of the rep and
mrcl metrics on performance. Red colors correspond to higher ratios whereas
blue colors correspond to lower ratios; the exact range is shown in the bars
next to the images. On the left, we can see that, for the small dataset, the
response time is mostly determined by mrcl, whereas for the large dataset
both metrics are important. If we increase the number of reducers (no figures
are shown), we have observed that the impact of rep is mitigated, that of mri
slightly increases, and mrcl remains a dominant factor.

In summary, the main lesson from this set of experiments is that rep, mri
and mrcl are indeed correlated to execution time and, for different queries and
different data sizes, the weight of each of these three factors changes. Similarly,
the cluster characteristics and settings, e.g., number of reducers, also affects
the relative importance of the factors (no detailed results are presented). Also,
these metrics are inherently related to the network transfer time, local disk I/O
time, and CPU time, which are reported to be application and deployment-
dependent in other recent works as well, e.g., [8]. Consequently, an objective
function, in which the weights of the three metrics were fixed, would accu-
rately reflect execution time only under certain conditions. On the contrary,
aiming to optimize an arbitrarily weighted combination of the rep, mri and
mrcl metrics renders our work more generally applicable, in the sense that it
can cover execution times in arbitrary settings provided that the weights are
appropriately set for such settings.

3.2 Problem Formulation and Approach Outline

Formally, the problem we target is specified as follows:
Problem Definition: Given (i) a maximum number of reducers P and

(ii) a n×m JM matrix, find an allocation of each candidate cell JM(i, j), 1 ≤
i ≤ n, 1 ≤ j ≤ m to a single reducer, s.t. the objective function

OF = α · rep+ β ·mri + γ ·mrcl (1)

is minimized, where α, β and γ are provided by the user. In Section 6, we show
how the three metrics are normalized with regards to the baseline approach
in Section 2.2 by appropriately setting the α, β and γ weights.

We explore two methodologies in order to allocate candidate cells to re-
ducers more efficiently. First, we permute JM ’s rows and columns in order to
improve the quality of the partitioning phase; the latter can be performed ac-
cording to M-Bucket-I/O. Intuitively, creating clusters of cells along the main
diagonal will form a distribution of candidate cells inside the JM, which is
expected to better fit in rectangular regions leading to no or little replica-
tion. Therefore, this technique essentially adds a step of beforehand analysis
to the M-Bucket-I/O algorithm, just after the histograms are built and the
initial JM is produced. We investigate several solutions for performing the
re-arrangement.
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Algorithm 1 High-level partitioning

Input: JM(S × T ), P, OF ( α, β, γ)
bestV alue, bestPartitioning ← NULL
for r ∈ JM re-arrangement solutions do

for s ∈ JM candidate cell clustering solutions do

part← partitioning based on P and r and s solutions
if OF value of part < bestV alue then

bestPartitioning ← part
bestV alue← OF value of part

return bestPartitioning

Fig. 4: The end-to-end theta-join processing. This work targets the two dark-
shaded steps.

Second, we investigate a partitioning technique that is based on agglom-
erative clustering and is not restricted to rectangular areas or adjacent cells
in the JM. This partitioning can be performed on either the original or the
re-arranged JM before the actual execution. When partitioning the matrix,
we consider all the factors that can potentially form a performance bottleneck.
We investigate several policies for performing this.

A strong point of our approach is that the metrics mentioned above can be
accurately estimated before the actual MapReduce/Spark program is executed
by analyzing the final workload to be allocated to reducers. An implication of
the fact that the quality of a partitioning can be accurately quantified before
execution is that, whenever a new partitioning result is not estimated to yield
any improvements, it can be simply discarded, and as such, our approach can
be safely adopted. In the worst case, there will be an extra overhead for re-
arranging the JM and derive non-beneficial partitioning, but this overhead is
negligible, since it is polynomial in the JM matrix size. Figure 4 shows the
phases of a theta-join execution, where our contribution refers to the shaded
components. As shown, our techniques take place before the actual execution
on a MapReduce or Spark platform.

The high level approach to partitioning that we follow is shown in Algo-
rithm 1, which refers to the most generic case, where the two techniques in-
vestigated are used in combination. In the algorithm, part is a valid allocation
of each JM to a reducer. The code of our work is available for download from
https://github.com/JohnKoumarelas/binarythetajoins (assuming execu-
tion on Spark).
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4 Re-arranging the Join Matrix

Our first type of techniques modifies the partitioning without actually propos-
ing a new partitioning technique but through the proposal of using an ex-
isting partitioner after having modified the initial JM. The problem of cell
re-arrangement can be addressed with several algorithm families, such as clus-
tering (e.g., hierarchical, array-based, and so on), combinatorial optimization
(e.g., bin packing, knapsack) and bandwidth reduction. In the present work we
study the use of two widely known algorithms, the Bond Energy Algorithm
[20] and the Traveling Salesman Problem (TSPk) algorithm. According to Al-
gorithm 1, the presented solutions can form an ensemble and thus need not
be regarded as antagonistic to each other.

4.1 BEA-based solutions

Bond energy algorithm (BEA) is a clustering technique used in a wide range
of applications such as manufacturing (e.g., packing problem), distributed
database design, and software engineering (e.g., for analysing program struc-
ture) [5].

The purpose of BEA is to identify and produce clusters of similar values in
complex data arrays. This is accomplished by permuting rows and columns of
an input data matrix in such a way so that the larger elements of the matrix
are moved closer to each other. BEA uses a measure of effectiveness (ME) to
validate the result of every permutation. The ME is computed as the sum of
the bond strengths in the array, where the bond strength between two adjacent
elements is defined as their product. More formally, ME(A) is equal to:

1

2

∑i=N

i=1

∑j=M

j=1
aij [ai,j+1 + ai,j−1 + ai+1,j + ai−1,j ]

whereA is any non negativeN×M array, with the convention (a0,j = aN+1,j =
ai,0 = ai,M+1 = 0).

The BEA runs as follows. It initializes the new matrix by placing its first
two rows (resp. columns). For each of the remaining rows ai,∗, 3 ≤ i ≤ N

(resp. columns, a∗,i, 3 ≤ i ≤ M ), the algorithm examines its placement in
the first i entries so that ME is minimized. When the algorithm finishes, the
new array comprises the same rows (resp. columns) in a new order.

The BEA was selected among other clustering algorithms, due to its fol-
lowing characteristics that suit better to our problem specification: (i) BEA
has polynomial complexity. (ii) It is applicable to matrices with non-equal
dimensions. (iii) The row (resp. column) permutations are independent from
the column (resp. row) permutation. Consequently, it only takes two passes to
re-arrange the matrix. (iv) Finally, it tries to produce a block-diagonal matrix.
Packing values closer to the diagonal of the JM reduces the replication factor
(see Figure 1(right)).
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1 0 1 0
0 1 0 1
0 1 0 1
1 0 1 0

(a) ME=2

1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1

(b) ME=4

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

(c) ME=8

Fig. 5: BEA Re-arrangement

The implementation of the BEA needs to be done carefully as it is prone
to high execution times for large matrices. The algorithm makes two passes
to re-arrange the matrix however, it also needs two iterations over every row
(resp. column) item in every pass to compute the ME metric. To ameliorate
this, we have compressed the JM using bitmaps instead.

