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Abstract

Spark has been established as an attractive platform for big data analysis, since it manages to hide most of the complexities related to
parallelism, fault tolerance and cluster setting from developers. However, this comes at the expense of having over 150 configurable
parameters, the impact of which cannot be exhaustively examined due to the exponential amount of their combinations. The default
values allow developers to quickly deploy their applications but leave the question as to whether performance can be improved
open. In this work, we investigate the impact of the most important tunable Spark parameters with regards to shuffling, compres-
sion and serialization on the application performance through extensive experimentation using the Spark-enabled Marenostrum III
(MN3) computing infrastructure of the Barcelona Supercomputing Center. The overarching aim is to guide developers on how to
proceed to changes to the default values. We build upon our previous work, where we mapped our experience to a trial-and-error
iterative improvement methodology for tuning parameters in arbitrary applications based on evidence from a very small number
of experimental runs. The main contribution of this work is that we propose an alternative systematic methodology for parameter
tuning, which can be easily applied onto any computing infrastructure and is shown to yield comparable if not better results than
the initial one when applied to MN3; observed speedups in our validating test case studies start from 20%. In addition, the new
methodology can rely on runs using samples instead of runs on the complete datasets, which render it significantly more practical.
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1. Introduction

Spark [1, 2] has emerged as one of the most widely used
frameworks for massively parallel data analytics. In summary,
it improves upon Hadoop MapReduce in terms of flexibility
in the programming model and performance [3], especially
for iterative applications. It can accommodate both batch and
streaming applications, while providing interfaces to other es-
tablished big data technologies, especially regarding storage,
such as HDFS and NoSQL databases. Finally, it includes com-
ponents for SQL-like processing, graph processing, machine
learning and data mining. However, its key feature is that it
manages to hide the complexities related to parallelism, fault-
tolerance and cluster setting from end users and application de-
velopers. This feature renders Spark practical for use in real-life
data science and big data processing applications.

To support all these, Spark execution engine has been
evolved to an efficient albeit complex system with more than
150 configurable parameters. The default values are usually
sufficient for a Spark program to run, e.g., not to run out of
memory without having the option to spill data on the disk and
thus crash. But this gives rise to the following research ques-
tion: “Can the default configuration be improved and, if yes,
how better configurations can be set efficiently?”

The aim of this work is firstly, to provide evidence that the
answer to the first part of the above question is affirmative, and
then, to answer the second part in an efficient manner. Clearly,

it is practically impossible to check all the different combina-
tions of parameter values for all tunable parameters. Therefore,
tuning arbitrary Spark applications by inexpensively navigating
through the vast search space of all possible configurations in
a principled manner is a challenging task. Very few research
endeavors focus on issues related to understanding the perfor-
mance of Spark applications and the role of tunable parameters
[4, 5, 6]. For the latter, Spark’s official configuration guides1

and tuning2 guides and tutorial book [7] provide a valuable as-
set in understanding the role of every single parameter.

Understanding the role of a parameter does not necessarily
mean that the impact of each parameter on the performance of
arbitrary applications is understood as well. Moreover, such
an understanding does not imply that tuning is straightforward.
An added complexity stems from the fact that most parame-
ters are correlated and the impact of parameters may vary from
application to application and it will also vary from cluster to
cluster. In this work, we experiment with the MareNostrum
III (MN3) petascale supercomputer at the Barcelona Supercom-
puting Center. After configuring the cluster in an application-
independent way according to the results in [6], we examine
the impact of configurable parameters with regards to shuffling,
compression and serialization on a range of applications with
a view to deriving a simple yet systematic tuning methodology

1http://spark.apache.org/docs/latest/configuration.html
2http://spark.apache.org/docs/latest/tuning.html
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that can be applied to each application separately.
We build upon our previous work in [8], where: (i) We iden-

tified the most important parameters with regards to shuffling,
compression and serialization in terms of their potential impact
on performance and we tested them on MN3. The number of
these parameters is 12. (ii) We summarized our experience in
a tuning methodology to be applied on an individual applica-
tion basis. The methodology treats applications as black boxes,
follows an efficient trial-and-error approach that involves a low
number of experimental runs for just 10 different configurations
at most, and leverages the correlation between different param-
eters.

