
Noname manuscript No.
(will be inserted by the editor)

HiNode: An Asymptotically Space-Optimal Storage

Model for Historical Queries on Graphs

Andreas Kosmatopoulos · Kostas

Tsichlas · Anastasios Gounaris · Spyros

Sioutas · Evaggelia Pitoura

the date of receipt and acceptance should be inserted later

Abstract Most modern networks are perpetually evolving and can be mod-
eled by graph data structures. By collecting and indexing the state of a graph
at various time instances we are able to perform queries on its entire his-
tory and thus gain insight into its fundamental features and attributes. This
calls for advanced solutions for graph history storing and indexing that are
capable of supporting application queries efficiently while coping with the ag-
gravated space requirements. To this end, we advocate a purely vertex-centric
storage model that is asymptotically space-optimal and more space efficient
than any other proposal to date. In addition to space efficiency, the model’s
purely vertex-centric approach shows great promise with respect to the ef-
ficiency and functionality of update and query operations. Furthermore, we
make a qualitative comparison with other general methods for graph history
storage identifying the pros and cons of our approach. Finally, we implement
and incorporate our technique in the G∗ parallel graph processing system, we
conduct thorough experimental evaluation and we show that we can yield time
and space improvements up to an order of magnitude when compared to G∗.

Keywords Historical Queries · Evolving Graphs · Indexing · Space Efficiency

A. Kosmatopoulos (�) · K. Tsichlas · A. Gounaris
Department of Informatics, Aristotle University of Thessaloniki, Greece
E-mail: akosmato@csd.auth.gr

K. Tsichlas
E-mail: tsichlas@csd.auth.gr

A. Gounaris
E-mail: gounaria@csd.auth.gr

S. Sioutas
Department of Informatics, Ionian University, Corfu, Greece
E-mail: sioutas@ionio.gr

E. Pitoura
Computer Science Department, University of Ioannina, Greece
E-mail: pitoura@cs.uoi.gr

2 Andreas Kosmatopoulos et al.

1 Introduction

The past few years have seen a rapid increase of networks that produce a
considerable amount of data. Networks, such as citation networks, traffic net-
works and social networks are, naturally represented as graphs. These graphs
are usually dynamic, in the sense that the network they are representing is con-
stantly evolving with vertices and edges being inserted, updated, or deleted.
For example, in a graph representing communities in a social network, new
friendships may be created or deleted as time evolves, and in a graph repre-
senting collaboration between users (such as in co-authorship networks), both
users and collaborations between them change over time.

An important challenge that arises with the dynamicity in such networks
(and their respective graphs) is the appropriate handling of their history so
that we can extract features and properties that characterize the whole (or part
of the) timeline of the graph, as opposed to solely its latest state. By doing
so, we are able to answer queries such as “how has the diameter in a group of
friends evolved between 2012 and today” in social networks or “how has the
closeness centrality of author X progressed over time” in citation networks.
In the first case, a decreasing diameter could signify that the members of the
community are becoming more connected between them as time progresses
while in the second case an increasing closeness centrality could translate to
the author becoming more “influential” as more works are published in the
field.

A key aspect in effectively tackling the overall problem is the efficient
storage of the evolving graph. We call the states of the evolving graph at
different time instances snapshots and view the graph as an evolving sequence
of such snapshots. Queries may involve one or more of these snapshots. We
call the set of operations (i.e., vertex/edge insertion, deletions and updates)
between two consecutive snapshots deltas. A simple approach to solving the
problem would be to explicitly store all snapshots separately. This strategy
would be oblivious to the evolution of the graph in time which implies a
prohibiting space overhead that also affects the time cost of the supported
operations. Consider a sparse graph of 106 vertices and 106 snapshots, with
each snapshot corresponding to a small number (tenths) of changes in edges
and vertices. By explicitly storing all snapshots one would require space of 1012

magnitude while by exploiting the similarities between successive snapshots
one would expect to use space of 107 magnitude.

Thus, a system’s performance could be significantly improved by maintain-
ing an indexing and storage mechanism that exploits the fact that there are
vertices and edges that remain unaltered between snapshots in the sequence.
Also, due to the large graph sizes, this mechanism should consider that most
of the graph data reside within the external memory. Consequently, the effi-
cient design of the indexing and storage components constitutes a crucial step
towards mitigating the impact of frequently accessing the external memory
during the processing of evolving graph sequences.

HiNode: A Storage Model for Historical Queries on Graphs 3

Indexing and storage should also be designed by taking into consideration
the types of possible queries on evolving graphs. Queries can be distinguished
between (i) local queries, which require information of a single graph vertex
or a few vertices (e.g. degree centrality), and (ii) global queries, which require
information about most or all vertices (e.g. graph diameter). Orthogonally to
the amount of vertices, a query may require access to (i) a single snapshot, or
(ii) to a range of snapshots in the sequence. The combinations of these two
dimensions yield four main types of queries over evolving graphs, all of which
need to be supported. An example of a local query over a single snapshot is
“What was the 2-hop neighborhood of vertex A at time instance t?”, whereas
an example of a global query over the entire graph history is “Find the average
number of friends of each member of a social network in each month since the
network’s creation.”

The key distinctive feature of our approach, called HiNode, is that it moves
away from the concept of using deltas to reconstruct specific snapshots, e.g.,
as in [29,21,19,20]. In particular, as explained in [20], a system may be orga-
nized in a time-centric manner (i.e. the data is indexed according to the time
instances), or in an entity-centric approach (i.e. the data is indexed according
to vertices and edges and their individual history). In this paper, we propose
the first purely entity-centric, and more specifically, vertex-centric approach
to organizing evolving graphs.

In our approach, each graph vertex is associated with its history in the
evolving graph defined as the sequence of graph snapshots in which the ver-
tex exists. This history is stored within the vertex, and is structured in such
a way so that various queries can be supported. In particular, we model the
history of vertices as time intervals where various geometric operations, such
as stabbing queries1, are supported. These geometric operations implement a
fundamental set of access operations on the snapshots of the graph sequence.
This local storage of history offers efficient handling of local queries by allow-
ing the effective reconstruction of simply the sub-graph of interest instead of
the complete graph. Furthermore, the time-interval representation allows the
efficient support of queries involving a range of snapshots.

An additional feature of our approach is that it is very flexible with respect
to the supported notion of time. In [19] the authors differentiate between the
two notions of time used by researchers in the literature. More specifically,
transaction time represents the time that an event takes place (i.e. the moment
that an object is stored or deleted from a database) whereas valid time signifies
the time period in which an object was valid (i.e. the time interval that an
object existed in a database). In the transaction time setting updates can only
occur in an append-like manner (i.e. an update in a field changes the value of
the most recently stored value) whereas in the valid time setting updates can
refer to any previously stored value (i.e. an update may change any previously
stored interval retroactively). Transaction time can be emulated in the valid

1 Given a query point p ∈ R and a set of N intervals on the real line, a stabbing query
returns all intervals that overlap p.

4 Andreas Kosmatopoulos et al.

time setting by restricting updates to intervals that begin on the time moment
of the update. Our approach not only supports either transaction or valid time
but can be further generalized with minor modifications to support parallel
universe time.

Additionally, we experimentally show that our technique is also efficient
for global queries as well, especially when a range of snapshots is considered,
because the overheads of a complete graph reconstruction are outweighed by
the benefits of accessing less data. Finally, our framework can be parallelized
in a straightforward manner with the only realistic assumption being that a
single vertex with its history fits in memory.

Our principal goal is to show that HiNode, as a pure vertex-centric storage
model, exhibits great potential. This is showcased both theoretically through
a qualitative system comparison with our two main competitors (G∗ [23,34]
and TGI [20]) as well as experimentally using the G∗ parallel graph processing
system which is available for download. To accomplish this goal, we focused on
the space usage of the storage model as well as its functionality. Historically,
space efficiency was mainly considered due to high memory prices. Nowadays,
this is not a severe constraint anymore unless the data is really massive (for
example, consider the social network of Facebook and all its history). One
of the reasons for which we still thrive for space efficiency is precisely the
existence of massive data sets. Another reason is the shifting of computation
to smaller devices that do not have ample memory. Additionally, having a
better space utilization results in reducing access to slower storage and thus
gaining running speed. One of our goals is to show that in this pure vertex-
centric approach the space overhead is minimal leading to indirect time savings
in queries as well.

In addition, HiNode can support various sets of queries focusing largely on
local queries where the pure vertex-centric approach is naturally suitable and
shows great potential. This is indicated by theoretical as well as experimen-
tal results. Finally, we provide experimental and theoretical indications that
HiNode can support general queries very well without going into great depths.
This is because, although this paper provides ample evidence that HiNode is
competitive, a full implementation of a historical graph database requires sub-
stantially more modules that unfortunately due to the different architecture
of the G∗ system cannot be implemented efficiently. We also note here that we
were not able to compare experimentally TGI with HiNode since it follows a
different architecture than the G∗ system and incorporating it in the existing
system would be considerably impractical.

In summary, we make the following contributions:

– We introduce the first purely vertex-centric approach to the organization
of evolving graphs. Our approach is especially suitable for local queries
that involve one or more graph snapshots.

– We show that our storing and indexing approach is more space efficient
than existing approaches.

HiNode: A Storage Model for Historical Queries on Graphs 5

– We present a set of primitive operators on top of which many complex
historic graph execution plans can be built. We provide evidence that these
operations can be efficiently supported with results comparable or even
better than those of other time-centric approaches.

– Our approach can efficiently support more general notions of time with
respect to the evolution of the graph. The evolution of the graph may be
represented in a linear or a tree-like fashion whereas all solutions up to this
point support a linear notion of time.

– Our approach handles in a very natural way incremental updates that
generate new snapshots. The granularity of evolutions can be arbitrarily
fine whereas all other solutions try to overcome this problem by either
employing logging or by grouping together many updates which naturally
leads to handling a rather small number of snapshots.

– To prove the practicality of our approach, we have implemented and in-
corporated it in the G∗ parallel graph processing system [23,34]. We ex-
perimentally show that, due to the low cost of accessing stored data, the
reconstruction overheads are outweighed in most of the cases, and our solu-
tion is efficient even for queries that require the reconstruction of complete
snapshots.

The rest of this work is organized as follows. In the next section we discuss
previous work. In Section 3, we present the main definitions and notation.
We introduce our storage model in Section 4. We present core algorithms and
practical considerations in Section 5. In Section 6, we conduct experimental
evaluation of our method. In Section 7 we discuss multiple universes and effi-
ciently registering updates and we conclude in Section 8.

2 Previous Work

There have been two main research directions over the previous years with
regards to graph processing. The first approach includes systems such as Trin-
ity [33], Pregel [25], Giraph [14] and others (e.g. GBase [17], Pegasus [18],
Cassovary [5], distributed graph management systems [27]) that focus on sin-
gle snapshot processing. The main characteristic of these systems is that they
operate on single very large graphs, as opposed to a collection of related graph
snapshots. The second category is concerned with handling evolving sequences
of large graphs that mostly resemble the history of a network. The following
paragraphs analyze the work conducted in this research direction, while a
comprehensive survey can be found in [22].

Perhaps, the closest proposals to ours are those in [19,23,34]. In general,
these techniques rely on storage of snapshots and deltas, which exhibits a
trade-off between space and time. Having a large amount of snapshots results
in deltas of small size but the space cost is substantial since we need to maintain
many copies of the graph. On the other hand, having a handful of snapshots
means that deltas will be quite large. By contrast, we follow a purely vertex-

6 Andreas Kosmatopoulos et al.

based approach without storing explicitly snapshots and deltas, and we prove
our asymptotic space-optimality.

In [19] the authors propose a solution based on the notion of valid time,
thus making the overall problem more challenging. Their proposed system is
composed of two parts. The first component is a disk-stored tree-like index
structure called DeltaGraph that contains specific materialized snapshots and
differential functions, while the second component is an in-memory structure
that stores a number of materialized snapshots. An extension to DeltaGraph
geared towards vertex-centric queries, called Temporal Graph Index (TGI),
was proposed in [20]. Similarly to the techniques in [19,20] we also support
the notion of valid time and we employ non-trivial data structures, as explained
later. However, our proposal is more space-efficient than [19,20].