In Figure 5, we present a simple example of the BEA applied on a 4 × 4
matrix. The ME values are shown below of every sub-figure. In Figure 5a, the
original matrix given as an input to the algorithm is presented. The ME of the
original matrix is 2. In Figure 5b, the resulting matrix after row permutations
is presented where the ME is equal to 4. Last, in Figure 5c, the final matrix
after the columns permutation is displayed with ME equal to 8.

We have also examined a variation of the BEA, where the values that are
within a pre-specified radius are taken into consideration in order to compute
the ME measurement, instead of only the upper (left) and bottom (right)
ones. The results of this variation, termed as BEARadius, are presented in the
experimental section.

4.2 TSP-based solutions

The authors of [9] recognize the extensive usability and superiority of BEA over
other re-arrangement clustering algorithms, such as rank ordering clustering
(ROC) [15] and direct clustering analysis (DCA) [5], but they point out a
pitfall regarding the default ME measurement used in BEA. Giving concrete
examples, they show that the ME used fails to distinguish between the levels of
clustering of the pairs of zeros, producing inefficient clustering along the main
diagonal in certain cases. They also present an example where this behavior
is not limited to zeros. Their suggestion to overcome this pitfall and further
issues that occur in other proposed algorithms, is to regard the TSP problem
as a re-arrangement clustering one, given that these two problems are shown
to be equivalent [18,17]. More specifically, [17] states that the BEA algorithm
is “a simple suboptimal TSP method, which constructs a tour by successively
inserting the cities”, in the same way that BEA successively places rows (resp.
columns).

More specifically, the TSP solution, which finds the circular tour with min-
imum distance among all complete tours, can be seen as a re-arrangement of
the cities, in which most similar (i.e., close cities) are in adjacent places. This
is equivalent to placing similar rows (resp. columns) in adjacent places, exactly
as BEA aims to do with the convention that rows (resp. columns) represent
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Fig. 6: A good example of splitting a JM in rectangular areas

cities. As an example, in Figure 5b, the last row of Figure 5a has been moved
to the second place; this corresponds to a path, where the TSP solution visits
the fourth city starting from the first one. To apply the TSP algorithm to the
re-arrangement problem of our case, cycles need to be replaced with paths and
the optimization problem of finding the minimum distance between the cities
has to be replaced with the one previously presented in the BEA algorithm ap-
plication, i.e. the maximization of ME. In [9], a mechanism to compute paths
over cycles through the inclusion of dummy cities to the problem formation
is presented. The replacement of the optimization problem is straightforward
by replacing the respective objective function of the TSP algorithm with the
ME(A) function presented earlier and inverting the minimization to a maxi-
mization problem. Any TSP solver can be used to solve the TSP problem; we
preferred to use the Concorde TSP Solver4 which is proved to be highly scal-
able, as it has solved TSP problems with up to 85900 cities. In the evaluation,
we will refer to this solution as TSPk, where k is set to the number of available
reducers.5

In the above solution, the re-arrangement algorithm permutes the rows,
which correspond to the cities, and uses the columns only for the distance/dis-
similarity computation. Given that in our problem formation, the rows and
columns have equivalent role, we have created an additional re-arrangement
algorithm, where we first provide the rows as cities to the TSP solver and then,
we transpose the JM to provide the columns as cities. Thus the permutations
are applied to both rows and columns. This variant is called TSPk-Transposed
(TSPkT ).

5 Partitioning the Join Matrix

Matrix re-arrangement aims to facilitate the existing partitioning technique
in [21] to reduce the replication rate and the other metrics of interest; our
partitioning solutions aim to tackle the same problem more directly. The role
of the partitioner is to derive a mapping of candidate JM cells to reducers,

4 http://www.math.uwaterloo.ca/tsp/concorde/
5 TSPk is implemented according to [9], the code of which has been integrated into

our codebase under the https://github.com/JohnKoumarelas/binarythetajoins/tree/

master/btj/tspk directory.
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(a) (b)

(c) (d)

Fig. 7: A counter-example of splitting a JM in rectangular areas along with 3
more efficient partitioning solutions

which corresponds to a customized shuffling of map output. The mapping is
implemented with the help of an associative array structure which maps every
histogram bucket to a set of reducers. In Hadoop, it can be easily enforced
through the Job::setPartitionerClass function. Alternatively, in any mas-
sively parallel framework that supports shuffling of key-value records based on
key (e.g., through a groubByKey function), the partitioning can be enforced
through setting the key to the reducer id.

5.1 Non-Rectangular Groups of Candidate Cells

The novelty of our approach is that it explores solutions that can group can-
didate cells to the same reducer even if those cells are far away in the JM.
Consider the example in Figure 6, where grouping the cells in a rectangular
way so that four regions are constructed (assuming the availability of four
reducers) produces the best outcome in terms of the maximum input cost per
reducer and the minimum replication rate. The reducer input cost equals four
equi-depth histogram buckets, and on average, each input record is replicated
16
12 = 4

3 times. The selectivity associated with that JM equals the percent-
age of candidate cells, which is 12

36 = 0.33. In the figure, the number in each
candidate cell denotes the id of the reducer that cell is allocated to.

Consider now, in Figure 7a, another example with equal selectivity, where
M-Bucket-I’s partitioning is applied. We can easily compute that mri = 6,
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Algorithm 2 Allocate JM candidate cells to reducers

Input: JM(S × T ), P
cand← countCandidateCells(JM)

mri min← 2
√

cand/P

mri max← |S|+ |T |
while mri max > mri min do

mri← ⌈mri max+mri min

2
⌉

if nonRectangularSplitting(JM, P,mri) then

mri max ← mri
else

mri min← mri+ 1
return mri

and rep = 2. Figures 7b and 7c show two equivalent partitionings that cannot
be displayed as rectangular regions but improve both on rep and mri at the
expense of increasing the mrcl: mri becomes 4, the replication rate drops to
7
6 , but mrcl increases by one cell. Note that if we slightly modify our problem
to allow for different number of reducers, we may come up with other efficient
partitionings; for example, if we could consider 3 groups, as depicted in Figure
7d, mri drops to 4 input buckets as well, but there is no replication (rep = 1).

The examples above provide strong insights that non-rectangular grouping
of candidate cells is a promising alternative. However, the problem of opti-
mal partitioning is intractable. It generalizes the already NP-hard bin-packing
problem. We do not only allocate candidate cells to reducers (which might be
deemed as the classical bin-packing problem) but in addition allocations are
correlated, since each allocation impacts on the quality of other allocations
because of the replication rate.

Our solutions employ three optimization criteria, namely the minimization
of rep, mri and mrcl under the condition that the number of reducers is fixed
and set to P . To minimize the corresponding OF , we follow a two-step ap-
proach. In the first step, we emphasize on a single-objective, e.g., mri or mrcl,
and we propose the application of agglomerative hierarchical clustering onto
JM cells (Sec. 5.2), along with a variety of policies to select the next two cell
groups to be merged (Sec. 5.3). In the next step, we explore a larger solution
space starting from the solution of the first step with a view to optimizing
according to all three weighted criteria (Sec. 5.4). For simplicity, in the re-
mainder of this work, mri, |S| and |T | will be measured in histogram buckets
and mrcl in candidate cells.