This article is a heavily extended version of the results in [8]
(also repeating all experiments from scratch). The new contri-
butions are summarized as follows:

• We provide new experimental evidence that the default
Spark configuration leaves room for performance im-
provements when tuning the parameters under investiga-
tion. We also evaluate how these parameters are corre-
lated.

• We propose a new tuning methodology that can be ap-
plied to any computing infrastructure; the new methodol-
ogy serves as an alternative to the one in [8], which mostly
reflected our experience with MN3, did not profile param-
eter correlations explicitly and is questionable whether it
generalizes efficiently.

• We validate and compare the performance impacts of the
new methodology and the one in [8]. Our new proposal
can yield comparable if not better results than the initial
one when applied to MN3. The observed speedups in our
validating test case studies start from 20% and reach up
to more than 4 times, when compared against the default
MN3 configuration.

• With a view to rendering the proposal more practical,
we provide evidence that the new methodology can rely
on runs using samples instead of runs on the complete
datasets.

The remainder of this work is structured as follows. The next
section provides an overview of Spark and of the known results
to date with regards to Spark tuning. In Section 3, we explain
the chosen parameters and we present the methodology in [8].
Our new methodology along with its instantiation on MN3 is
presented in Section 4. Section 5 deals with the evaluation of
the methodologies. We conclude in Section 6.

2. Overview of Existing Results for Spark Configuration

Apache Spark is an open source massively parallel comput-
ing framework. It provides an interface enabling users to de-
velop and deploy applications to run in parallel on clusters of
machines, which typically adopt the shared-nothing parallel ar-
chitecture [9]. For cluster management, the list of supported
options includes deploying on an Amazon EC2 cloud cluster

instantiated on the fly, employing a third-part manager, such as
YARN or MESOS, or launching a standalone cluster. Overall,
there are over 150 tunable parameters that define execution de-
tails.

2.1. Spark basics
Spark operates on data collections abstracted as Resilient

Distributed Datasets (RDDs), which are partitioned across sev-
eral nodes. A Spark application consists of two types of opera-
tions, namely transformations and actions. The former apply
a function on each RDD element and result in a new RDD.
Actions trigger the execution of such functions and produce
meaningful results. For each action in the application a job is
performed. For each job, typically several RDD transforma-
tions need to be computed. Spark’s scheduler creates a physical
execution plan for the job based on the directed acyclic graph
(DAG) of transformations. The physical plan is divided into
stages. A stage is a sequence of transformations that can be
pipelined. The sequence of computations defined by a stage in-
stantiated over a single data partition is called a task. A task
is the actual unit of execution of the physical plan. The task
scheduler assigns tasks to parallel workers via the cluster man-
ager. On each worker node, each applications launches its own
executors, which are responsible for task execution.

Data may be repartitioned across RDDs. This may be done
as a result of a specific transformation, such as groupByKey and
sortByKey, which result in a new RDD, where data are parti-
tioned across machines differently. This data re-distribution is
commonly referred to as data shuffling. Data shuffling is an ex-
pensive operation. First it incurs communication cost. Second,
it incurs CPU cost, because it involves data serialization. Third,
it may incur I/O cost, because it may store temporary data on
disk if they cannot fit in main memory; temporary files are kept
as long as they are needed for fault tolerance purposes. As such,
the cost is multi-dimensional, while memory is stressed as well.

Table 1 provides a categorization of Spark parameters. In
this work, we target parameters belonging to the Shuffle Behav-
ior and Compression and Serialization aspects, which greatly
contribute to a Spark application’s running time, as supported
by our experimental results, the official documentation, and the
evidence provided in other works, such as [4, 5, 3]. Note that
there are several other parameters belonging to categories such
as Application Properties, Execution Behavior and Networking
that may affect the performance, but these parameters are typi-
cally set at the cluster level, i.e., they are common to all appli-
cations running on the same cluster of machines, e.g., as shown
in [6].