A parallel graph processing system named G∗ has been proposed in [23,34].
G∗ stores each vertex along with its history in a server only once, regardless of
the number of snapshots in the sequence it exists in. This minimizes the overall
space used for storing changes since duplicate data is avoided. However, the
system indexes both the vertices as well as the historical information within the
vertices which may lead to a quadratic blowup in space for pointer data (but
not for the graph data). For that reason the authors focus on a small number
of snapshots and employ logging in order to store all intermediate history
between successive snapshots. In addition, because of the extra pointer data
G∗ does not follow a pure vertex-centric approach. In the evaluation results,
we show that we can improve on [23,34] by up to an order of magnitude.

An earlier attempt to efficiently handle historical graph queries has ap-
peared in [29], which is later generalized in [21]. Evolving graph sequences can
also be engineered to permit efficient evaluation of specific features or queries,
such as historical reachability queries [32], mining the most frequently chang-
ing component [35], continuous pattern detection [12] or shortest path distance
queries [16]. Finally, in [6,9], space-efficient methods for compressing graph se-
quences are proposed. However, these techniques are offline, since they require
the entire sequence to be given in advance. For operating online sequences, the
authors express some thoughts without providing concrete implementation de-
tails. Furthermore, they only consider graphs with no additional attributes on
their vertices and edges (e.g. weights). In general, the use of compression in
our techniques is an interesting direction for future work.

3 Preliminaries

We follow a linear notion of time and define it to be a strictly increasing
quantity measured in indivisible time intervals. We discuss a tree-like multiple
history in Section 7. Let G = {G1, G2, G3, . . .} be the sequence of graph snap-
shots to be stored and accessed. The sequence does not have a final snapshot,
in the sense that it is constantly evolving. For a graph Gi ∈ G, the snapshot
Gi = (Vi, Ei) corresponds to the graph G at time instance i and is charac-
terized by a set of vertices Vi and a set of incoming and outgoing edges Ei,

HiNode: A Storage Model for Historical Queries on Graphs 7

b

a

c

G1

b

a

c

G2

b

d

a

c

G3

Fig. 1 Evolving Graph Sequence. G2 is obtained by inserting an edge to G1, while G3 is
obtained by creating a vertex, inserting two edges and deleting an edge from G2 respectively

with each vertex or edge possessing its own set of (possibly multi-valued) at-
tributes. Conceptually, one may obtain the snapshot of Gi by applying a set
of insertions, deletions or value updates to the vertices and edges of Gi−1.
Moreover, since our theoretical model works with valid time, a user is able to
update a specific snapshot even though it may not currently be the last in the
sequence (i.e., a user may update Gi−j , where i > j, even though G currently
holds i snapshots).

The sequence G can also be defined with respect to its vertices and edges (V
and E respectively). Therefore, it follows naturally that V = V1 ∪ V2 ∪ V3 ∪ . . .
and E = E1 ∪ E2 ∪ E3 ∪ We use m to denote the total count of changes
(insertions, deletions and value updates) made throughout the sequence. Note
that since new snapshots may be added to the sequence, the value of m be-
comes larger with each new snapshot. As a direct consequence of the above,
we can deduce that at any time instance, the total count of snapshots, ver-
tices or edges is up to m, i.e. |G| ≤ m and |V| + |E| ≤ m. An example of an
evolving graph sequence is depicted in Figure 1. The notation used through-
out the remainder of this work is summarised in Table 1. The algorithms and
data structures of this work are expressed in the standard two-level external
memory model proposed by Aggarwal and Vitter [1].

4 Storage Model

We propose a storage model for the graph sequence G. This storage model
supports a variety of fundamental access and update operations that allow the
user to access any graph Gi (either the whole graph or a particular subgraph)
as well as alter the graphs at any time instance. Furthermore, the storage
model does not rely on there being no changes in the schema of the vertices
and supports different attributes in the same vertex over time. In the following,
we begin with an overview of the proposed data structure, which comprises
nested elements at different levels, followed by a description of the supported
operations. We conclude the section by providing an asymptotic analysis of
the space and time complexities.

8 Andreas Kosmatopoulos et al.

Table 1 Notation Table

Symbol Description

Gi A snapshot of graph G at time instance i

Vi The set of vertices of Gi

Ei The set of incoming and outgoing edges of Gi

G A sequence of Gi for various i

V The set of all vertices in G

E The set of all edges in G

|v| Size of vertex v, i.e. the count of attributes and edges of v across all of
G

|vt| Size of vertex v at time t

S Total size of all vertices in Vi

m The total count of changes (insertions, deletions, updates) made from
the first snapshot to the (currently) last snapshot in G

I External interval tree that maintains the “lifetime” of each vertex in V

T v
ts,te

An interval in I signifying that vertex v in G is active between the time
instances ts and te

Dv Diachronic node of vertex v

f An identifier of a particular attribute (e.g. name, weight etc.) or edge

Iv External interval tree of Dv that maintains information regarding all
the attributes of v

Af
v B-tree for the attribute with identifier f of vertex v

Bv A B-tree used as an index over all Af
v trees

B A B-tree used as an index over the identifiers of all the diachronic nodes

B Disk block size

4.1 Data Structure Overview

In this section, we will provide an overview of the data structure and we will use
a data structure built on the evolving graph sequence of Figure 1 as a running
example (Figure 3). Recall that G = {G1, G2, G3, . . .} is a sequence of graph
snapshots with eachGi ∈ G corresponding to a snapshot of the graphG at time
instance i. A vertex v ∈ Gi is characterized by a set of attributes (e.g. color),
a set of incoming edges from the other vertices of Gi and a set of outgoing
edges to the other vertices of Gi. We construct an external interval tree I
that maintains a set of intervals {T v

ts,te
} where an interval T v

ts,te
signifies the

“lifetime” of a vertex v, i.e. from time instance ts to time instance te. We mark
a vertex to be “active” (alive) up until the latest time instance, by setting the
te value to be +∞. As an example, in Figure 3 we can see that at time instance
3, interval tree I stores four intervals, namely {T a

1,∞, T b
1,∞, T c

1,∞, T d
3,∞}. Finally,

each interval T v
ts,te

is augmented with a pointer (handle) to an additional data
structure for each vertex v, called diachronic node.

A diachronic node Dv of a vertex v maintains a collection of data structures
corresponding to the full vertex history in the sequence G, i.e. when that
vertex was inserted, all corresponding changes to its edges or attributes and
finally its deletion time (if applicable). More formally, a diachronic node Dv

maintains an external interval tree Iv which stores information regarding all

HiNode: A Storage Model for Historical Queries on Graphs 9

of v’s characteristics (attributes and edges) throughout the entire G sequence.
An interval in Iv is stored as a quadruple (f, {ℓ1, ℓ2, . . .}, ts, te), where f is the
identifier of the attribute that has values ℓ1, ℓ2, . . . during the time interval
[ts, te]. Note that an edge belonging to v (i.e. one endpoint of the edge is v), can
be represented as an attribute of v by using one value ℓi to denote the other
end of the edge, another value ℓj to mark the edge as incoming or outgoing and
a last value ℓh that is used as a handle to the diachronic node corresponding
to the vertex in the other end of the edge. The remaining ℓ values can be used
to store the attributes of the edge themselves (e.g. weight). In the running
example of Figure 3, we can see that at time instance 3, the interval tree Ia
of the diachronic node Da stores four intervals: one for the label of the vertex
and three for all the edges that have occurred thus far for vertex a.

Additionally, the diachronic node maintains a B-Tree for each attribute
and for each individual edge of the vertex. The B-tree corresponding to the
attribute with identifier f of vertex v is denoted as Af

v and is used to maintain
the entire history of changes of f between the different snapshots in G. Each
record in Af

v is a triple ({ℓ1, ℓ2, . . .}, ts, te) where ℓ1, ℓ2, . . . are the values of
f during the time interval [ts, te]. The edges of v are represented in a similar
manner to attributes taking into account the values ℓi, ℓj and ℓh which were
discussed on the previous paragraph. Using the Af

v trees, which are built on
the [ts, te] intervals, we can support stabbing queries for a particular set of
attributes within the diachronic node, without aggravating asymptotically the
space usage. Given the fact that the count of Af

v trees is dependant on the
edge count of v and to facilitate efficient searching of a specific Af

v tree, we
maintain a B-Tree Bv over all Af

v trees. Finally, we maintain the location
of all diachronic nodes using a B-Tree dictionary B built on the IDs of the
diachronic nodes. With regard to the example of Figure 3, at time instance
3 the diachronic node of vertex a has four Af

v B-trees each containing one
record.

Figure 2 shows the proposed data structure, where |v| is the size of v (i.e.
the count of attributes and edges of v across all of G). The full arrows are
handles to diachronic nodes from the intervals in I while the dashed arrows
signify handles to diachronic nodes from B. Depending on the operation we
may use either option to locate a specific diachronic node. The full example
of the data structure built on the evolving graph sequence of Figure 1 can be
seen in Figure 3. We name our storage model as HiNode standing for “History
in the (diachronic) Node”.

4.2 Basic Operations

We implement a basic set of operations over the graph sequence that can
be used as primitive for implementing more complex operations concerning a
subgraph (or the entire graph) at a particular time instance. Henceforth, we
use the terms fields and attributes interchangeably to refer to the attributes

10 Andreas Kosmatopoulos et al.

Dv

. . .

Du

(v, ts, te)

(u, t′s,+∞)

I

B

Iv

Iu

Bv

Bu

Af1
u Af2

u A
f|u|
u

Diachronic Node u

Index on
diachronic nodes

attribute f1
. . .

. . .

intervals of attributes
. . .

An interval tree with the
life spans of diachronic nodes

Interval tree on

Index on attributes fi

Index on intervals
of f1

Af1
v

. . .

A
f|v|
v

attribute f|v|. . .

Fig. 2 A bird’s-eye view for an instance of our proposed data structure.

of each vertex and assume that all operations refer to a vertex in the sequence
labeled as v. Each operation description is accompanied by pseudocode.

InsertVertex (Algorithm 1) creates an interval T v
ts,te

that corresponds to a
new vertex v in the sequence G that is inserted at time ts. Furthermore, an
empty diachronic node Dv is created for v and a pointer pv to Dv is attached
to T v

ts,te
and inserted in B. Finally, the interval T v

ts,te
is inserted in I and the

pv pointer is returned. If at the time of insertion, the end time te is not known,
we set it to infinity. Note that even if v gets deleted at some time instance t,
we keep Dv to facilitate historical queries.

ReadAttribute (Algorithm 2) returns the set of values {ℓ1, ℓ2, . . .} of the
field f in vertex v at time t. To realize this operation we retrieve the di-
achronic node Dv by querying B for id v. Afterwards, we obtain the Af

v

tree using Bv and perform a query for time t. If there exists a set of val-
ues S = {ℓ1, ℓ2, . . .} for f at the time instance t it is returned, otherwise the
operation returns a NULL value.