5.2 Optimization Through Agglomerative Partitioning

In this section, we describe the first step of our approach, which emphasizes
on a single metric. To optimize a single metric, we need to compute the lower
and upper bounds. We will first describe the procedure when the main metric,
on which we initially focus, is mri.
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Algorithm 3 nonRectangularSplitting

Input: JM(S × T ), P, mri
candSet← deriveCandidateCells(JM)
groups← candSet
numGroups← |candSet|
while numGroups > P do

repeat

(group1, group2)← pickNextGroups(groups)
if (group1, group2) == NULL then

return false
mergedGroup← group1 ∪ group2

until |mergedGroup| ≤ mri
groups← (groups \ group1, group2) ∪mergedGroup
numGroups← numGroups− 1

return true

Algorithm 2 shows the external procedure, which, similarly to the approach
described in Sec. 2.2, tries to minimize only mri in a direct manner. The upper
bound of mri is the total map input, whereas the lower bound is the minimum
possible so that all candidate cells can be processed as shown in Algorithm
2 and explained in [21]. For each mri value examined, the algorithm aims to
derive a grouping of candidate cells that may indirectly target the reduction
of additional metrics, such as rep. This is done with the help of the procedure
in Algorithm 3, which is inspired by agglomerative hierarchical clustering in
data mining [13].

A similar binary search-based procedure can be applied regarding mrcl. In
this case, the upper bound of the binary search is defined as the number of all
the candidate cells of the matrix while the lower bound is the upper bound
divided by P . Also, the upper and lower bounds for rep can be found based
on those for mri according to the analysis in [16].

nonRectangularSplitting in Algorithm 3 starts regarding each candidate
cell in the JM as a different partition and it iteratively merges such partitions
until P groups remain. The algorithm assumes that the binary search is on
mri, but it can be modified for mrcl in a trivial manner. We assume that
candidate cells are more than the number of available reducers, which always
holds in non-trivial cases. The algorithm greedily chooses pairs of candidate
cells to be merged with the help of pickNextGroups. If the merger exceeds the
mri value under investigation, then the next pair in the ordering is selected to
be merged. The same process is repeated until no other pair remains, in which
case the algorithm aborts. Otherwise the algorithm continues until exactly P

groups are derived.

For each pair of groups, we compute a distance. At each merging step, we
select the pair with the minimum distance to be merged and subsequently,
we update only the affected distances. For the latter, we only update the dis-
tances of the pairs affected by the merger. The complexity of our approach
depends on a) the dimensions of the JM, which is the number of equi-depth
histogram buckets, and b) the number of candidate cells. If the maximum
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Fig. 8: Example JMs to explain the techniques for distance computation

Fig. 8a Fig. 8b
group IC CC IC CC

1 3 2 4 3
2 4 2 3 2
3 4 2 2 1

1∪2 5 4 5 5
1∪3 7 4 6 4
2∪3 6 4 5 3

Table 1: The IC and CC metrics for the existing and possible groupings in
Figure 8

number of the equi-depth histogram buckets is d and there are c candidate
cells, then Algorithm 2 is executed O(logd) times, and the complexity of non-
RectangularSplitting is O(c2logc) [13]. Given that in general c > d, the overall
complexity is O(c2logc).

A salient feature of this methodology is that we can target different met-
rics and their combinations through different distance computations, which
renders our solution flexible and easily extensible. In other words, through the
appropriate selection of the distance function, we can indirectly target addi-
tional metrics to the one used in the binary search. Below, we discuss a range
of policies to pick groups and evaluate distances that we investigated in this
work.

5.3 Policies to pick groups and evaluate distances

Similarly to the re-arrangement methods, the different policies complement
each other forming an ensemble (see also Algorithm 1). Consider two 4×4 JMs,
as shown in Figure 8. Our policies for distance computation are understood
with the help of the two low-level metrics per partition p ∈ P , namely input
cost (IC(p)) and candidate cells (CC(p)). In the figures, each cell is annotated
with the partition it belongs to. For simplicity, as in all previous examples,
let us assume that all buckets have exactly the same number of records, thus
counting the number of input buckets is equivalent to counting the number of
input records. Table 1 shows the IC and CC values for the partitioning in the
figure. For example, in Figure 8b, the IC of the first group is 4 (the 1st, 2nd
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and 4th bucket of the relation corresponding to the vertical dimension and the
1st bucket of the other relation); if we merge groups 1 and 2, IC increases by
1.

Overall, we explored 7 different ways to group JM cells (mentioned as
candidate cell clustering solutions in Algorithm 1):

1. AICS: Added Input Cost - Sum. we select the pair that, if merged, will
have the least increase in IC with a view to promoting group mergers that
share a high proportion of their JM rows and columns so that both mri

and rep stay low. More formally, the distance between two groups p1 and

p2 is given by AICS(p1 ∪ p2) = IC(p1∪p2)
IC(p1)+IC(p2) .

Consider the example in Figure 8a, where AICS(1∪2) = 5
7 , AICS(1∪3) =

7
7 and AICS(2 ∪ 3) = 6

8 . Then, the groups 1 and 2 will be merged.
2. AICM: Added Input Cost - Max. This policy shares the same goal with the

previous one, but focuses on the extra input cost for the largest group. The
distance formula is given byAICM(p1∪p2) = IC(p1∪p2)−max{IC(p1), IC(p2)}.
According to this policy, the groups 1 and 2 in Figure 8a will be merged next
as well, since AICM(1∪ 2) = 1, AICM(1∪ 3) = 3 and AICM(2∪ 3) = 2.

3. ACCM: Added Candidate Cells - Max. Here, the rationale changes to favor
mergers that increase mrcl as little as possible. The distance formula is
ACCM(p1 ∪ p2) = CC(p1 ∪ p2)−max{CC(p1), CC(p2)}.
In the example of Figure 8b, ACCM(1 ∪ 2) = 2, ACCM(1 ∪ 3) = 1 and
ACCM(2 ∪ 3) = 1. As such, the algorithm would select either 1∪3 or 2∪3
arbitrarily.

4. EIC: Emptiest Partition - Input Cost. This policy targets imb, which as
mentioned earlier combines mri and rep. In each step, it chooses the par-
tition with the lowest IC so far, and it merges with one other partition,
which is chosen arbitrarily provided that the threshold is satisfied. The
distance function is EIC(p1 ∪ p2) = min{IC(p1), IC(p2)}.
According to Fig. 8a, IC(1) is the lowest value, so the first partition will
be merged. Suppose that Algorithm 2 enforces a threshold on mri set to 5.
Then only 1∪2 is a valid merger, since IC(1∪2) = 5 whereas IC(1∪3) = 7.

5. ECC: Emptiest Partition - Candidate Cells. This policy shares a simi-
lar rationale, but focuses on CC. It tries not to allow any partition to
have relatively low CC , through this distance function: ECC(p1 ∪ p2) =
min{CC(p1), CC(p2)}.
In the example of Fig. 8b, the 3rd partition will be merged next because
CC(3) < CC(1), CC(2). Suppose that the threshold on mrcl is 3. Then
2∪3 is the only valid choice.