Next, we summarize the known results to date with regards
to Spark configuration. These results come from three types of
sources: (i) academic works that aimed at Spark configuration
and profiling; (ii) official Spark documentation and guides that
build on top of this documentation; and (iii) academic works
that include evaluation of Spark applications on real platforms
and, as a by-product, provide information about the configu-
ration that yielded the highest performance. We also briefly
discuss results on Spark profiling, because they directly relate
to Spark configuration. The most relevant work to ours is the
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Category Description
Application Prop-
erties

The parameters in this group concern basic application properties, such as the application name, the CPU
and the memory resources that will be allocated to the coordinating process (called driver), the memory
for each executor process that runs the actual computations, and so on.

Runtime Environ-
ment

The parameters belonging to this group refer to environment settings, such as classpaths, java options and
logging.

Shuffle Behavior These parameters have to do with the shuffling mechanism of Spark, and they involve buffer settings,
sizes, shuffling methods, memory allocated to shuffling, and so on.

Spark UI The UI parameters are mostly related to UI event-logging.
Compression and
Serialization

The parameters of this group target compression and serialization issues. They mostly have to do with
whether compression will take place or not, what compression codec will be used, the codec’s parameters,
the serializer to be used and its buffer options.

Execution Behav-
ior

The parameters of this group refer to a wide range of execution details including the number of execution
cores and data parallelism.

Networking This group contains parameters that provide options for network issues. Most parameters refer to timeout
options, heartbeat pauses, ports and network retries.

Scheduling Most parameters in the group cover scheduling options. Some noteworthy parameters have to do with
scheduling mode, and whether to use the speculation optimization and the maximum number of CPU
cores that will be used.

Dynamic Alloca-
tion

By using dynamic allocation, Spark can increase or decrease the number of executors based on its work-
load. This is only available in Yarn (which we do not use in this work).

Security These parameters deal with authentication issues.
Encryption These properties refer to encryption algorithms, passwords and keys that may be employed.
Spark Streaming
and SparkR

These parameters are specific to the Spark Streaming and SparkR higher-level components.

Table 1: Summary of parameter categories

study of Spark performance on the MN3 in [6], which is com-
plementary to this work and presented separately.

2.2. Optimization of Spark on MN3.

The work in [6] sheds lights onto the impact of configura-
tions related to parallelism. In MN3, cluster management is
performed according to the standalone mode, i.e., YARN and
MESOS are not used. The main results, which are reused in our
work, are summarized as follows. First, the number of cores
allocated to each Spark executor has a big impact on perfor-
mance and should be configured in an application-independent
manner. In other words, all applications sharing the same clus-
ter can share the same corresponding configuration. Second,
the level of parallelism, i.e., the number of partitions per par-
ticipating core, plays a significant role. In cpu-intensive ap-
plications, such as k-means, allocating a single data partition
per participating core yields the highest performance. In ap-
plications with a higher proportion of data-shuffling, such as
sort-by-key, increasing the number of data partitions to two per
core is recommended. A range of additional aspects, e.g., using
Ethernet instead of Infiniband, have been investigated, but their
significance was shown to be small. Finally, the type of the un-
derlying file system affects the performance, however, this is a
property of the infrastructure rather than a tunable parameter.
In a more recent work [10], dynamic parallelism issues are ex-
amined; in this work, we consider fixed degrees of parallelism
throughout application execution, we reuse the earlier results,

and we focus on the additional issues of shuffling, compression
and serialization.

2.3. Guides from Spark documentation.

Spark official documentation presents a summary of tuning
guidelines that can be summarized as follows. (i) The type of
the serializer is an important configuration parameter. The de-
fault option uses Java’s framework, but if kryo library is appli-
cable, it may reduce running times significantly. (ii) The mem-
ory allocated to main computations and shuffling and the mem-
ory allocated to caching. It is stated that “although there are
two relevant configurations, the typical user should not need
to adjust them as the default values are applicable to most
workloads”. Memory-related configurations are also related
to the performance overhead of garbage collection (GC). (iii)
The level of parallelism, i.e., the number of tasks in which each
RDD is split needs to be set in a way that the cluster resources
are fully utilized. (iv) Data locality, i.e., enforcing the process-
ing to take place where data resides, is important for distributed
applications. In general, Spark scheduling respects data local-
ity, but if a waiting time threshold is exceeded, Spark tasks are
scheduled remotely. These thresholds are configurable. Apart
from the tuning guidelines above, certain other tips are pro-
vided by the Spark documentation, such as preferring arrays
to hashmaps, using broadcasted variables, and mitigating the
impact of GC through caching objects in serialized form. Also,
similar guidelines are discussed more briefly in [7].