WriteAttribute (Algorithm 3) assigns a set of values S = {ℓ1, ℓ2, . . .} which
are valid for the time interval [ts, te] to the field f of vertex v. To achieve
this, firstly we obtain the diachronic node Dv of v by searching B for id v.
Following that, we perform a stabbing query on the respective Af

v tree of f
for each of the ts and te endpoints. If the stabbing queries do not return any
interval then the field f does not have any values associated with it in the
time interval [ts, te] and we insert the relevant data in Iv and Af

v directly;
otherwise, we retrieve the (at most two) returned interval(s) (e.g. [t′s, t

′
e] and

HiNode: A Storage Model for Historical Queries on Graphs 11

I Da

Ia
(label, {a}, 1,∞)

(edge b, {b, inc., hb}, 1, 2)
(edge c, {c, out., hc}, 2,∞)
(edge d, {d, out., hd}, 3,∞)

Alabel
a

({a}, 1,∞)

Aedge b
a
({b, inc., hb}, 1, 2)

Aedge c
a

({c, out., hc}, 2,∞)

Aedge d
a

({d, out., hd}, 3,∞)

(a, 1,∞)

(b, 1,∞)

(c, 1,∞)

(d, 3,∞)

B Db

Ib
(label, {b}, 1,∞)

(edge a, {a, out., ha}, 1, 2)
(edge c, {c, inc., hc}, 1,∞)
(edge d, {d, out., hd}, 3,∞)

Alabel
b

({b}, 1,∞)

A
edge a
b

({a, out., ha}, 1, 2)

A
edge c
b

({c, inc., hc}, 1,∞)

A
edge d
b

({d, out., hd}, 3,∞)

Da

Db

Dc

Dd

Dc

Ic
(label, {c}, 1,∞)

(edge a, {a, inc., ha}, 2,∞)

(edge b, {b, out., hb}, 1,∞)

Alabel
c

({c}, 1,∞)

Aedge b
c

({b, out., hc}, 1,∞)

Aedge a
c

({a, inc., ha}, 2,∞)

Dd

Id
(label, {d}, 3,∞)

(edge a, {a, inc., ha}, 3,∞)

(edge b, {b, inc., hb}, 3,∞)

Alabel
d

({d}, 3,∞)

A
edge b
d

({b, inc., hb}, 3,∞)

A
edge a
d

({a, inc., ha}, 3,∞)

Fig. 3 The data structure built on the graph sequence of Figure 1 as seen at time instance
3.

Algorithm 1 InsertVertex(v, ts, te)
Input: vertex id v, start time ts, end time te
Output: a pointer pv to the diachronic node of v
1: T v

ts,te
← new interval (v, ts, te)

2: pv ← pointer(new diachronic node(v))
3: T v

ts,te
.attach(pv)

4: B.insert(pv) ⊲ pv is inserted in B along with the ID of v
5: I.insert(T v

ts,te
)

6: return pv

[t′′s , t
′′
e]), remove their portion that is being overlapped by [ts, te] and finally

insert the relevant data in Iv and Af
v . The two cases are described in detail in

Appendix A.

Finally, the WriteAttribute operation is also used in a similar manner to
delete a particular interval by specifying the field f and the interval [ts, te] to

12 Andreas Kosmatopoulos et al.

Algorithm 2 ReadAttribute(v, f , t)
Input: vertex id v, attribute or field f , time instance t
Output: a set of values S = {ℓ1, ℓ2, . . .} corresponding to the values of f at time t; NULL

otherwise
1: Dv ← B.query(v)

2: Af
v ← Dv.Bv.query(f)

3: S ← Af
v .stab(t)

4: if S 6= ∅ then return S
5: else return NULL

6: end if

Algorithm 3 WriteAttribute(v, f , {ℓ1, ℓ2, . . .}, ts, te)

Input: vertex id v, attribute or field f , a set of values {ℓ1, ℓ2, . . .}, start time ts, end time
te

Output: -
1: Dv ← B.query(v)

2: Af
v ← Dv.Bv.query(f)

3: hasV alues← false ⊲ Boolean used to distinguish between the two cases

4: if Af
v .stab(ts)6= ∅ or Af

v .stab(te)6= ∅ then

5: Retrieve the interval(s) from Af
v

6: hasV alues← true
7: end if

8: if ¬hasV alues then ⊲ Case 1
9: Iv.insert((f, {ℓ1, ℓ2, . . .}, ts, te))

10: Af
v .insert(({ℓ1, ℓ2, . . .}, ts, te))

11: else ⊲ Case 2
12: Using the interval(s) retrieved from Af

v , retrieve the corresponding interval(s) in Iv
13: if ∄[t′′s , t

′′
e] then

14: if t′s < ts < t′e < te then ⊲ Subcase a

15: In Iv, A
f
v : Delete [t′s, t

′
e]. Insert [t′s, ts), [ts, t

′
e), [t

′
e, te]

16: else if ts < t′s < te < t′e then ⊲ Subcase b

17: In Iv, A
f
v : Delete [t′s, t

′
e]. Insert [ts, t′s), [t

′
s, te), [te, t

′
e]

18: else if t′s < ts < te < t′e then ⊲ Subcase c

19: In Iv, A
f
v : Delete [t′s, t

′
e]. Insert [t′s, ts), [ts, te), [te, t

′
e]

20: end if

21: else ⊲ Subcase d
22: In Iv, A

f
v : Delete [t′s, t

′
e], [t

′′
s , t

′′
e]. Insert [t′s, ts), [ts, t

′
e), [t

′′
s , te), [te, t

′′
e]

23: end if

24: end if

be deleted and passing a NULL value as the set of values. Note that the deletion
operation is meaningless in the transaction time setting.

We conclude the operation by pointing out that the first case represents
the insertion of data corresponding to a particular vertex’s field, while the
second case can be seen as correcting the data that the vertex already had.
To that end, we do not permit cases where the insertion of an interval would
delete an already existing interval (e.g. ts < t′s < t′e < te) as that would result
in the loss of information. In those cases, the user should explicitly delete the
related intervals before inserting the new one.

HiNode: A Storage Model for Historical Queries on Graphs 13

Algorithm 4 ReadVertex(v, t)
Input: vertex id v, time instance t
Output: a pointer pv to an object u that corresponds to v as seen at t
1: Dv ← B.query(v)
2: P ← Dv.Iv.stab(t)
3: u← new vertex(v,t)
4: for each f = (attribute or edge) in P do

5: u.add(f)
6: end for

7: return pointer(u)

ReadVertex (Algorithm 4) returns a pointer to an object u that corresponds to
the vertex v as seen at time t. This is realized by obtaining the diachronic node
Dv of v using B and then performing a stabbing query to Iv. The stabbing
query returns the set of values at time instance t for each field f in v. After
following this approach, all the resulting objects are collected and put in an
object u which is returned by pu.

4.3 Analysis of Space and Time Complexities

Our space and time cost analysis is based on the relevant costs of B-Trees
and external interval trees. Assuming that the first snapshot in the sequence
is empty, each of the m changes occurring in the time-evolving sequence is
ultimately stored O(1) times in O(1) linear-sized data structures. More specif-
ically, in the Insert Vertex operation we insert an interval in I and a record
in B for each newly created vertex while in each WriteAttribute operation
we insert up to three intervals and records in Iv and the corresponding Af

v B-
tree respectively. This brings the total space usage for m changes to O(m/B)
which is asymptotically optimal with respect to the number of changes.

We analyze the time cost of each operation. The InsertVertex operation
requires O(logB m) time, since the insertion of T v

ts,te
in I and the insertion of

the diachronic node pointer in B each require O(logB m) time (the creation of
the diachronic node itself requires constant time).

The ReadAttribute operation requires O(logB m) time in total. Retrieving
Dv by querying B and obtaining Af

v require O(logB m) time each. Finally, the
query in Af

v also requires O(logB m) time.
We will analyze the WriteAttribute operation by separately analyzing

its two cases. Firstly, obtaining Dv is done in O(logB m) time. To determine
which case stands true, we perform two calls to ReadAttribute that require
O(logB m) time in total. In the first case we perform two insertions, each
requiring O(logB m) time.

In the second case, searching for [t′s, t
′
e] (and potentially [t′′s , t

′′
e]) in Iv can

be done in O(logB m) total time. In any of the resulting subcases we perform
a series of O(1) deletions and insertions each requiring O(logB m) time. Thus,
the second case also requires O(logB m) time, yielding O(logB m) total time
for the operation.

14 Andreas Kosmatopoulos et al.

To access a full vertex v at time t, we retrieve Dv by querying B and then
we perform a stabbing query to Iv by using the operation ReadVertex. The
total cost is O(logB m+ |vt|/B), where |vt| is the size of vertex v at time t.

The following theorem summarizes the obtained space and time results.

Theorem 1 We can maintain a time-evolving graph sequence in a data struc-
ture using O(m/B) space, where m is the total number of changes in the se-
quence and B is the disk block size. The data structure supports the following
basic operations:
1) InsertVertex in O(logB m) time,
2) ReadAttribute in O(logB m) time,
3) WriteAttribute in O(logB m) time,
4) ReadVertex in O(logB m+ |vt|/B) time, where |vt| is the size of the vertex
v at time t (i.e. the count of attributes and edges of v at time t).

4.4 Qualitative Comparison

Here we provide a qualitative comparison between different methods. To do
that, we assume only transaction time, since not all solutions support valid
time, as we and TGI do. This comparison is based on the formal ∆ framework
introduced in [20], which is summarized as follows. An ephemeral vertex is a
vertex at a specific time instance. Thus, one needs to specify the time instance
t for which we are interested to retrieve the ephemeral vertex. The ephemeral
vertex contains an identifier, a list of incoming and outgoing edges (a list of
edges in the case of an undirected graph) as well as a set of attributes that
are attached to this particular vertex or to an edge. An ephemeral edge is
similarly defined. A ∆ is a set of ephemeral vertices and edges at potentially
various times instances. All kinds of graph operations can be defined on ∆s in
order to compress and make more efficient queries on time instances or time
intervals. An event is the minimum change that registers a new instance of the
graph. As a ∆, an event is simply the set of ephemeral vertices and edges that
constitute the changes between two successive time instances. An eventlist is
a sequence of successive events sorted in a chronological order. An eventlist
is specified by the time interval [tstart, tend] of the respective ∆s. Finally, a
snapshot at a particular time instance t is the set of all ephemeral vertices and
edges at time instance t.

Following the above definitions, we provide a qualitative comparison be-
tween different methods in Table 2. Column “Space” refers to the space re-
quired by each model while the rest of the columns refer to the access time
required by each respective operation.

Ephemeral operations correspond to accessing a particular specified object
(graph, subgraph or vertex) at a particular time instance while Versioned
operations correspond to accessing a particular object in a time interval. The
1-Hop operation corresponds to accessing all adjacent vertices of a particular

HiNode: A Storage Model for Historical Queries on Graphs 15

Table 2 The table is split into two pieces in order to facilitate readability. Comparison
of storage models w.r.t. space and access time on various operations. Multiplicative and
additive constant factors are discarded. Some of the following parameters either correspond
to the actual size of an object (e.g., size of a vertex in the operation Ephemeral Vertex) or
to a mean value (e.g., mean size of a vertex in operation Versioned Subgraph). m → total
number of stored changes; |S| → total size of snapshot; |E| → eventlist size; h→ height of
a tree of snapshots used in TGI. It is upper bounded by logm; |C| → number of changes
within a vertex. It is upper bounded by m; d → the degree of a vertex; |W | → size of an
ephemeral subgraph W ; |A| → size of an ephemeral vertex.

Model Space
Edge

Insertion
Snapshot

Ephemeral
Vertex

Versioned
Vertex

OPTIMAL m 1 |S| |A| |C|

LOG m 1 m m m
COPY m2 m |S| |S| |S||C|

COPY+LOG m2

|E|
m
|E|

|S|+ |E| |S|+ |E| m

TGI hm hm h|S|+ |E| h|S|+ |E| |C||S|

G∗ m+ m2

|E||C|
lgm+ |E|+ m

|E|

|C| m
|E|

+ |E|

+ lgm + |S|

|C| m
|E|

+ |E|

+ lgm+ |A|
|C|

(

m
|E|

+ lgm
)

+ |E|

HiNode m lgm+ lg |C| |S| lg |C| lgm+ |A|+ lg |C| lgm+ |C|+ lg |C|

Model
Ephemeral

1-Hop
Versioned
1-Hop

Ephemeral
Subgraph

Versioned
Subgraph

OPTIMAL d d|C| |W | min{|W ||C|,m}

LOG m m m m
COPY |S| |S||C| |S| |S||C|

COPY+LOG |S|+ |E| m |S|+ |E| m
TGI h|S|+ |E| |C||S| h|S|+ |E| h|S|+ |C||W |

G∗ |C| m
|E|

+ |E|

+lgm+ |A|+ d

|C|
(

m
|E|

+ lgm
)

+|E|+ d|C|

|C| m
|E|

+ |E|

+lgm+ |W |

|C|
(

m
|E|

+ lgm
)

+|E|+ |C||W |

HiNode lgm+ |A|+ lg |C|+ d lgm+ d|C|+ lg |C| |W | lg |C| |C||W | lg |C|

vertex. The OPTIMAL row corresponds to the ideal space and time access
costs for the operations in the worst-case.2

The LOG method corresponds to a single initial snapshot with an eventlist
that stores all changes. The COPY method corresponds to a snapshot for each
change without eventlists. COPY corresponds to storing each snapshot as a
separate graph in a graph database system. One could combine these methods
(COPY+LOG) by allowing a sequence of snapshots with eventlists that record
the changes between them. In the following paragraphs, we describe the space
cost required by the TGI and G∗ approaches. Furthermore, we outline the
time cost for the operations in the first half of Table 2 (the rest follow the
same logic and are defined similarly).