6. WIC: Weighted dimensions - Input Cost. This policy, not only favors merg-
ers that share a large proportion of their input, but also favors rectangular
partitions, where the long dimension is either the rows or the columns for
all the partitions. Trying to shape the distribution of cells across one re-
lation further decreases rep. To achieve this, it employs a low-level metric
that extends IC, called wIC given two weights wR and wC for rows and
columns, respectively. For example, if wR = 2 and wC = 1, in Figure 8a,
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wIC(1) = 5, because it corresponds to 2 row buckets and 1 column bucket.
Then, WIC(p1 ∪ p2) = wIC(p1 ∪ p2).
Continuing the example, the partitions to be merged are 1 and 2, since
wIC(1 ∪ 2) = 8, wIC(1 ∪ 3) = 11 and wIC(2 ∪ 3) = 9.

7. M: Manhattan distance. Using the first norm (Manhattan) distance, this
policy tries to form clusters of cells that are visually near in the JM. It is
based on a similar intuition like the original M-Bucket-I algorithm, that
is cells, which are close in the JM, have common inputs. Given two can-
didate cells ci and cj, their manhattan distance dist is the number of
cells ci is away from cj in the horizontal and the vertical dimension of
the JM. The exact formula for the distance function is M(p1 ∪ p2) =

1
|p1||p2|

∑

i∈p1

∑

j∈p2 dist(ci, cj), which computes the mean distance between

all pairs of candidate cells of the two partitions.
In Figure 8b, the values are as follows. M(1∪ 2) = 19

6 , M(1 ∪ 3) = 13
3 and

M(2 ∪ 3) = 5
2 . Thus, the pair with the smallest distance is 2∪3.

Even though the above policies help us to indirectly affect several metrics
and not only mri ormrcl as binary search only tries, we still need some way to
relax the latter’s target (mri or mrcl), to allow for even further improvement
of the metrics we are interested in. For this reason, we will next introduce the
notion of a post-binary search step, namely range search.

5.4 The complete solution

Algorithm 4 Range Search Solution Exploration

Input: JM(S × T ), P, factor, k, OF
minScore←∞
bestGroups← NULL
mriLow ← run Algorithm 2 (or M-Bucket-I)
mriRange← [mriLow, factor ·mriLow]
for mri← mriRange in steps of size k do

groups← nonRectangularSplitting(JM, P, mri)
if OF (groups) < minScore then

minScore← OF (groups), bestGroups← groups
return minScore, bestGroups

Using the binary search approach in Algorithm 2 we focus on a single
metric, but through the policies in Section 5.3 we affect all metrics in our
objective function OF = α · rep+ β ·mri + γ ·mrcl. However, the policies in
Section 5.3 run under a potentially strict threshold on the metric optimized
through the binary search. Essentially, this leads to limited reductions in the
OF .

To ameliorate this problem, instead of calling Algorithm 3 once per each
policy in the previous section, we call it multiple times. In each iteration we
further relax the constraint in the main metric pursued in Algorithm 2. More
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specifically, we allow restrictions up to factor > 1 times as shown in Algorithm
4 (the algorithm is presented for the case, where the metric in the binary search
is mri).

Consider an example where the binary search has returned mri = 100
(termed as mriLow in Algorithm 4), and the parameters factor and k are
set to 2 and 10, respectively. This means that we will explore partitionings
with mri up to 200 in steps of size 10. I.e., we will explore 11 values of mri :
100, 110, . . . , 200. The final partitioning is the one that minimizes the OF and

may be produced in any of the ⌈ (factor−1)mriLow+1
k

⌉ iterations.

5.5 The special case of self joins

Our solutions apply to generic binary joins. However, in the special case of
self-join, further considerations can be made. This is due to the fact that, in
distance metrics discussed earlier, we should take into account the issue that
the row buckets in the JM are the same as the column ones. This implies that
a partition requiring the i-th bucket from both inputs will have input cost 1
instead of 2. As such, the way IC is computed and the affected policies in
Section 5.3 need to be modified accordingly.

6 Experimental Evaluation

In this section we conduct a thorough evaluation of our proposal, where in
total we examined over 7,000 of JM partitioning test cases. We first provide
a succinct description of the varying dimensions, queries and datasets in our
experiments. Initially, we present a few examples comparing actual execution
time to better clarify the relationship between OF and running time improve-
ments. The main part of the evaluation contains a detailed presentation of
the improvements on the rep, mri and mrcl metrics. Finally, we present the
running time of optimizing the partitioning and a summary of how we propose
to apply our approach in practice. The key take-away results are as follows:

1. The techniques are effective in reducing the OF values.
2. Reductions in OF values correspond to tangible benefits in execution time.
3. The form of JM plays a role in the behavior of the techniques.
4. An ensemble approach is preferable indeed; different techniques exhibit the

best behavior under different examples.
5. Partitioning and re-arrangement, when combined, do not lead to cumula-

tive benefits.

6.1 Varying dimensions, Queries, Datasets and OFs

The varying dimensions in our experiments include a) the JM re-arrangement
method; b) the partitioning method; and c) the number of reducers.
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The options for the re-arrangementmethod are as follows: No re-arrangement
(none), as in the reference algorithm in [21], BEA, BEARadius, TSPk and
TSPkT, as discussed in Section 4. For BEARadius, and because its impact
has not been found to be significant, we present only experiments with the
radius set to 3.

The partitioning techniques to be evaluated, include the following. MBI
(standing for M-Bucket-I described in Section 2 and being the baseline one)
and our proposals that produce non-rectangular regions AICS, AICM, ACCM,
EIC, ECC, WIC and M, as discussed in Section 5.3. For WIC, we experiment
with 3 flavors: WICa, where wR=1, wC=1 ; WICb, where wR=1.2, wC=1 ;
and WICc, where wR=1.5, wC=1. The total number of partitioning policies
is 10. In all experiments, in Algorithm 4, we set factor and k to 2 and mriLow

10 ,
respectively.

For the number P of reducers, we experimented with the values of 10, 20,
40 and 80, given that most clusters are rather small and have fewer than 50
nodes, as reported in [10,23].

Our policies operate on the initial JMs and are agnostic to the actual sizes
of the input relations, as their operations apply only onto the JMs. In our
tests, we have used (i) band joins queries over a real dataset to create the
initial histograms and JMs ; and (ii) synthetic JMs. All JM s have dimensions
100× 100, unless otherwise stated (for random queries, we experimented with
200×200 JMs as well). Band joins is a specific form of selective theta-joins. In
band joins, the theta predicate in S ⊲⊳θ T contains one or more conditions of
the form: S.A − ε1 < T.B < S.A+ ε2, where A and B are the join attributes
and ε1, ε2 > 0.