3



In our work, we explicitly consider the impact of serialization
and memory allocation. Tuning the parallelism degree is out of
our scope, but we follow the guidelines in [6], so that resources
are always occupied and data partitioning is set in a way that is
efficient for the MN3 supercomputer. Also, we do not deal with
GC and locality-related thresholds; the latter have not seemed
to play a big role in our experiments.

Based on these guidelines, Alpine Data has published on-
line a so-called cheat-sheet3, which is a tuning guide for sys-
tem administrators. The guide is tailored to the YARN cluster
manager. Compared to our tuning model, it is more complex,
and contains checks from logs and tips to modify the applica-
tion code and setting of configuration parameters per applica-
tion. The configuring parameters refer to data partitioning and
the potential use of the kryo serializer. By contrast, we regard
each application as being a black box requiring significantly
fewer comparisons, we resort to [6] for data partitioning issues,
and we consider 11 more tuning parameters apart from kryo.

2.4. Additional sources for Spark configuration.
In [5], the impact of the input data volume on Spark’s appli-

cations is investigated. The key parameters identified were re-
lated to memory and compression, although their exact impact
is not analyzed. By contrast, we examine a superset of these
parameters. An interesting result of this study is that GC time
does not scale linearly with the data size, which leads to perfor-
mance degradation for large datasets. In addition, it is shown
that if the input data increases, the idle cpu time may increase
as well. The work in [11] is similar to [6] in that it discusses the
deployment of Spark on a high-performance computing (HPC)
system. In its evaluation, it identifies four key Spark parameters
along with the application-dependent level of parallelism. All
these parameters are included in our discussion. Finally, the
work in [12] focuses on Spark’s shuffling optimization using
two approaches. The first one is through columnar compres-
sion, which however does not yield any significant performance
improvement. The second approach employs file consolidation
during shuffling. We consider file consolidation as well.

2.5. Profiling Spark applications and other related work.
A thorough investigation of bottlenecks in Spark is presented

in [4]. The findings are interesting, since it is claimed that many
applications are CPU-bound and memory plays a key role. In
our experiments, we perform memory fine-tuning, since we in-
vestigate parameters that affect the memory usage.

In [13], the authors present their tuning methodology, termed
as Active Harmony. Given a range of parameters, Active Har-
mony can tune and improve performance. Due to the fact
that, during parameter tuning, the search space can become
extremely large and time consuming, the parameters that are
considered most important are prioritized. Splitting parame-
ters based on the effect they have on performance is a common
strategy, an approach that we also follow in our work. Each pa-
rameter can be considered as an extra dimension in the search

3available from http://techsuppdiva.github.io/spark1.6.html

space that needs to be tuned, so eliminating the ones that do not
have or may not have any significant impact is important. To
identify such parameters, the authors in [13] test the sensitiv-
ity of the application by changing each parameter’s values. In
general, this approach is effective when there is minimal cor-
relation between parameters. However, as shown in our case,
tuning parameters are correlated in general.

The work in [14] deals with the issue of parameter optimiza-
tion in workflows. The main motivation behind this work is the
fact that, while for small workflows a trial-and-error optimiza-
tion method can be applied, when more complex workflows are
considered, the combined effect of multiple parameters cannot
be easily identified. The authors employ genetic algorithms
to navigate through the space of possible parameter configu-
rations. However, such a solution may involve far too many
experimental runs, whereas we advocate a limited number of
configuration runs independently from the application size.