TGI is based on the COPY+LOG idea which, however, is considerably
tuned so that it allows a hierarchical structure of snapshots combined with
partitioning of eventlists into small chunks in order to achieve better local-
ity. Furthermore, the system supports lists of different instances of diachronic

2 For G∗, TGI and our solution (and to a lesser extent for the other methods), one could
indeed describe the complexity w.r.t. a variety of parameters and provide a more detailed
description. However, doing so would certainly not permit the direct comparison between
the methods and would thus invalidate the very reason for which this table is provided.

16 Andreas Kosmatopoulos et al.

vertices within the snapshots (“vertex chains”) to facilitate vertex-centric op-
erations. In addition, one of its merits is the dynamic partitioning of the graph.
We choose not to incorporate it in this comparison for reasons of uniformity
since all other solutions do not support such an explicit partitioning process
but consider it as an additional external mechanism. Finally, updates in TGI
are only supported in batch mode and the system does not allow for online
small changes.

Before outlining the space and time complexity attained by TGI, we note
that the parameter h corresponds to the height of the hierarchical tree struc-
ture employed by the TGI approach. On each level of the hierarchical structure,
TGI stores the delta difference between each parent node from its child, thus
bringing the total space cost to O(hm). To make an edge insertion we have
to materialize the hierarchy of differences which results in a cost of O(hm).
Obtaining a snapshot in TGI is accomplished by traversing a root-to-leaf path
in the tree structure and materializing any delta associated to the snapshot
on each node. This results in a O(h|S| + |E|) cost with the |E| factor corre-
sponding to any remaining changes in the leaf-eventlist stored in the leaf that
must be applied to obtain the snapshot. The Ephemeral Vertex operation has
the same cost since it is performed similarly to a snapshot retrieval with the
difference being that the system only retrieves the subset of deltas associated
to the queried node. Finally, in the Versioned Vertex operation, the system
makes use of the vertex chains to obtain the eventlists corresponding to each
change in the node in a given query interval, resulting in an O(|C||S|) cost for
the |C| eventlists that need to be filtered for the queried node.

G∗ is a combination of a vertex-centric approach and the COPY+LOG
method, where differences are stored in a compact way by employing indirec-
tion. The system achieves that by employing an index called Compact Graph
Index (CGI). CGI manages collections of vertex version locations on disk (VL
maps), with each vertex version being represented once for each combination
of graphs that it exists in (see Section 6.1 for more practical details). This
means that, for successive snapshots, only differences are stored. As a result,
this fact complicates logging of operations between snapshots but to a small
degree (the authors do not consider it, since their focus is only on the storage
of a rather small number of successive snapshots).

G∗ stores each of the m changes only once and employs CGI to index the
different versions that occur. The number of VL maps increases quadratically
with the number of graphs [23] and since G∗ employs logging to store all
intermediate history between successive snapshots, the space cost of G∗ is

O(m+ m2

|E||C|). The edge insertion cost ofG∗ is O(lgm+|E|+ m
|E|) since it follows

a similar approach to the COPY+LOG method with the addition of traversing
the index and applying any logged updates. In order to retrieve a snapshot,
G∗ iterates through the VL maps and retrieves all vertices that are related to
the queried time instance. It then applies any logged updates before returning
the snapshot resulting in a total cost of O(|C| m

|E| + |E| + lgm + |S|). The

same procedure is followed for the Ephemeral Vertex operation but instead of

HiNode: A Storage Model for Historical Queries on Graphs 17

returning all vertices for the queried time instance, the system limits its query
to the given vertex. Finally, in the Versioned Vertex operation G∗ employs the
same procedure but may require visiting multiple paths in the index since the
query refers to a time interval instead of a particular time instance.

We provide an outline of the complexities attained by HiNode. The space
cost of HiNode is linear to the number of changes (Theorem 1). The time
complexity to insert an edge is the same as the one for writing an attribute
(see the WriteAttribute operation in Theorem 1). First, we obtain the rele-
vant diachronic node by traversing a B-Tree in logarithmic time and then we
insert the edge. However, a more accurate description of the complexity can
be attained by noting that the number of changes in the node is |C| and, since
|C| is bounded by m, we obtain the final result. To obtain a snapshot, we per-
form multiple ReadVertex operations on all vertices that are “alive” at that
particular time instance. The cost of retrieving a single vertex is O(log|C|),
which refines the O(logB m) definition in Theorem 1. Since, the total size of
the snapshot is |S|, the total cost is |S|log|C|. In order to read an ephemeral
vertex we need to locate its diachronic node using the B-Tree (logm), retrieve
the vertex at that particular time instance (log |C|) and read its attributes
and edges (|A|). Reading a versioned vertex is performed in a similar manner
but, instead of the factor |A|, the operation costs |C| since we need to retrieve
all the relevant changes in query interval. The ephemeral 1-hop operation cor-
responds to retrieving an ephemeral vertex plus accessing its d neighbors. In
the versioned 1-hop operation, there exist up to d ∗ |C| different neighbors for
the node throughout the query interval so the cost is equal to retrieving the
vertex and accessing all of its potential neighbors. The ephemeral subgraph
operation follows the same logic as the snapshot operation with the difference
being that instead of |S| the total cost depends on the total size |W | of the
ephemeral subgraph (attributes and edges of all nodes in the subgraph) and
is |W | log |C|. Finally, in the versioned subgraph operation the total cost is
|C||W | log |C| which is equal to the cost of the ephemeral subgraph operation
multiplied by all the potential versions of each node in the subgraph.

From Table 2, we can deduce that our approach uses the least space re-
quired w.r.t the total number of stored changes in the sequence and is asymp-
totically space-optimal (we do not take into account all multiplicative constant
factors as well as additive factors). For the aforementioned methods, one could
implement the various operations shown in Table 2 by employing additional
indexing techniques (e.g., hash table with pointers to different time instances
of vertices in each snapshot in the COPY method) and the stated complexi-
ties may change based on such decisions. For ephemeral operations, we assume
that the respective reconstructed object is returned (e.g., the vertex as seen at
time t). For versioned operations in the time interval [ts, te], the reconstructed
ephemeral object is returned at time ts along with a list of changes up un-
til time te. Finally, to compare the performance w.r.t. updates we focus only
on insertions of edges. Although different, similar performance is achieved for
vertex insertions. Comparing the access times between TGI, G∗ and HiNode
for all operations, we can observe that HiNode is only either by multiplica-

18 Andreas Kosmatopoulos et al.

tive or additive logarithmic factors away from the OPTIMAL access times
with the exception of ephemeral 1-hop, where there is an additive A factor,
that corresponds to the size of the ephemeral node. When compared to G∗,
it seems that HiNode is worse by a multiplicative logarithmic factor in the
Snapshot, Ephemeral and Versioned Subgraph operations without taking into
account the additive factors of G∗ in these operations, thus leading to various
tradeoffs in efficiency. When compared to TGI, HiNode always exhibits better
complexities.

5 Query Processing

In this section, we start by discussing snapshot materialization and graph
traversal, which are fundamental steps in historical queries. Then, we discuss
various versions of shortest paths based on the underlying notion of time.
Finally, we refer to graph sampling as an argument in favor of efficiency in
local queries.

5.1 Core Algorithms for Global Queries

We begin by outlining snapshot materialization of the graph at a specific time
instance and how to execute a graph traversal algorithm (e.g. DFS/BFS) for
a given source vertex and time instance.

Theorem 2 Given G we can materialize a specific snapshot Gt = (Vt, Et) at
time instance t in O(|Vt| logB m + S

B
) time (I/Os) where S is the total size

(attributes and edges) of all vertices in Vt.

Proof Creating a snapshot in HiNode is only a logarithmic factor away from
the optimal while it compares favorably with TGI and G∗ (see Section 4.4).
We begin by executing a stabbing query on I to retrieve all the vertices that
exist on the time instance t. Afterwards, we perform a ReadVertex opera-
tion on each of the returned diachronic nodes to obtain the final result. The
initial stabbing query requires O(logB m+ |Vt|/B) time and each subsequent
ReadVertex operation takes O(logB m + |ut|/B) time where |ut| is the size
of the vertex u at time t. Let S be the total size of all vertices in Vt. Since
there are |Vt| ReadVertex operations and S ≥ |Vt|, this brings the total time
to O(|Vt| logB m+ S

B
). ⊓⊔

For DFS, the straightforward way would be to materialize the snapshot
and run DFS on the snapshot. However, by using a stack data structure and
repeatedly using ReadVertex in each newly-visited node we can naturally ap-
ply DFS on the diachronic nodes without having to resort to materialization.
We only have indications as to whether this is more efficient than materializing
the corresponding snapshot. In particular, preliminary results, as indicated in
the next section show that in principle materialization has larger costs (e.g. re-
quires the explicit storage of the snapshot) and it is expected that HiNode will

HiNode: A Storage Model for Historical Queries on Graphs 19

be more efficient as indicated in Section 6.3. Additionally, experimental results
suggest that when more than one snapshots are required (a time interval and
not a time instance) our method is certainly more efficient.

Theorem 3 Given G we can perform a depth-first search on a specific snap-
shot Gt = (Vt, Et) at time instance t starting from a source vertex v in
O(|Vt| logB m+ S

B
) time (I/Os) where S is the total size (attributes and edges)

of all vertices in Vt.

Proof To perform a depth-first search an external stack data structure [28] is
required. The external stack is the external memory equivalent of an internal
memory LIFO data structure and supports insertions (push) and deletions
(pop) in O(1/B) amortized time. As a first step, we retrieve the diachronic
node of v using B in O(logB m) time and push the node to the stack. We
then iteratively pop the node in the top of the stack, mark it as visited and
perform a ReadVertex on the acquired node. For each outgoing edge we push
the respective node in the stack and repeat the same procedure until the stack
is empty. The worst case for this algorithm occurs when Gt is connected and
thus all |Vt| vertices are eventually inserted and deleted from the stack.

The push and pop require O(|Vt|/B) amortized time in total, while all the
ReadVertex operations require O(|Vt| logB m + S

B
) time (Theorem 2), which

brings the total cost to O(|Vt| logB m+ S
B
) time. ⊓⊔

Finally, we move to the discussion of finding the shortest path from a
single source v to a single target u. We base our algorithms on the well-known
Dijkstra [10] algorithm for solving this problem which stops as soon as it
discovers the shortest path between these two nodes. We provide two different
versions of the problem based on the underlying notion of time: a) time travel
shortest paths and b) time instance shortest paths. In the former variant, the
user provides the source node v and the target node u as well as a time interval
[ts, te] and asks the shortest path between v and u that uses edges and nodes
valid throughout the time interval [ts, te]. This means that the shortest path is
allowed to use edges and nodes that do not coexist at the same time instance
(we allow for time traveling when traversing the shortest path - e.g. in the case
of airline travel with connection cities, a traveler is usually not interested in
all the flight paths coexisting at the same time). In the latter variant, the user
provides again the same input but expects to find a shortest path between v
and u that is valid at a particular time instance within the time interval [ts, te],
that is time travel is not allowed. For the latter variant, one could construct
all the te−ts+1 snapshots and run the Dijkstra algorithm in each one of them
reporting at the end the one with the minimum length, which is a clear waste
of time when these paths have a lot in common. In the time travel shortest
path, materialization does not lead to a straightforward algorithm.