The real dataset is the Cloud Dataset6, which is approximately 28.8GB and
contains monthly weather reports about clouds from ships and land stations
from different parts of the world. The band queries are self-join queries on the
Solar Altitude and Longitude attributes. However, the queries are only used
to produce the JMs ; to evaluate the generic case, the partitioning of the JMs
was done without exploiting the knowledge that the row and column buckets
correspond to the same data. For each distinct configuration setting in terms
of re-arrangement, partitioning and number of reducers, we tested queries with
number of bands from 1 to 6. The corresponding selectivity varies from 2% to
30% for the band queries on the Solar Altitude and from 0.5% to 13% for those
on the Longitude attribute. For each number of bands, we created 10 random
pairs of ε1 and ε2; more specifically the ε1 (resp. ε2) values are defined by the
lower bound of the first (resp. upper bound of the second) out of two randomly
picked consecutive histograms buckets. Overall, for each configuration setting,
60 queries are tested. To reduce the number of experiments, we initially test
the re-arrangement and the partitioning methods separately (2 attributes ×
5 techniques × 4 P values × 60 queries = 2400) and 2 × 10 × 4 × 60 = 4800
test cases, respectively). We then evaluate their combined efficiency.

6 available from http://cdiac.ornl.gov/ftp/ndp026c/
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Fig. 9: Nine different example initial JMs for three band-join queries on the
solar altitude (left column), three band-join queries on the longitude attribute
(middle column), and three random queries (right column).

For the arbitrary queries, we randomly marked 1% of the JM cells as
candidate cells, i.e., assuming a selectivity of 1%.

In Figure 9, we show example initial 100× 100 JMs ; we see that the JMs
are skewed and differ in their form.

Orthogonally to the configurations, we examine 6 objective functions as
shown in Table 2. The weights are chosen in such a way so that M-Bucket-I
(MBI) acts as a baseline yielding value 1. In practice, in each experiment, we
first run MBI to extract the corresponding rep, mri and mrcl values, and then
we instantiate the OFs. In the first three OFs, each of the bottleneck factors
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OF id α β γ OF id α β γ

OF1 1

x
0 0 OF4 1

2x
0

y
1

2z

OF2 0 1

y
0 OF5 1

3x
1

3y
1

3z

OF3 0 0 1

z
OF6 1

4x
1

4y
1

2z

Table 2: The different objective functions examined. x, y, z are the rep, mri and
mrcl values for M-Bucket-I, respectively, so that M-Bucket-I yields OF = 1
always.

case I case II case III

OF ratios
OF1 1.005 1.011 0.642
OF2 0.994 1.015 0.96
OF3 0.864 0.855 1.032
OF4 0.934 0.933 0.837
OF5 0.954 0.961 0.878
OF6 0.932 0.934 0.916

execution time differences
small dataset from 225 from 92 from 76

to 111 secs to 79 secs to 76 secs
medium dataset from 330 from 246 from 183

to 203 secs to 202 secs to 168 secs
large dataset from 658 from 940 from 613

to 527 secs to 902 secs to 526 secs

Table 3: Example time differences (in secs) along with the corresponding OF
ratios

is regarded in isolation. The last three ones consider the combined effect of
these factors.

6.2 Example Time Improvements

In Section 3.1, we have provided relative performance data for different ratios
of the three bottleneck metrics, which correspond to the first three OFs. We
complement this data with exact execution times for three representative test
cases out of the 32 presented in Section 3.1, referred to as case I, II and III in
Table 3. This table shows that even small decreases in OF values may corre-
spond to tangible benefits in running times. The running times are common to
all OFs, since different OFs just quantify the efficiency of the same partition-
ing, and therefore the same execution, in a different way. The time differences
provided are merely meant to illustrate how the reductions in OF can be cor-
related to reductions in running time without, at this stage, examining which
algorithm yields the lowest OF values.

In a reverse engineering approach, we provide explanations about which
OFs would be the most appropriate ones to be selected before execution,
should someone wanted to minimize the response time. For the small dataset,
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Fig. 10: Top: normalized OF3 values of the 32 pairs in the small dataset in
Section 3.1. Bottom: corresponding execution times in secs.

the communication cost and the memory load are not significant, therefore
someone could focus on the computational load exclusively, like the rationale
of OF3. For the medium and the larger datasets, this does not hold and the
objective function should target all three metrics, such as OF4-6. Figure 10
shows the relationship between the OF3 values and execution times for all
32 pairs in the small dataset. As previously, the exact technique that yielded
these results does not matter; therefore, in each pair, they are referred to
as technique1 and technique2. Fine-tuning the OF to accurately reflect the
execution time of these queries on our infrastructure at BSC is out of the
scope of this research; further discussion about the appropriate choice of an
OF for a specific query is deferred to the end of this section. However, the main
observation that is important to our work is that by reducing the appropriately
set OFs, we manage to decrease query times as well.
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Fig. 11: Average (left) and maximum (right) improvements on the values of
OFs when P=80.

6.3 Improvements on OF values due to re-arrangements

We aim to answer three questions: (a) How large are the decreases in the OF
value? Remember that there can never be an increase; eventually, the best
performing technique is chosen only if it is beneficial. (b) How frequently do
our techniques lead to OF decrease? (c) Do we really need many techniques?

The first set of experiments investigates the efficiency of the matrix re-
arrangement policies in Section 4. Figure 11 shows the reduction in OFs for
P = 80. Regarding band queries on solar altitude, the two main observations
are that the maximum improvements in an isolated test case can reach 50%.
These correspond to OF3, which targets mrcl exclusively. The smaller im-
provements are for OF2; this is expected, since the latter is directly addressed
by M-Bucket-I. The maximum average improvement in all cases grouped by
OF is at least 27%, given that the lowest average OF value is 0.73. Similarly,
for the queries on the longitude attribute, the highest improvements are ob-
served for OF3, but they are of lower magnitude, since, in an isolated case
the can reach 22% for P = 80. For random queries, higher improvements are
observed. E.g., rep values can drop by up to 68% in the figure, whereas in the
results in the Appendix, which cover also 10-40 reducers, the rep decrease is
up to 74%.

Regarding the frequency of improvements, the band queries on the two at-
tributes are improved 54% and 50% of the times, respectively. Random queries
are improved 76% and 99% of the times for JMs of size 100×100 and 200×200,
respectively. More detailed results are in the Appendix A.

Up to this point, we focused on improvements due to any technique. We
now shift our attention to explain our choice to adopt an ensemble method-
ology. Table 4 shows the percentage of cases in the band queries on solar
altitude, where each of the re-arrangement techniques is the best, consider-
ing only the cases, where there is an improvement on original MBI. We can
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OF1 OF2 OF3 OF4 OF5 OF6

BEA 18.70 17.09 29.85 19.71 22.22 24.09
BEARadius 18.70 18.80 38.06 26.28 21.43 23.36

TSPk 53.66 58.12 30.60 37.96 42.06 35.77
TSPkT 8.94 6.84 27.61 16.06 14.29 16.79

within 5% of the best
BEA 5% 56.10 60.68 40.30 54.01 56.35 50.36

BEARadius 5% 51.22 53.85 44.78 53.28 46.83 51.09
TSPk 5% 78.86 77.78 38.81 61.31 68.25 62.04
TSPkT 5% 32.52 35.04 34.33 38.69 36.51 37.96

TSPk/TSPKT 5% 85.37 86.32 58.21 74.45 80.95 75.91

Table 4: Percentage of cases where each of the proposed re-arrangement tech-
niques is the best in band queries on solar altitude.

see that there is no clear winner, which means that all techniques contribute
to the performance improvements. Nevertheless, TSPk leads to improvements
more frequently. If we relax our optimality criteria, and we tolerate up to 5%
deviation from the best performing policy, then, as shown in the lower part of
the table, TSPk dominates in approximately 2/3 of the cases. The last row in
this table shows that in 76.9% at least one of the two TSP-based solutions is
up to 5% far from the best, i.e., they are better than the BEA-based ones. In
random queries with a 100×100 JM, the behavior is similar: TSPk is again the
dominating one, whereas, at least one of the two TSP-based solutions yields
the highest improvements in 84.6% of the cases. However, in the experiments
with 200 × 200 JM, BEA is better in 80% of the cases. Finally, BEA and
TSP-based solutions complement each other in the band query tests on longi-
tude. Therefore, both BEA and TSP-based solutions need to be checked in the
generic case. Another generic remark is that the behavior of the re-arranging
policies differs with the form of the JMs.