Finally the issue of parameter optimization is also addressed
in [15]. Motivated by two applications, namely pixel intensity
quantification and neuroblastoma classification, the parameters
that impact the performance of spatial data analysis applications
are presented and classified. This classification includes two
categories, quality-preserving parameters and quality-trading
parameters. The authors also introduce an integrated frame-
work for performance optimization in multiple dimensions of
the parameter space and conduct and experimental evaluation.
The results of tuning parameters of both categories yield im-
provements for both the applications. In our work, the parame-
ters do not affect the quality of the result, as we only focus on
performance improvement.

3. The Parameters of Interest and an Initial Tuning
Methodology

Based on evidence from (i) the documentation and the ear-
lier works presented in Section 2 and (ii) our previous work in
[8], we narrow our focus on 12 parameters related to shuffling,
compression and serialization. The configuration of these pa-
rameters need to be investigated according to each application
instance separately; i.e., even the same program operating on
different datasets may need different configuration.

1. spark.serializer: In Spark’s documentation, it is
stated that KryoSerializer is thought to perform much bet-
ter than the default Java serializer, when speed is the
main goal. However, the Java serializer is still the default
choice, so this parameter needs to be considered. Check-
ing whether to enabling the kryo serializer is also the rec-
ommendation of Alpine Data’s cheat-sheet.

2. spark.shuffle.manager: The available implementa-
tions are three: sort, hash , and tungsten-sort. In
the most recent versions of Spark, tungsten-sort is the
default option, as it is reported to yield the highest
performance in general provided that certain require-
ments are met. It improves upon simple sort Hash
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creates too many open files for certain inputs and ag-
gravates memory limitations. However, enabling the
spark.shuffle.consolidateFiles parameter along
with the hash manager may mitigate this problem. Over-
all, there is no clear winner among the shuffle manager op-
tions. In our methodology, we choose between tungsten-
sort (default) and hash.

3. spark.shuffle.memoryFraction: If, during shuffling,
spills are often, then this value should be increased from its
default to allow for more memory-resident temporary files
during shuffling. On the contrary, when it is decreased,
more memory can be used to cache RDDs. Since this pa-
rameter is directly linked to the amount of memory that is
going to be utilized, it may have a high performance im-
pact. However, any increase is at the expense of the next
parameter, i.e., these two parameters need to be considered
in combination. The default value is 20%, and we also
investigate values of 10% and 30% (50% less and more,
respectively).

4. spark.storage.memoryFraction: The de-
fault value is 60%. When we decrease
spark.shuffle.memoryFraction to 10%,
spark.storage.memoryFraction is increased to
70%. Similarly, for spark.shuffle.memoryFraction
set to 30%, spark.storage.memoryFraction is set to
50%.

5. spark.reducer.maxSizeInFlight: If this value is in-
creased, reducers would request bigger output chunks dur-
ing shuffling. This would increase the overall performance
but may aggravate the memory requirements. So, in clus-
ters that there is adequate memory and where the appli-
cation is not very memory-demanding, increasing this pa-
rameter could yield better results. On the other hand, if
a cluster does not have adequate memory available, re-
ducing the parameter should yield performance improve-
ments. The default value is 48MB, and we investigate val-
ues of 50% more and less, i.e., 72MB and 24 MB, respec-
tively.

6. spark.shuffle.file.buffer: The role
of this parameter bears similarities to the
spark.shuffle.maxSizeInFlight parameter, i.e.,
if a cluster has adequate memory, then this value could
be increased in order to get higher performance. If not,
there might be performance degradation, since too much
memory would allocated to buffers. The default value is
32KB, and we also investigate configurations of 48KB
and 16 KB.

7. spark.shuffle.compress: In general, compressing
data before they are transferred over the network is a good
idea, provided that the time it takes to compress the data
and transfer them is less than the time it takes to trans-
fer them uncompressed. But if transfer times are faster
than the CPU processing times, the main bottleneck of
the application is shifted to the CPU and the process is

not stalled by the amount of data that are transferred over
the network but from the time it takes for the system to
compress the data. Clearly, the amount of data transmit-
ted during shuffling is application-dependent, and thus this
parameter must not be configured to a single value for all
applications. The default value is to compress data during
shuffling and we investigate the option to disable shuffle
compression.