Theorem 4 Given G, [ts, te] and nodes v and u, we can find a time travel
shortest path between v and u within the time interval [ts, te] in O((|Es,e| +
|Vs,e| log |Vs,e|) logB m) time (I/Os), where Vs,e and Es,e are the set of nodes
and edges respectively that are valid in the time interval [ts, te].

20 Andreas Kosmatopoulos et al.

Algorithm 5 TimeTravelSSSP(G, v, u, [ts, te])

Input: evolving graph sequence G, time interval [ts, te], source v and target u
Output: The time travel shortest path p from v to u in the range [ts, te]

⊲ dist[w] stores the minimum distance from v to w
⊲ prev[w] stores the predecessor of w
⊲ Q is an external memory priority queue

1: Using I acquire the list L of nodes that are valid in [ts, te] (simple pointers to them)
2: for each vertex w 6= v in L do

3: dist[w]← +∞
4: initialize the predecessor of w: prev[w]← NULL
5: InsertKey(Q,w,+∞)
6: end for

7: while target u has not been reached do

8: w ← ExtractMin(Q)
9: for each valid neighbor z of w in [ts, te] do
10: Let Λ be the set of lengths of valid edges (w, z)
11: Let length(w, z) = minΛ
12: newd← dist[w] + length(w, z)
13: if newd < dist[z] then
14: dist[z]← newd
15: prev[z]← w
16: DecreasePriority(Q, z,newd)
17: end if

18: end for

19: end while

20: return dist[u], prev[u]

Proof The algorithm is the same with that of Dijkstra with the exception
that we consider edges and nodes that are valid in the time interval [ts, te].
In particular, when the algorithm considers the neighbors of a node w to
update their distance, it chooses nodes that are valid in [ts, te]. In addition,
the length of the edge between v and its neighbor z is the minimum length
among all edges between v and z that are valid in the time interval [ts, te].
Note that the distance (dist) and the predecessor labels (prev) can be stored
separately maintaining pointers to the index and not the diachronic nodes. See
Algorithm 5 for an extensive description. In the description of the algorithm, it
is the definition of the Λ set that introduces the time travel in the computation
of the shortest paths. Choosing the minimum among all lengths in Λ returns
at the end the time travel shortest path between v and u since any other
choice would lead to a shortest path with at least the same length (this is
an exchange argument for the greedy method of choosing lengths). We use
standard terminology for the description of the algorithm while the shortest
path can be generated by backtracking from u.

The time complexity is O ((|Es,e|+ |Vs,e| log |Vs,e|) logB m), where the fac-
tor logB m is derived from accessing each field in the diachronic node, while the
rest of the time complexity comes from the Dijkstra algorithm implemented
with an efficient priority queue [7]. ⊓⊔

As previously mentioned, materialization cannot be used in this case. Em-
ploying Algorithm 5 in the TGI would require the use of the lists of different

HiNode: A Storage Model for Historical Queries on Graphs 21

instances of the diachronic nodes. This would mean that all accesses would be
non-local and thus it is expected that the efficiency would be deteriorated. In
addition, it requires more work to find all edges that are valid in [ts, te] since
we need to traverse a list of nodes to find them. G∗ is expected to be more
efficient than TGI but due to the level of indirection that we need to access
for finding the edges it is expected that it will be less efficient than HiNode,
especially when the time interval [ts, te] is not small (e.g., if it contains 3 time
instances).

The time instance shortest path requires more care since we need to dis-
cover a shortest path between v and u that is valid in one time instance without
resorting to materialization, which is the first thing that comes to mind and
gives rise to a natural algorithm.

Theorem 5 Given G, [ts, te] and nodes v and u, we can find a time instance
shortest path between v and u within the time interval [ts, te] in Õ((|Es,e| +
|Vs,e| log |Vs,e|) logB m) time (I/Os), where Vs,e and Es,e are the set of nodes
and edges respectively that are valid in the time interval [ts, te].

Proof The algorithm resembles that of Dijkstra with the exception that each
node is accompanied by an interval in which it is valid (always within the given
interval [ts, te]). This means that in the priority queue we do not store each
node only once but as many times as the different instances of the node within
the time interval [ts, te]. A description is shown in Algorithm 6. The major
difference is that we handle many copies of the same node in the priority queue
that correspond to many different time intervals (but not necessarily time
instances). In addition, another thing to notice is that the stopping condition
is not related to the target u but requires the priority queue Q to be empty.
This is because when a node is processed it does not mean that it is processed
for its full range of its valid interval but only for a subinterval. One could also
define as a stopping condition that all instances of u corresponding to different
time intervals are visited.

The time complexity is Õ ((|Es,e|+ |Vs,e| log |Vs,e|) logB m), where the fac-
tor logB m is derived from accessing each field in the diachronic node, while
the rest of the time complexity comes from the Dijkstra algorithm. The Õ
notation represents multiplicative factors based on the implementation of the
hash maps. Finally, note that each interval corresponding to an object among
the |Vs,e| + |Es,e| different objects creates only O(1) new records in the data
structures used in Algorithm 6. ⊓⊔

5.2 Graph Sampling: A local query case-study

We use graph sampling [2,15] as a means to show that local operations on
graphs are of critical importance. Thus, there is a need to be able to access
efficiently subgraphs of a graph without resorting to materialization. Graph
sampling is a technique related to picking a subset of vertices and/or edges

22 Andreas Kosmatopoulos et al.

Algorithm 6 InstanceSSSP(G, v, u, [ts, te])

Input: evolving graph sequence G, time interval [ts, te], source v and target u
Output: The time instance shortest path p from v to u in the range [ts, te]

⊲ dist and prev are hash maps
1: Using I acquire the list L of nodes that are valid in [ts, te]
2: for each vertex w 6= v in L do

3: dist[w[0,+∞]]← +∞ dist is a hash map

4: prev[w[0,+∞]]← NULL
5: InsertKey(Q,w[0,+∞],+∞)
6: end for

7: while priority queue Q is not empty do

8: w[t,t′] ← ExtractMin(Q)
9: for each neighbor z[tz,t′z] of w such that [t, t′] ∩ [tz , t′z] 6= ∅ do

10: if t ≤ tz ≤ t′ ≤ t′z then

11: newd← dist[w[t,t′]] + length(w[t,t′], z[tz,t′])
12: oldd← dist[z[tz,t′z]]
13: if newd < oldd then

14: Remove z[tz,t′z] from dist and prev
15: Add to dist, z[tz,t′] with value newd
16: Add to dist, z[t′,t′

z
] with value oldd

17: Add to prev, z[tz,t′] with value w[t,t′]

18: Add to prev, z[t′,t′
z
] with value w[t,t′]

19: RemoveKey(Q, z[tz,t′z])

20: InsertKey(Q, z[tz,t′],newd)
21: InsertKey(Q, z[t′,t′

z
], oldd)

22: end if

23: end if

24: Similarly as in Lines 10-23, for the cases [t, t′] ⊇ [tz , t′z], [t, t′] ⊆ [tz , t′z] and

tz ≤ t ≤ t′z ≤ t′

25: end for

26: end while

27: return dist[u], prev[u]

from a given graph aiming at preserving and/or estimating certain desired
graph properties. In this way, the new smaller graph is similar with respect
to certain properties to the full one. Thus, an algorithm may be applied to
the smaller graph to compute these properties for the full graph, leading to
improved efficiency. The main motivating example for graph sampling is the
lack of data (e.g., API rate limits in Twitter) or lack of resources (e.g., time)
to access the data (e.g., the huge graph of all followers in Twitter). Although
sampling can be tackled by optimization methods, these assume full access
to the graph in the first place which as we said earlier is either not possible
or time consuming. As a result, we focus only on simple approaches that are
tailored to our framework. In particular, we assume that the evolution of the
graph is fully stored in HiNode but due to time constraints we wish to access
only a part of the graph at a particular instance or time interval in order
to estimate certain properties. Note that [2] has studied graph sampling in a
streaming framework which can only be seen orthogonally to our study.

The most important graph sampling techniques include Vertex Sampling
(VS) and Traversal Based Sampling (TBS). Let G = (V,E) be a simple graph.

HiNode: A Storage Model for Historical Queries on Graphs 23

In the VS technique, a subset V ′ ⊆ V is chosen randomly as well as all edges
between these vertices that belong to E, that is E′ = {(u, v) : (u, v) ∈ E, u, v ∈
V ′}. A major version of this technique is Vertex Sampling with Neighborhood
(VSN), where initially a set of vertices Ṽ is chosen and then E′ is the set of
all edges that are incident to Ṽ while V ′ is the set of all vertices that are
endpoints of the edges in E′. Finally, in TBS, a sampler starts with a set of
initial vertices and then extends the sample by following edges from vertices
already visited by employing various strategies (e.g., randomly, BFS, DFS).

We now discuss how graph sampling fits into our framework. In graph
sampling one needs to access a limited number of vertices/edges bounded
by a predefined budget L which is reduced each time an edge or a vertex
is sampled. If the operation is applied at a single snapshot, then one can
simply materialize this snapshot and then apply the sampling procedure to it.
However, this is contradictory since it requires the full access of the instance
which cancels all advantages of sampling. As a result, one cannot employ
methods that store historical graphs that are based on materializing snapshots
in order to support such operations. It is more appropriate in this case to
materialize single vertices, which is the main strong point of vertex-centric
storage techniques, like ours.

To clarify this point we look at the problem of computing the degree distri-
bution when graph sampling is employed and comparing G∗, TGI and HiNode
on such a scenario. VS and Random Walks (RW) have a pretty good per-
formance in approximating the degree distribution of the underlying network
(directed or undirected) [30] since they are unbiased estimators and their mean
squared error is rather small. Estimating the degree distribution in a specific
time instance for both methods requires sampling randomly vertices at the
specific snapshot and then, in the case of RWs, visiting adjacent vertices.
TGI [20] would first construct the snapshot at this time instance and move to
the sampling process. On the other hand, G∗ [23] and our method would only
process the vertices that are sampled. This is more efficient when the budget
L is small (e.g., ≤ 10% of the size of the sampled graph). When comparing
G∗ and our solution, G∗ is expected to be slightly more efficient in the case of
single instance VS or RW since decoding each vertex for a single time instance
is usually simpler (although it has the intermediate level of indirection which
HiNode avoids). On the other hand, our solution is expected to be more suit-
able in the case of intervals of time instances since for each vertex, G∗ requires
more I/Os than HiNode.

In a slightly different scenario, let us assume that we wish to find the degree
distribution of a graph in a given time interval. For the VS method, TGI finds
each vertex by reconstructing the snapshot and then it uses the version chains
that connect all instances of a vertex in a list to speed up the processing.
Apart from the obvious problem with the reconstruction of the snapshot when
the budget L is small, the vertex chains are not packed together and thus
do not exhibit space locality. On the other hand, G∗ uses the same idea as
in the case of sampling ephemeral vertices but because of the fact that all
historical information of a vertex is simply packed in a block it is easy to access

24 Andreas Kosmatopoulos et al.

it. However, the high access cost remains due to the complicated indexing
mechanism to access each time instance. Our solution has the simplest indexing
mechanism while at the same time maintains all the history of the vertex within
a single object and thus exhibiting high space locality leading to fast access
times although more operations are required to decode the information within
this diachronic node (note that decoding of a diachronic node is carried out in
main memory).

5.3 Practical Considerations

The solution we proposed in Section 4 makes extensive use of the external
interval tree data structure in order to provide efficient asymptotic bounds.
We can take advantage of the fact that in practice, the size of an individual
diachronic node and the count of the intervals it maintains for its attributes
and edges is substantially small. In practice, we can replace B-trees with linked
lists and hash maps since we then avoid the constant factors that arise from
the use of a more elaborate data structure.