6.4 Improvements on OF values due to partitionings

Our partitionings are shown to be more efficient than matrix-re-arrangement
for band queries. Figure 12(top), which refers to the band query on the solar
altitude attribute, shows how the average and lowest OF values differ between
re-arrangement and partitioning policies for P=10 and P=80. According to the
figure, due to the partitionings, the maximum reduction in rep (OF1), which
means lower communication cost, is 40%, while the maximum reduction inmrcl
(OF3) stays at 50%. Figure 13 shows an example, where rep is decreased by
40% compared to MBI. On the left part, each rectangular region corresponds
to a different reducer. On the right part, the bold points correspond to a single
reducer, to provide an insight in the type of the new partitioning. Finally, the
frequency of improvements increased to 83% (from 54%). The improvements
are more significant for the queries on the longitude attribute, as shown in
the bottom part of the figure; rep is decreased by up to 45% (OF value 0.55)
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Fig. 12: Average (left) and minimum (right) values of OFs when P=10 and
P=80 for band queries (top: solar altitude, bottom: longitude).
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Fig. 13: Example improvement of the initial partitioning due to MBI (left)
with the help of WICa (right); in the latter figure, the bold points belong to
a single partition, as an example of the new partitioning.

compared to MBI. They are also more frequent occurring in 88% of the test
cases.
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Fig. 14: Average (left) and minimum (right) values of OF1 (top) and OF3
(bottom) for random queries.

For random queries, the results are mixed. The partitioning approaches are
more efficient in general, but not always. E.g., in Figure 14, we show compar-
isons regarding OF1 and OF3, and re-arrangements behave better regarding
OF1 when the JM dimensions are 100 × 100. Another interesting observation
is that the highest improvements in isolated cases are even more significant
for mrcl, which is dropped up to the 20% of its original value.

Regarding the rationale to follow an ensemble approach, as shown in the
upper part of the Table 5, again, there is no winner among the different pro-
posed techniques, and each of them may be the most efficient in certain cases
thus calling for an ensemble method. Column values may sum to higher than
100 because of ties. However, AICM, AICS and WIC are the dominating ones.
This is reflected by the numbers in the third row from the bottom, which shows
the proportion of the cases where any of the three aforementioned techniques
leads to the best OF results; this proportions is over 97% overall. If we allow
up to 5% degradation, the proportion increases to over 99% (bottom row). In
general, the best performing stand-alone technique is AICS, which is either the
optimal or up to 5% worse than the optimal in 68% of the cases (penultimate
row). The numbers are for the band queries on the solar altitude attribute, but
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OF1 OF2 OF3 OF4 OF5 OF6

AICM 3.45 18.45 13.97 21.89 33.71 29.95
AICS 72.84 19.42 11.35 54.08 56.00 46.08
ACCM 0.43 6.80 96.94 3.86 4.57 3.69
EIC 0.43 6.80 99.56 3.86 4.57 3.69
ECC 0.43 6.80 100.00 3.86 4.57 3.69
M 0.43 3.88 10.92 5.15 8.57 5.99

WICa 23.71 65.05 100 26.18 13.71 19.82
WICb 0.86 7.77 100 6.01 6.86 10.60
WICc 0.86 7.77 100 6.44 6.86 12.44

AICS/AICM/WICa 100 98.06 100 95.28 93.71 88.02

within 5% of the best
AICS 5% 86.21 58.25 12.23 90.13 84.57 78.80

AICS/AICM/WICa 5% 100 100 100 100.00 98.86 99.08

Table 5: Percentage of cases where each of the proposed partitioning techniques
is the best (band queries)

they hold for the other JM types, i.e., those for the queries on longitude and
the random queries, with negligible differences. The key implication of this
observation is that a simplified ensemble method could contain fewer policies,
namely the AICM, AICS and WIC ones only.

6.5 Improvements due to both re-arrangements and partitionings

A question may arise as whether combining the re-arrangement and partition-
ing techniques yields higher improvements. For band queries, on average, the
combination of techniques yields improvements very close to the improvements
achieved by the proposed partitioners only; the benefits are less than 2%. For
random queries, there are no benefits. The lesson learnt is that, although it
is beneficial to use multiple techniques for re-arrangement and multiple tech-
niques for partitioning, combining the two types can be skipped. In other
words, in Algorithm 1, the two loops can be placed in sequence rather than in
a nested manner, which incurs lower time overhead without significant sacri-
fice in the partitioning quality. Overall, efficiently combining re-arrangement
with partitioning is an interesting direction for future work.

6.6 Running time of our approach

If someone would test all 5 re-arrangements and 10 partitioning combinations,
the time overhead of preparing the final partitioning is non-negligible. Here, we
provide exact numbers, when all techniques run on a machine with Intel Core
i5-4690 CPU at 3.5GHz and 8 GBs RAM. Table 6 shows the average running
time for the partitioning techniques per number of reducers. Note that based
on our experimental evidence, a simplified ensemble method would consider
only TSPk, BEA, AICS, AICM and WIC. A single application of them incurs
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technique P=10 P=20 P=40 P=80

MBI 167 162 158 99
AICM 1656 695 672 607
AICS 1526 624 593 521
ACCM 3650 2513 2839 3183
EIC 1862 1777 1857 1836
ECC 2140 1845 2225 2999
M 629 603 595 559

WIC 1196 1065 1091 1285
BEA 155

BEARadius 197
TSPk 4796
TSPkT 9455

Table 6: Average running time of partitioning techniques (in msecs)

an overhead of approximately 7 secs for 20 reducers on our machine. Moreover,
their execution can be parallelized in a straight-forward manner.

6.7 Putting everything together

Here, we summarize our end-to-end proposal for join execution. This discus-
sion is an elaboration of Figure 4 and capitalizes on our evaluation results,
according to which a simplified ensemble method, where only a subset of the
re-arrangement and partitioning techniques need to be applied, is sufficient.
We split parallel theta-join execution in three phases and this proposal targets
the second phase:

1. Preparatory phase:
(a) Construct the JM, e.g., adopting the approach in [21].
(b) Run M-Bucket-I to evaluate the rep, mri, and mrcl metrics.
(c) Choose an objective function using the results of the M-Bucket-I runs

to normalize the weights as shown in Section 6.1.
2. Partitioning optimization phase (our contribution):

(a) Run Algorithm 1 either in full or only for TSPk, BEA, AICS, AICM
and WIC.