More specifically, we can use a hash map to represent B and omit rep-
resenting I to reduce the space overhead (to recreate a specific snapshot we
simply visit all diachronic nodes through B). Additionally, in each diachronic
node v, we omit Iv and replace Bv with three hash map data structures (one
for each set of attributes, incoming and outgoing edges respectively). Finally,
we model each of the Af

v trees corresponding to attributes with a linked list
that maintains intervals. In practice, these modifications improve our runtime
efficiency at the expense of not strictly following the asymptotic guarantees
of Theorem 1 regarding the time complexity. Space usage is even better w.r.t.
constant factors since there is no use of elaborate data structures. Note that
the above modifications are predominantly suited for the case of historical
graphs that do not exhibit a specific update pattern. In extreme cases of se-
quences that perform a very large amount of updates on a very small subset
of vertices the use of linked lists may not be suitable.

Finally, our solution could be simplified considerably if only transaction
time (rather than both transaction and valid time) was considered. In partic-
ular, the diachronic node would be structured as a simple list of updates in the
node. The order of the changes in the list is dictated by the order of updates.
This small change in the structure of the node allows for the more efficient
decoding of the diachronic node making it potentially more efficient than the
decoding needed in G∗.

6 Experimental Evaluation

In this section, we provide experimental results after incorporating HiNode in
the G∗ parallel graph processing system.3 We aim to show (i) actual space

3 The source code is available at https://github.com/hinodeauthors/hinode

HiNode: A Storage Model for Historical Queries on Graphs 25

savings, (ii) real execution times for local queries and (iii) real execution times
for global queries, for which a vertex-centric approach may be thought to be
inefficient. The experiments ran on a private cluster with 21 virtual machines
(VMs). 20 VMs played the role of the G∗ workers, each having 1 VCPU,
5 GB RAM and 100 GB storage. One VM served as both G∗ master and
worker having 4 VCPUs, 28 GB RAM and 500 GB storage. All the VMs were
connected through a 1GBit local network. The memory is large enough so that
it can hold any diachronic node in its entirety.

6.1 Implementation Details

In the original G∗ system, the indexing model is based on maintaining “(ver-
texID, diskLocation)” pairs for the vertices stored in each G∗ server. These
pairs are stored in collections that are formed in an efficient way so that the
overall space required by the index is reduced and is able to fully (or par-
tially) fit in the internal memory of each server. While the index is maintained
in memory, the vertices or edges and their attributes are stored on disk. A
query on the G∗ system is converted to a structure of graph operators that
are computed in a pipelining fashion. The basis of the graph operators is the
vertex operator that retrieves a particular instance of a vertex along with its
attributes and edges from the disk. Note that allowing for the index to reside
in memory does not provide HiNode or G∗ with some advantage since the
comparison is only between these two storage models.

We incorporate our work into the G∗ system by replacing the existing in-
dexing model with the model proposed in Section 4 along with the practical
improvements described in Section 5.3. The system is further modified so that
it stores entire diachronic nodes on disk instead of vertices. To answer queries,
the system still makes use of the vertex operator. However, the modified sys-
tem retrieves an entire diachronic node from the disk and thus, it performs an
operation equivalent to ReadVertex to obtain a particular instance of a ver-
tex. Note that in our prototype implementation we don’t examine partitioning
issues and all the experiments are run under the same partitioning policies for
both G∗ and HiNode.

6.2 Dataset Description

We use both real and synthetic datasets. The former provide insights into
actual performance benefits, while the latter allow us to evaluate our approach
under a wide range of configurations.

The real datasets were obtained from the Large Network Dataset Collection
of SNAP [24]. The first dataset is a citation graph of the arXiv hep-th category
released as a part of the 2003 KDD Cup [13]. The dataset contains citations
from January 1993 to April 2003, which we use to create a sequence of monthly
snapshots of the citation graph. The second dataset is similar to the first

26 Andreas Kosmatopoulos et al.

Table 3 Experiments on real datasets. The number of vertices and edges refer to the last
snapshot of the sequence

Dataset Vertices Edges Snapshots
hep-Th 27770 352807 156
hep-Ph 34546 421578 132
US Patents 3774768 16518948 444

dataset as it focuses on the arXiv hep-ph category on the same time period
while featuring a slightly larger count of vertices and edges. In both datasets,
we omit 0.4% of the total edges due to the difficulty of mapping them to a
specific snapshot (e.g. paper A cites paper B but paper B is inserted in the
dataset with a later timestamp than that of A). The last dataset maintains
records for all the US utility patents granted between 1963 and 1999 and their
cross-citations. We build a sequence of monthly snapshots for that time period
while omitting 0.04% of the edges due to insufficient date information in the
dataset (e.g. withdrawn patents). In the real datasets we only focus on the
edges between vertices and do not maintain any attributes (such as names or
weights). A detailed overview of each real dataset is shown on Table 3.

The synthetic datasets follow either the Erdős-Rényi (ER) [11] model or
the Barabási-Albert (BA) [4] scale-free graph model. The latter resembles real-
world settings and environments more closely. To construct an ER synthetic
dataset, we supply the number of vertices and edges in the first snapshot, the
number of all snapshots, and the percentage of vertices and edges inserted or
updated between snapshots (e.g., in a snapshot of 1000 vertices and 1000 edges
an insertion rate of 5% would result in the next snapshot having 1050 vertices
and 1050 edges). Vertices have a name and edges are weighted. An update is
defined as the alternation of either a vertex’s name or an edge’s weight. BA
sequences are created similarly. In a BA sequence, each newly inserted vertex
is connected to the existing vertices, preferring those with a larger degree,
with the number of edges created for each newly inserted vertex specified by
a parameter.

Finally, we note that our datasets do not contain events related to the
deletion of vertices or edges since a deletion does not essentially differ from
an update. More specifically, consider an edge that is alive and that at some
time instance it becomes deleted. Upon the deletion of the edge we “update”
a relevant field used to mark the edge’s lifetime. Any queries regarding that
edge must also take into account the value stored by that field.

6.3 Snapshot Retrieval

In this section, we focus on the time required for snapshot retrieval in G∗

and HiNode. More specifically, in both systems each worker is assigned an
equal portion of each snapshot in the sequence through a round-robin vertex
assignment. Table 4 shows the time required to retrieve either 1 snapshot,
20% of a sequence’s snapshots or 40% of a sequence’s snapshots for a single

HiNode: A Storage Model for Historical Queries on Graphs 27

Table 4 Snapshot(s) portion retrieval time (in seconds) for a single worker. The percentages
correspond to the amount of retrieved snapshots in the sequence.

1 Snapshot 20% Snapshots 40% Snapshots
G∗ 7.4 20 27.5
HiNode 6.7 7.6 8.7

worker.4 We focused on a single worker in order to cancel out the additional
communication cost for reconstructing the whole snapshot, favoring in this
way G∗ since HiNode is more space efficient.

While both solutions perform comparably in the case of a single snapshot,
HiNode performs considerably better when retrieving a range of snapshots.
The former case is attributed to the fact that G∗ is characterized by the
intermediate level of indirection that we need to access for finding the edges.
On the other hand, the latter case is due to HiNode requiring less I/Os than
G∗ overall since in HiNode a vertex’s history is contained within its diachronic
node, while in G∗ we require multiple I/Os to fetch a vertex’s history due to
its indexing mechanism.

6.4 Local Query Evaluation

To demonstrate the efficiency of our approach in local query evaluation, we
conducted experiments that focused on the main primitive operations (or a
similar variant) of VS and RW (see Section 5.2) and compared our approach
against G∗. In particular, we studied the time required for two-hop neighbor-
hood retrieval of a specific vertex, as well as, vertex sampling in general.

In the first experiment, given a source vertex and a (range of) snapshot(s)
the query outputs all the two-hop neighborhoods for each instance of the source
vertex. We performed two-hop neighborhood retrieval for varying degree sizes
and snapshot ranges and present our results in Figure 4.56 HiNode improved
on G∗ by a factor of up to 4.2 times.

In the latter experiment, we focused on retrieving a randomly chosen set
of vertices from each worker. When the query was executed on a range of
snapshots, all possible corresponding instances of each sampled vertex were
returned. Additionally, we executed the query for different sample sizes. In a
slight modification of the experiment, instead of reporting the sample itself,
we aggregated the vertices reported by each worker so as to find the degree
distribution of a graph in a time instance or a time interval. This modification
translates to reduced communication costs since each worker only reports the
cardinality of each degree count. The time required for this query can be seen

4 Dataset - Undirected Barabási-Albert graph: Starting vertices = 1M , edges per newly
inserted vertex = 5, vertex insertions per snapshot = 2K, snapshots = 100

5 Dataset - Undirected Barabási-Albert graph: Starting vertices = 1M , edges per newly
inserted vertex = 5, vertex insertions per snapshot = 20K, snapshots = 100

6 In the case of querying the 40% of the sequence for the two-hop neighborhood of the
vertex with the largest degree, G∗ was unable to finish since it run out of memory.

28 Andreas Kosmatopoulos et al.

1 20% 40%

Snapshot Range

0

200

400

600

800

1000

1200

T
im

e
 (

s
)

Largest Degree

2-hop Query
Time (G*)
2-hop Query
Time (HiNode)

1 20% 40%

Snapshot Range

0

50

100

150

200

250

300

Large Degree

1 20% 40%

Snapshot Range

0

2

4

6

8

10

12

14

Median Degree

Fig. 4 Two-hop neighborhood query time.

1 20% 40%

Snapshot Range

0

10

20

30

40

50

T
im

e
 (

s
)

Sample Size: 1%

V. Sampling Report (G*)

V. Sampling Report (HiNode)

V. Sampling Distr. (G*)

V. Sampling Distr. (HiNode)

1 20% 40%

Snapshot Range

0

20

40

60

80

100

120

Sample Size: 10%

V. Sampling Report (G*)

V. Sampling Report (HiNode)

V. Sampling Distr. (G*)

V. Sampling Distr. (HiNode)

1 20% 40%

Snapshot Range

0

50

100

150

200

250

300

350
Sample Size: 30%

V. Sampling Report (G*)

V. Sampling Report (HiNode)

V. Sampling Distr. (G*)

V. Sampling Distr. (HiNode)

Fig. 5 Vertex sampling query time. The dataset used is the same as in Figure 4.

in Figure 5. In this experiment, HiNode improved upon G∗ by a factor of up
to 12 times, i.e., the improvement is by an order of magnitude.

Both experiments show that in the case of a single snapshot the two systems
have comparable performance, whereas our approach is substantially better
than G∗ when the query is concerned with a range of snapshots. In addition,
HiNode performs increasingly better on nodes with a higher degree. These two
observations stem from the fact that HiNode requires less I/Os than G∗, to
retrieve all the instances of a vertex.