(b) Assess improvements compared to M-Bucket-I.

3. Actual join execution phase.

As can be inferred by the above summary, in order to apply our proposal in
practice in a beneficial manner, the OF needs to be selected judiciously. Since
the criteria values are not at the same scale, we showed a way to normalize
them. Still, the relative weights need to be chosen as well. Here, we propose
an empirical solution to this problem and we leave the in-depth investigation
as future work. In line with the discussion of Table 3, the empirical solution
is to assign the rep, mri, and mrcl weights in proportion to the estimated
relative impact of the shuffling cost, memory stress and in-memory evaluation
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of the local theta-joins on the total execution time, respectively. Note that
such an impact has been shown to be dependent on several query, dataset and
infrastructure characteristics.

7 Related Work

Binary theta joins in a massively parallel setting is an area that has attracted
a lot of interest. As presented in detail in Section 2, the reference algorithms
are 1-Bucket-Theta for the generic case and M-Bucket-I/O for selective theta
joins [21]. Our solutions significantly extend these algorithms and provide both
more efficient solutions and solutions that can consider more optimization
objectives, namely replication factor, reducer input and reducer computational
load.

The work in [12] presents an adaptive solution for theta joins, but the
solution considers only the reducer input. The key feature of this work is that
it assumes a streaming environment and may revise the partitioning on the fly.
Theta joins are also dealt with in [14], which focuses on algorithms for efficient
predicate evaluation regardless of whether the theta join evaluation takes place
in a parallel manner. The proposed solutions are based on pre-sorting and data
structures such as permutation arrays and bitmaps. The issues of streaming
data and sophisticated predicate evaluation are orthogonal to our partitioning
approach.

Other efforts to extend the work in [21] have been made in the direction
of efficient execution of multi-way theta-joins [4,30,7,28,29], or specific forms
of joins, such as star-joins [6]. Exploring more flexible partitioning for multi-
way theta joins is not addressed though, and this topic remains an interesting
open issue for future research. [27] explores partitioning targeting both mri
and mrcl, but still considers only rectangular matrix partitionings and focuses
on a specific form of JMs termed as monotonic, which correspond to 1 band
theta joins; i.e. it is less generic than our work.

Theta-joins are also related to similarity joins, e.g. [24]. However, the main
effort in similarity joins in MapReduce is to prune non-relevant pairs as soon
as possible, which corresponds to eliminating JM candidate cells rather than
allocating work to reducers in a multi-objective manner after having produced
the candidate cells. Finally, [8] examines a specific form of self-joins for data
deduplication and considers JM cells of different sizes, whereas, in our case,
JM cells are of the same size due to the equi-depth histograms employed.

Regarding the theoretical analysis of MapReduce programs, most of the
proposals for programs in a massively parallel setting to date tend to be de-
veloped on a best-effort basis, without systematically analyzing the inherent
trade-offs. Two recent remedies to that have been proposed in [2,25]. [25] in-
troduces the notion of minimal MapReduce algorithms, which are algorithms
accompanied by guarantees (up to a small constant) regarding several as-
pects, such as memory consumption and communication cost. The MapReduce
rounds may be bounded but they can be more than one. The work in [2] is
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complementary and presents a way to compute the lower bounds on communi-
cation cost as a function of the maximum input a reducer is allowed to receive
for specific problems. This allows to define the trade-off between the load on
the reducer side and the replication rate. Further, the work in [2] examines
whether known algorithms for those problems can match the lower bounds,
provided that they consist of a single MapReduce round. The work in [16]
builds upon the work in [2] to prove the optimality of 1-Bucket-Theta, while
[1] examines the theoretical properties of self-joins and proposes a partitioning
considering rep and mri for this specific case.

8 Conclusions and Further Work

In this work, we introduce new partitioning techniques, operating as an en-
semble, in order to boost the performance of theta-joins executed in massively
parallel environments, such as Spark. To this end, we propose re-arranging
the join matrix, and splitting it to non-rectangular partitions. A key feature
of our work is that the exact definition of performance is flexible, in that it
is capable of accounting for any weighted combination of the main bottleneck
factors, namely communication cost and computational and memory load on
the reducers. In addition, the impact of our partitioning on the bottleneck
factors can be accurately computed before execution. The evaluation results
show that significant improvements, up to 5 times, can be achieved.

Interesting directions for future work include the investigation of more
efficient combination of matrix re-arrangement and partitioning, and multi-
way theta-joins. Another line of research already mentioned is to automatically
adjust the objective function weights so that the running time is minimized;
as shown in Section 3.1, under different queries, datasets and cluster settings,
the relative importance of each of the factors changes, and it is challenging to
estimate the corresponding weights a-priori so that they accurately reflect the
execution time.
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OF coverage avg best worst imb

P = 10

OF1 85.00% 0.95 0.80 1.00 -0.71%

OF2 83.33% 0.93 0.79 1.00 -1.57%

OF3 88.33% 0.89 0.70 0.99 -1.27%

OF4 91.67% 0.94 0.79 1.00 -1.09%

OF5 88.33% 0.94 0.79 1.00 -1.43%

OF6 93.33% 0.93 0.79 1.00 -1.29%

P = 20

OF1 70.00% 0.96 0.87 1.00 +0.35%

OF2 65.00% 0.96 0.88 1.00 -0.84%

OF3 71.67% 0.91 0.67 0.98 -0.28%

OF4 71.67% 0.96 0.85 1.00 -0.17%

OF5 66.67% 0.96 0.88 1.00 -0.57%

OF6 73.33% 0.96 0.86 1.00 -0.41%

P = 40

OF1 26.67% 0.97 0.84 1.00 +2.94%

OF2 28.33% 0.97 0.83 1.00 -0.79%

OF3 35.00% 0.84 0.50 0.98 +1.58%

OF4 36.67% 0.94 0.77 1.00 +2.14%

OF5 30.00% 0.95 0.85 1.00 -0.03%

OF6 35.00% 0.94 0.76 1.00 +0.99%

P = 80

OF1 23.33% 0.96 0.82 1.00 +3.15%

OF2 18.33% 1.00 0.99 1.00 -1.46%

OF3 28.33% 0.73 0.50 0.95 +0.46%

OF4 28.33% 0.90 0.77 1.00 +0.75%

OF5 25.00% 0.93 0.85 1.00 -1.14%

OF6 26.67% 0.89 0.76 1.00 +0.43%

Table 7: Summary improvements due to the re-arrangement policies grouped
by the number of reducers (for band queries)
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A Additional Evaluation Results