6.5 Space Consumption

Table 5 shows the space utilization of each system for each of the real datasets.
The space savings are up to an order of magnitude. Our proposed solutions use
approximately 90% less space for indexing and 76% to 88% less space for the
data files. Recall that in our solution the index consists of a LinkedHashMap

containing “(DiacNodeID, Location)” pairs.
Next we experiment with the synthetic datasets for several sequence sizes

and insertion/update rates, as shown in Figure 6. Our main observations are
as follows. (i) As previously, the space savings reach an order of magnitude. (ii)
The higher the insertions or updates, the more significant the savings. This can

HiNode: A Storage Model for Historical Queries on Graphs 29

Table 5 Space consumption in real datasets

G* Storage
Module Size (MB)

HiNode Storage
Module Size (MB)

Difference (%)

Dataset Index Size Data Size Index Size Data Size Index Size Data Size
hep-Th 9.49 788.06 0.95 98.63 -89.99% -87.48%
hep-Ph 12.33 859.5 1.17 102.81 -90.51% -88.04%
US Patents 1094.41 23407.75 122.38 5456.63 -88.82% -76.69%

0
2
4
6
8

10
12
14
16

S
iz

e
 (

M
B

)

10 snapshots

Index Size (G*)

Index Size (HiNode)

0

20

40

60

80

100

100 snapshots

0
50

100
150
200
250
300
350

300 snapshots

100K 200K 300K

Initial Graph size

0
50

100
150
200
250
300
350

S
iz

e
 (

M
B

)

Data Size (G*)

Data Size (HiNode)

100K 200K 300K

Initial Graph size

0

500

1000

1500

100K 200K 300K

Initial Graph size

0

1000

2000

3000

4000

0

5

10

15

20

S
iz

e
 (

M
B

)

10 snapshots

Index Size (G*)

Index Size (HiNode)

0
20
40
60
80

100
120
140
160

100 snapshots

0

100

200

300

400

500
300 snapshots

100K 200K 300K

Initial Graph size

0
50

100
150
200
250
300
350
400

S
iz

e
 (

M
B

)

Data Size (G*)

Data Size (HiNode)

100K 200K 300K

Initial Graph size

0

500

1000

1500

2000

100K 200K 300K

Initial Graph size

0

1000

2000

3000

4000

5000

6000

0

5

10

15

20

S
iz

e
 (

M
B

)

10 snapshots

Index Size (G*)

Index Size (HiNode)

0
20
40
60
80

100
120
140

100 snapshots

0

100

200

300

400

300 snapshots

100K 200K 300K

Initial Graph size

0
50

100
150
200
250
300
350
400

S
iz

e
 (

M
B

)

Data Size (G*)

Data Size (HiNode)

100K 200K 300K

Initial Graph size

0

500

1000

1500

2000

100K 200K 300K

Initial Graph size

0

1000

2000

3000

4000

5000

6000

Fig. 6 Space consumption in sequences with insertion rate = update rate = 1% (top),
insertion rate = 2%, update rate = 1% (middle), and insertion rate = 1%, update rate =
2% (bottom). In each subfigure, the upper part refers to the index size, and the lower to the
size of the data files.

be explained by the fact that, since all vertex and edge updates are stored in the
diachronic nodes, the size of the index becomes larger only when new vertices
are created in the sequence. A similar observation can be made about the data

30 Andreas Kosmatopoulos et al.

Ins/Snap.:100K
Snapshots:10

Ins/Snap.:10K
Snapshots:100

Ins/Snap.:1K
Snapshots:1K

Sequence Setting

0

200

400

600

800

S
iz

e
 (

M
B

)

Index Size (G*)

Index Size (HiNode)

Ins/Snap.:100K
Snapshots:10

Ins/Snap.:10K
Snapshots:100

Ins/Snap.:1K
Snapshots:1K

Sequence Setting

0

10000

20000

30000

40000

50000

Data Size (G*)

Data Size (HiNode)

V. Up./Snap.:0
E. Up./Snap.:0

V. Up./Snap.:50K
E. Up./Snap.:500K

V. Up./Snap.:100K
E. Up./Snap.:1M

Sequence Setting

0

100

200

300

400

500

600

S
iz

e
 (

M
B

)

Index Size (G*)

Index Size (HiNode)

V. Up./Snap.:0
E. Up./Snap.:0

V. Up./Snap.:50K
E. Up./Snap.:500K

V. Up./Snap.:100K
E. Up./Snap.:1M

Sequence Setting

0

10000

20000

30000

Data Size (G*)

Data Size (HiNode)

Snapshots:1K Snapshots:5K Snapshots:10K

Sequence Setting

0

5

10

15

20

25

30

35

40

S
iz

e
 (

M
B

)

Index Size (G*)

Index Size (HiNode)

Snapshots:1K Snapshots:5K Snapshots:10K

Sequence Setting

0

50

100

150

200

Data Size (G*)

Data Size (HiNode)

Fig. 7 Space consumption in the BA datasets. Top: effect of granularity (starting vertices
= 2M and edges per newly inserted vertex = 10). Middle: effect of updates (starting vertices
= 2M , edges per newly inserted vertex = 10, insertions per snapshot = 100K, snapshots =
10). Bottom: effect of the number of snapshots (starting vertices = 10K, edges per newly
inserted vertex = 1, insertions per snapshot = 10).

file sizes. (iii) In general, our proposed system favors sequences with a higher
update-to-insertion ratio and (iv) the relative differences in space consumption
remain the same across experiments with different starting vertices and edges
counts. Similar observations can be drawn for BA (see Figure 7), where the
savings in space are slightly smaller, i.e., up to 84% less space.

HiNode: A Storage Model for Historical Queries on Graphs 31

6.6 Time Efficiency for Global Queries

In the last part of the experiments, we measure the running time for the
following global queries [23]:

Vertex Degree Distribution (DegDistr): for each graph snapshot, count the
vertices with a specific vertex degree, sorted by the vertex degree in a
descending order.

Average Vertex Degree (AvgDeg): for each graph snapshot, compute its aver-
age vertex degree, and give results in a descending order.

Clustering Coefficient Distribution (ClCoeff): for each graph snapshot, com-
pute the clustering coefficient of its vertices. Report the number of vertices
grouped by the clustering coefficient sorted in a descending order. Note
that this is a bulk synchronous parallel (BSP) operator and more difficult
to evaluate.

Single Source Shortest Path Distance Distribution (ShortPath): for each graph
snapshot, compute the distance from a source vertex to all other vertices
in the snapshot. Report the count of vertices with a specific distance to
the source vertex sorted in a descending order.

The results for the real datasets are reported in Table 6. The “DegDistr”
and “AvgDeg” queries were run on all the monthly snapshots of each sequence
on both systems. However, due to high memory demand by the original G∗

system, running the “ClCoeff” query in all snapshots of the “US Patents”
dataset was infeasible. For that reason, we applied the “ClCoeff” query in
subsets of the snapshots in the “US Patents” sequence. More specifically, in
Table 6 the symbols “∗”, “†” and “‡” represent that the query was run on the
last snapshot of the sequence, the last five snapshots of the sequence and all
the snapshots, respectively. The first observation that can be made is that our
system is more efficient for the “DegDistr” and “AvgDeg” queries, yielding up
to 30% faster response times. This can be explained by the fact that, since we
retrieve entire diachronic nodes from the disk, we need to make fewer accesses
on the secondary memory compared to the original system which retrieves
specific instances of each vertex. These benefits outweigh the additional time
overhead of reconstructing a vertex from a diachronic node in a particular time
instance, thus reducing the total time cost. In the “ClCoeff” query our system
has slightly inferior performance compared to the original system that can be
explained by the nature of the datasets. The datasets exhibit a “cold start”
phenomenon in that the first snapshots of the sequence have very few vertices
and edges that in turn results to the cost of vertex reconstructions overcoming
the gains of the fewer disk accesses. This is also shown in the “US Patents”
dataset, where our system has better performance when the “ClCoeff” query
focuses on the (quite large) five last snapshots of the sequence.

We achieve significant speedups for the synthetic datasets as well. The
results for the ER sequences are shown in Figure 8. For all three types of
queries, the maximum reduction in response time is 54%-56%.

32 Andreas Kosmatopoulos et al.

Table 6 Time efficiency in real datasets

G* System Time (s) HiNode System Time (s) Difference (%)
Dataset DegDistr AvgDeg ClCoeff DegDistr AvgDeg ClCoeff DegDistr AvgDeg ClCoeff
hep-Th 7.9 7.2 723 7.7 6.2 855 -2.50% -13.88% 18.26%
hep-Ph 9.7 8.4 410 7.7 7.2 471 -20.61% -14.28% 14.87%

US Patents 329 316
* 213

242 221
* 234

-26.44% -30.06%
* 9.85%

† 496 † 377 † -23.99%
‡ - ‡ 1204 ‡ -

Next, we tested the BA synthetic sequences, executing the queries on vary-
ing sequence portions. More specifically, we executed a query on the last snap-
shot of the sequence or on a selection of the last 5-20% of the snapshots of
the sequence. Additionally, we ran the queries on non-consecutive snapshots
by specifying an appropriate step size. Initially, we investigated the impact of
granularity, as in the space-efficiency experiments. We ran the three queries
in sequences of 10, 100 and 500 snapshots. Regarding the sequence with the
10 snapshots, since the percentages of the previous paragraph do not directly
correspond to meaningful snapshot ranges, we ran the queries in the last 1, 2
and 5 snapshots. The results can be seen in Figure 9. In the case of querying
only the last snapshot of the sequence, our method is slower since it suffers
from the time overhead of reconstructing that particular snapshot. However,
the time efficiency of our approach improves as the query percentage becomes
higher. The effect of updates is shown in Figure 10. Again, for higher query
percentage we achieve better performance.

Finally, we evaluated the impact of graph density on the total query time,
after building sequences of varying vertex degree per newly inserted vertex.
The results showed that density played no significant role as the difference
remained relatively the same. More specifically, Figure 11 shows the evaluation
of “ShortPath” for a sequence of 100 snapshots with varying vertex degree.
Since the running time of “ShortPath” is highly dependant on the network
structure and the selection of the source vertex, we ran “ShortPath” on BA
graphs (connected graphs) with the vertex with the largest degree acting as
the source vertex. It can be seen that while G∗ is better in the case of querying
a single snapshot, the two systems are comparable in the case of querying 5%
of the snapshots of the sequence and HiNode outperforms G∗ when querying
the 10% of the snapshots of the sequence.

7 Discussion

Multiple Universes HiNode is designed so that it can support transaction time
as well as valid time. Additionally, with minor modifications, HiNode can also
support multiple universes in the sense that the history has a tree-like shape.
This is reminiscent of the notion of full persistence in data structures [31],
in the sense that the history of the data structure is fully characterized by
a tree structure. Similarly, since history is not linear, we require its explicit
representation by a history tree. Instead of talking about time that implies a
linear evolution we now talk about versions of graphs. New version instances

HiNode: A Storage Model for Historical Queries on Graphs 33

0

2

4

6

8

10

12
T
im

e
 (

s
)

10 snapshots

DegDistr (G*)

DegDistr (HiNode)

AvgDeg (G*)

AvgDeg (HiNode)

0

5

10

15

20

25

30

100 snapshots

0

20

40

60

80

300 snapshots

100K 200K 300K

Initial Graph size

0

5

10

15

20

T
im

e
 (

s
)

ClCoeff (G*)

ClCoeff (HiNode)

100K 200K 300K

Initial Graph size

0

20

40

60

80

100

120

140

160

100K 200K 300K

Initial Graph size

0

100

200

300

400

500

600

0

2

4

6

8

10

12

T
im

e
 (

s
)

10 snapshots

DegDistr (G*)

DegDistr (HiNode)

AvgDeg (G*)

AvgDeg (HiNode)

0

5

10

15

20

25

30

35

40

100 snapshots

0

20

40

60

80

100

120

140

300 snapshots

100K 200K 300K

Initial Graph size

0

5

10

15

20

25

T
im

e
 (

s
)

ClCoeff (G*)

ClCoeff (HiNode)

100K 200K 300K

Initial Graph size

0

50

100

150

200

100K 200K 300K

Initial Graph size

0

200

400

600

800

1000

0

2

4

6

8

10

12

T
im

e
 (

s
)

10 snapshots

DegDistr (G*)

DegDistr (HiNode)

AvgDeg (G*)

AvgDeg (HiNode)

0

5

10

15

20

25

30

35

40

100 snapshots

0

20

40

60

80

100

120

140

300 snapshots

100K 200K 300K

Initial Graph size

0

5

10

15

20

25

T
im

e
 (

s
)

ClCoeff (G*)

ClCoeff (HiNode)

100K 200K 300K

Initial Graph size

0

50

100

150

200

100K 200K 300K

Initial Graph size

0

100

200

300

400

500

600

700

800

Fig. 8 Time efficiency in sequences with insertion rate = update rate = 1% (top),
insertion rate = 2%, update rate = 1% (middle), and insertion rate = 1%, update rate =
2% (bottom).

are created by making updates to existent versions of the history tree. For
example, let a node v of the history tree corresponding to the graph of version
v. An update at version v gives a new instance that is represented by node
u (with version u) that is a child of v in the version tree. We refer to the
interested reader for a more detailed analysis to [31]. The crucial point is that
navigation in history requires the efficient support of nearest common ancestor

34 Andreas Kosmatopoulos et al.

0

10

20

30

40

T
im

e
 (

s
)

10 snapshots

DegDistr (G*)

DegDistr (HiNode)

AvgDeg (G*)

AvgDeg (HiNode)

0

5

10

15

20

25

30

35

40

100 snapshots

0

10

20

30

40

50

60
500 snapshots

Last 2 5

#Snapshots Queried

0

200

400

600

800

1000

1200

T
im

e
 (

s
)

ClCoeff (G*)

ClCoeff (HiNode)

Last 5% 10%

Query Percentage

0

200

400

600

800

1000

1200

1400

Last 5% 10%

Query Percentage

0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 9 Effect of granularity on time. Starting vertices = 1M , edges per newly inserted ver-
tex = 10. Insertions/snapshot = 200K/20K/4K for sequences with 10/100/500 snapshots,
respectively.