Tables 7 and 8 refer to the experiments in Section 6.3 for the band queries on solar altitude.
Table 8 presents the same results as Table 7 but groups the experiments differently to
show the impact of selectivity (in terms of number of bands). Although the behavior differs
according to the number of bands, the impact of selectivity is considered to be small. The
second column (coverage) shows the percentage of the cases, where an improvement on M-
Bucket-I is achieved by any technique, i.e., it answers the question “How frequently matrix
re-arrangement leads to improvements?”, whereas the other columns answer the question
“How high are the improvements when they happen?”. Further observations that can be
drawn are: (i) The higher the number of reducers, the less frequently matrix re-arrangement
yields improvements. (ii) The benefits on OF values due to the re-arrangement techniques
may come at the expense of a small degradation of imbalance, as shown in the last column,
but in general imb is not affected much. (iii) There are several cases where the improvement
is very small or negligible. Table 9 shows the corresponding details for the band queries on
longitude, where the best improvements on mrcl are up to 44%. Table 10 shows the impact
of the re-arrangement techniques on the OFs for random queries with 100 × 100 JM. The
main observation is that, compared to Table 7, both the coverage and the improvements
are higher; e.g., we have observed reductions in rep by 74% (i.e., nearly 4 times less) and
in mrcl by 56%. For random queries with 200 × 200 JMs, the improvements are of lower
magnitude but the coverage is 88% (no detailed results are presented).
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OF coverage avg best worst imb

bands = 1

OF1 62.50% 0.96 0.82 1.00 -0.68%

OF2 65.00% 0.96 0.83 1.00 -2.42%

OF3 45.00% 0.75 0.50 0.97 -3.07%

OF4 62.50% 0.92 0.77 1.00 -1.69%

OF5 67.50% 0.94 0.85 1.00 -1.68%

OF6 67.50% 0.92 0.76 1.00 -1.68%

bands = 2

OF1 50.00% 0.97 0.93 1.00 +1.09%

OF2 47.50% 0.97 0.87 1.00 -1.39%

OF3 62.50% 0.86 0.50 0.98 +0.91%

OF4 62.50% 0.94 0.77 1.00 +1.07%

OF5 55.00% 0.95 0.85 1.00 -0.93%

OF6 65.00% 0.94 0.76 1.00 +0.65%

bands = 3

OF1 47.50% 0.97 0.89 1.00 +1.17%

OF2 35.00% 0.96 0.88 1.00 -1.25%

OF3 50.00% 0.87 0.60 0.99 -0.74%

OF4 57.50% 0.95 0.81 1.00 +0.04%

OF5 47.50% 0.95 0.87 1.00 -1.41%

OF6 55.00% 0.95 0.80 1.00 -0.82%

bands = 4

OF1 40.00% 0.96 0.90 0.99 +0.42%

OF2 37.50% 0.96 0.80 1.00 -0.39%

OF3 57.50% 0.90 0.77 0.98 +0.16%

OF4 47.50% 0.95 0.84 1.00 +0.07%

OF5 40.00% 0.95 0.83 1.00 -0.55%

OF6 42.50% 0.94 0.81 1.00 -0.26%

bands = 5

OF1 57.50% 0.95 0.80 1.00 +0.21%

OF2 55.00% 0.93 0.79 1.00 -0.51%

OF3 57.50% 0.89 0.70 0.98 -0.24%

OF4 57.50% 0.93 0.79 1.00 -0.26%

OF5 55.00% 0.93 0.79 1.00 -0.35%

OF6 57.50% 0.93 0.79 1.00 -0.42%

bands = 6

OF1 50.00% 0.94 0.82 1.00 -0.47%

OF2 52.50% 0.93 0.79 1.00 -1.40%

OF3 62.50% 0.90 0.73 0.99 -0.60%

OF4 55.00% 0.94 0.81 1.00 -0.61%

OF5 50.00% 0.94 0.82 1.00 -1.02%

OF6 55.00% 0.93 0.81 1.00 -0.88%

Table 8: Summary improvements due to the re-arrangement policies grouped
by the number of bands (for band queries)
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OF coverage avg best worst imb

P = 10

OF1 70.00% 0.97 0.85 1.00 -0.50%

OF2 66.67% 0.96 0.81 1.00 -2.16%

OF3 78.33% 0.88 0.56 1.00 -1.78%

OF4 75.00% 0.94 0.77 1.00 -1.81%

OF5 75.00% 0.95 0.83 1.00 -2.02%

OF6 75.00% 0.93 0.77 1.00 -1.96%

P = 20

OF1 46.67% 0.98 0.90 1.00 -0.65%

OF2 48.33% 0.97 0.89 1.00 -2.99%

OF3 56.67% 0.89 0.67 0.99 -2.38%

OF4 61.67% 0.96 0.84 1.00 -2.08%

OF5 53.33% 0.97 0.86 1.00 -2.79%

OF6 61.67% 0.96 0.82 1.00 -2.42%

P = 40

OF1 21.67% 0.99 0.96 1.00 -1.37%

OF2 30.00% 0.98 0.87 1.00 -1.98%

OF3 58.33% 0.88 0.69 0.98 -0.71%

OF4 58.33% 0.96 0.88 1.00 -0.86%

OF5 50.00% 0.97 0.90 1.00 -1.35%

OF6 56.67% 0.96 0.87 1.00 -1.19%

P = 80

OF1 13.33% 1.00 0.99 1.00 +0.34%

OF2 18.33% 1.00 0.99 1.00 -1.12%

OF3 35.00% 0.91 0.78 0.97 -1.83%

OF4 35.00% 0.98 0.91 1.00 -1.72%

OF5 26.67% 0.99 0.94 1.00 -2.08%

OF6 36.67% 0.98 0.90 1.00 -2.13%

Table 9: Summary improvements due to the re-arrangement policies grouped
by the number of reducers (for band queries)

OF coverage avg best worst imb

P = 10

OF1 100.00% 0.74 0.26 0.99 +0.69%

OF2 100.00% 0.75 0.38 0.92 +0.41%

OF3 66.00% 0.87 0.67 0.96 +0.06%

OF4 96.00% 0.89 0.66 1.00 +0.53%

OF5 100.00% 0.87 0.63 1.00 +0.60%

OF6 96.00% 0.90 0.68 1.00 +0.49%

P = 20

OF1 100.00% 0.75 0.29 0.99 +0.36%

OF2 100.00% 0.77 0.44 0.86 -0.06%

OF3 53.00% 0.83 0.60 0.93 -0.04%

OF4 86.00% 0.91 0.69 1.00 +0.29%

OF5 95.00% 0.90 0.68 1.00 +0.16%

OF6 81.00% 0.92 0.73 1.00 +0.20%

P = 40

OF1 100.00% 0.77 0.35 0.99 -0.91%

OF2 49.00% 0.74 0.60 0.75 -1.29%

OF3 51.00% 0.78 0.46 0.89 +0.60%

OF4 76.00% 0.90 0.65 1.00 +0.21%

OF5 82.00% 0.91 0.66 1.00 +0.09%

OF6 74.00% 0.90 0.66 1.00 +0.21%

P = 80

OF1 100.00% 0.76 0.32 0.99 -2.73%

OF2 2.00% 0.63 0.50 0.67 -13.25%

OF3 38.00% 0.74 0.44 0.88 -1.22%

OF4 60.00% 0.91 0.71 1.00 -2.08%

OF5 61.00% 0.94 0.71 1.00 -2.01%

OF6 56.00% 0.92 0.71 1.00 -1.70%

Table 10: Summary improvements due to the re-arrangement policies grouped
by the number of reducers (for random queries)