0

5

10

15

20

25

30

35

40

T
im

e
 (

s
)

Vertex Updates: 0
Edge Updates: 0

DegDistr (G*)

DegDistr (HiNode)

AvgDeg (G*)

AvgDeg (HiNode)

0

10

20

30

40

50

Vertex Updates: 2.5K
Edge Updates: 12.5K

0

10

20

30

40

50

60

Vertex Updates: 5K
Edge Updates: 25K

Last 5% 10% 20% Step 10%

Query Percentage

0

200

400

600

800

1000

1200

T
im

e
 (

s
)

ClCoeff (G*)

ClCoeff (HiNode)

Last 5% 10% 20% Step 10%

Query Percentage

0

200

400

600

800

1000

1200

1400

Last 5% 10% 20% Step 10%

Query Percentage

0

200

400

600

800

1000

1200

1400

1600

Fig. 10 Effect of updates on time. Starting vertices = 1M , edges per newly inserted vertex
= 5, snapshots = 10.

Last 5% 10%

Query Percentage

0

50

100

150

200

250

300

350

400

T
im

e
 (

s
)

Edges/vertex = 2

ShortPath (G*)
ShortPath (HiNode)

Last 5% 10%

Query Percentage

0

100

200

300

400

500

Edges/vertex = 3

Last 5% 10%

Query Percentage

0

100

200

300

400

500

600
Edges/vertex = 4

Fig. 11 Shortest path evaluation and effect of graph density. Starting vertices = 1M , vertex
insertions per snapshot = 20K, snapshots = 100. The source vertex was the vertex with the
highest degree.

queries on the history tree. In this way, searching for a version v in a node is

HiNode: A Storage Model for Historical Queries on Graphs 35

equivalent to finding the version u that exists in this node and is the nearest
ancestor among all versions in the node of v.

HiNode can support such a tree like history by employing an external mem-
ory data structure that can answer efficiently such nearest ancestor queries
(see [8]). Having such a structure requires no other changes to our structure.
G∗ cannot support efficiently a tree-like history even in the presence of a
history tree since the structure of the diachronic nodes and the index need
to change considerably. TGI cannot support such a notion of time since its
snapshot architecture is rather incompatible with it.

Registering Updates An issue of our approach is the silent assumption that
updates between two instances (snapshots) are readily available. Although this
is trivial for a data owner (e.g. Facebook), this is not the case for users that
have access to two successive instances but not to the real updates between
them. Thus, the problem is that given two instances of the graph at time t and
t+1 we must discover the differences in the nodes and the edges between these
two instances in order to register them in the respective diachronic nodes.7

We assume for simplicity that each node has a unique identifier that re-
mains invariant in history. In this case, HiNode picks each node at time in-
stance t + 1 and finds it in instance t comparing them and registering the
differences in the respective diachronic nodes. For all nodes in t + 1 that are
not found in t we create new diachronic nodes. The time complexity for this
procedure between two time instances is O(m) provided that we can search
for the identifier of a node in O(1) time by using hashing, where m is the total
number of changes stored in HiNode. Finally, in the extreme case where the
identifiers are not invariant over the course of history and even in the case
where they are reused we can always apply the same approach with some ad-
ditional space consumption. In particular, if an existent node at time t with
identifier v has its identifier changed at time t+1 to v′ then a new diachronic
node is created that corresponds to this node. Although we use more space
to save this node, since we have no other means of identifying this phenom-
ena rather than resorting to graph isomorphism techniques, the results of any
queries of the user will always be correct. Even in the case, where a node that
at time t+1 has the identifier of another node at time t will be stored correctly
since all its info will be registered in the diachronic node.

8 Conclusions

We advocate employing a vertex-centric approach to storing the evolving his-
tory of graphs. We show that this leads to an asymptotically space-optimal
solution, which is efficient for both local and global queries. Local queries
benefit from the fact that only the vertices of interest are retrieved instead
of entire snapshots. Global queries can also benefit from the fact that fewer

7 We would like to thank an anonymous reviewer for pointing out this issue.

36 Andreas Kosmatopoulos et al.

disk accesses are required, despite the overhead of snapshot reconstruction, as
shown in real runs in the G∗ parallel graph processing system. In our experi-
ments, the space and time savings were up to an order of magnitude. Finally,
apart from a qualitative comparison of our approach against existing solutions,
we discuss how we support non-linear tree-like time modelling (in addition to
valid and transaction time notions) and we how we efficiently derive snapshot
differences.

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

2. N. K. Ahmed, J. Neville, and R. Kompella. Network sampling: From static to streaming
graphs. ACM Transactions on Knowledge Discovery from Data, 8(2):7, 2014.

3. L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM Journal

on Computing, 32(6):1488–1508, 2003.
4. A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,

286(5439):509–512, 1999.
5. Cassovary. “big graph” processing library. https://github.com/twitter/cassovary.
6. N. R. Brisaboa, D. Caro, A. Fariña, and M. A. Rodŕıguez. A compressed suffix-array

strategy for temporal-graph indexing. In SPIRE, pages 77–88, 2014.
7. G. S. Brodal and J. Katajainen. Worst-case external-memory priority queues. In SWAT,

pages 107–118, 1998.
8. G. S. Brodal, K. Tsakalidis, S. Sioutas, and K. Tsichlas. Fully persistent B-trees. In

SODA, pages 602–614, 2012.
9. D. Caro, M. A. Rodŕıguez, and N. R. Brisaboa. Data structures for temporal graphs

based on compact sequence representations. Information Systems, 51:1–26, 2015.
10. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische math-

ematik, 1(1):269–271, 1959.
11. P. Erdős and A. Rényi. On random graphs. I. Publicationes Mathematicae Debrecen,

6:290–297, 1959.
12. J. Gao, C. Zhou, and J. X. Yu. Toward continuous pattern detection over evolving large

graph with snapshot isolation. The VLDB Journal, 25(2):269–290, 2016.
13. J. Gehrke, P. Ginsparg, and J. M. Kleinberg. Overview of the 2003 KDD cup. SIGKDD

Explorations, 5(2):149–151, 2003.
14. A. Giraph. http://giraph.apache.org/.
15. P. Hu and W. C. Lau. A survey and taxonomy of graph sampling. CoRR, abs/1308.5865,

2013.
16. W. Huo and V. J. Tsotras. Efficient temporal shortest path queries on evolving social

graphs. In SSDBM, pages 38:1–38:4, 2014.
17. U. Kang, H. Tong, J. Sun, C. Lin, and C. Faloutsos. GBASE: a scalable and general

graph management system. In SIGKDD, pages 1091–1099, 2011.
18. U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: mining peta-scale graphs.

Knowledge and Information Systems, 27(2):303–325, 2011.
19. U. Khurana and A. Deshpande. Efficient snapshot retrieval over historical graph data.

In ICDE, pages 997–1008, 2013.
20. U. Khurana and A. Deshpande. Storing and analyzing historical graph data at scale.

In EDBT, pages 77–88, 2016.
21. G. Koloniari, D. Souravlias, and E. Pitoura. On graph deltas for historical queries.

WOSS, 2012.
22. A. Kosmatopoulos, K. Giannakopoulou, A. N. Papadopoulos, and K. Tsichlas. An

overview of methods for handling evolving graph sequences. In ALGOCLOUD, pages
181–192, 2015.

23. A. G. Labouseur, J. Birnbaum, P. W. Olsen, S. R. Spillane, J. Vijayan, J. Hwang, and
W. Han. The G* graph database: efficiently managing large distributed dynamic graphs.
Distributed and Parallel Databases, 33(4):479–514, 2015.

HiNode: A Storage Model for Historical Queries on Graphs 37

24. J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

25. G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD, pages
135–146, 2010.

26. E. M. McCreight. Efficient algorithms for enumerating intersecting intervals and rect-
angles, 1980.

27. J. Mondal and A. Deshpande. Managing large dynamic graphs efficiently. In SIGMOD,
pages 145–156, 2012.

28. R. Pagh. Basic external memory data structures. In Algorithms for Memory Hierar-

chies, pages 14–35, 2002.
29. C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On querying historical evolving graph

sequences. PVLDB, 4(11):726–737, 2011.
30. B. F. Ribeiro and D. Towsley. On the estimation accuracy of degree distributions from

graph sampling. In CDC, pages 5240–5247, 2012.
31. B. Salzberg and V. J. Tsotras. Comparison of access methods for time-evolving data.

ACM Computing Surveys, 31(2):158–221, 1999.
32. K. Semertzidis, E. Pitoura, and K. Lillis. Timereach: Historical reachability queries on

evolving graphs. In EDBT, pages 121–132, 2015.
33. B. Shao, H. Wang, and Y. Li. Trinity: a distributed graph engine on a memory cloud.

In SIGMOD, pages 505–516, 2013.
34. S. R. Spillane, J. Birnbaum, D. Bokser, D. Kemp, A. G. Labouseur, P. W. Olsen,

J. Vijayan, J. Hwang, and J. Yoon. A demonstration of the G* graph database system.
In ICDE, pages 1356–1359, 2013.

35. Y. Yang, J. X. Yu, H. Gao, J. Pei, and J. Li. Mining most frequently changing component
in evolving graphs. World Wide Web, 17(3):351–376, 2014.

A The WriteAttribute Cases

t
0

s
t
0

e

ts te

(a)
t
0

s
t
0

e

ts te

(b)

t
0

s
t
0

e

ts te

(c)

t
0

s
t
0

e
= t

00

s

ts te

(d)

t
00

e

Fig. 12 Cases of existing intervals for the field f

We analyze the two possible cases in WriteAttribute. In the first case, the field f
does not have any values associated with it in the time interval [ts, te]. In that case we
proceed as follows: We insert a quadruple (f, {ℓ1, ℓ2, . . .}, ts, te) in Iv. In addition, a record

({ℓ1, ℓ2, . . .}, ts, te) is stored in f ’s respective B-tree Af
v .

In the second case, the field f has values associated with it in the time interval [ts, te],
i.e. there exist (up to) two intervals [t′s, t

′
e] and [t′′s , t

′′
e] in the data structure, such that

either (a) t′s < ts < t′e < te, (b) ts < t′s < te < t′e, (c) t′s < ts < te < t′e or (d)
t′s < ts < (t′e = t′′s) < te < t′′e is true (Figure 12). In that case, we search Iv for [t′s, t

′
e]

corresponding to the field f (and [t′′s , t
′′
e] if it exists) by simulating an insertion of this interval

in Iv. Let vt′ be the node of Iv that interval [t′s, t
′
e] is to be stored. After locating the at

most three lists in which it is to be stored we search these lists based on the endpoints of
[t′s, t

′
e]. If there are more than one such intervals then we use the identifier of [t′s, t

′
e] to search

among them and locate this interval. The same procedure is applied for [t′′s , t
′′
e].

38 Andreas Kosmatopoulos et al.

Afterwards, we perform a series of interval insertions and deletions in Iv and the corre-

sponding Af
v B-tree depending on the subcases presented below (the resulting intervals end

up with the appropriate set of values based on their original intervals):

Subcase (a) Deletion of [t′s, t
′
e] followed by the insertion of [t′s, ts), [ts, t

′
e) and [t′e, te]

Subcase (b) Deletion of [t′s, t
′
e] followed by the insertion of [ts, t′s), [t

′
s, te) and [te, t′e]

Subcase (c) Deletion of [t′s, t
′
e] followed by the insertion of [t′s, ts), [ts, te) and [te, t′e]

Subcase (d) Deletion of [t′s, t
′
e] and [t′′s , t

′′
e] followed by the insertion of [t′s, ts), [ts, t

′
e), [t

′′
s , te)

and [te, t′′e]