8. spark.io.compression.codec: Three options are
available, namely snappy, lz4, and lzf. Although there are
many tests conducted by various authors for the generic
case, the best performing codec is application-dependent.
The first option is the default one, and we also investigate
whether employing any of the two remaining can lead to
performance improvements.

9. spark.shuffle.consolidateFiles: This parameter
provides the option of consolidating intermediate files cre-
ated during a shuffle, so that fewer files are created and per-
formance is increased. It is stated however that, depending
on the filesystem, it may cause performance degradation.

10. spark.rdd.compress: By default, RDDs are not com-
pressed. The trade-offs with regards to this parameter are
similar to those for shuffle compress. However, in this
case, the trade-off lies between CPU time and memory.

11. spark.shuffle.io.preferDirectBufs: In environ-
ments where off-heap memory is not tightly limited, this
parameter may play a role in performance. By default it
is enabled, but it may be worth disabling it to force all
shuffle-related memory allocations to be on-heap.

12. spark.shuffle.spill.compress: As for the previous
compression options, a trade-off is involved. If transfer-
ring the uncompressed data in an I/O operation is faster
than compressing and transferring compressed data, then
this option should be set to false. Provided that there is a
high amount of spills, this parameter may have an impact
on performance. The default option is spill compression
to be enabled.

3.1. An Initial Trial-and-Error Methodology

Based on (i) the results of thousands of hours of experimenta-
tion on the MN3 platform, where, in principle, each parameter
was tested in isolation using three representative benchmarking
applications, and (ii) the expert knowledge as summarized in
Section 2, an easily applicable tuning methodology has been
presented in [8]. This methodology is presented in Fig. 1 in the
form of a block diagram. In the figure, each node represents a
test run with one or two different configurations. Test runs that
are higher in the figure are expected to have a bigger impact on
performance and, as a result, a higher priority. As such, runs
start from the top and, if an individual configuration improves
the performance, the configuration is kept and passed on to its
children replacing the default value for all the test runs in the
same path. If an individual configuration does not improve the
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Id Parameter name Value
1 spark.serializer KryoSerializer
2 spark.shuffle.manager hash
3 shuffle.memoryFraction, storage.memoryFraction 0.3, 0.5
4 shuffle.memoryFraction, storage.memoryFraction 0.1, 0.7
5 spark.reducer.maxSizeInFlight 72mb
6 spark.reducer.maxSizeInFlight 24mb
7 spark.shuffle.file.buffer 48k
8 spark.shuffle.file.buffer 16k
9 spark.shuffle.compress false
10 spark.io.compress.codec lzf
11 spark.io.compress.codec lz4
12 spark.shuffle.consolidateFiles true
13 spark.rdd.compress true
14 spark.shuffle.io.preferDirectBufs false
15 spark.shuffle.spill.compress false

Table 2: Parameters values tested

Figure 1: The spark parameter tuning methodology proposed in [8]

performance, then the configuration is not added and the de-
fault is kept. In other words, each parameter configuration is
propagated downstream up to the final configuration as long as
it yields performance improvements.

Overall, as shown in the figure, at most ten configurations
need to be evaluated referring to nine of the parameters in Sec-
tion 3; the remainder three parameters are discarded, because
their impact was shown to be small during benchmarking. Note
that, even if each parameter took only two values, exhaustively
checking all combinations would result in 29 = 512 runs. Fi-
nally, the methodology can be employed in a less restrictive
manner, where a configuration is chosen not only if it improves
the performance, but, in addition, if the improvement exceeds a
threshold, e.g., 5% or 10%.

4. A More Systematic Tuning Methodology

The methodology in Figure 1 has been effective when tested
on MN3 as shown in [8], but suffers from the following two
main limitations:

• It is iterative in the sense that configurations at the lower

Figure 2: The new spark parameter tuning methodology

parts can be tested only after configurations at the upper
parts of the figure have been completed. As such, deriving
the final configuration is a long-lasting process.

• It is built based on experimental evidence regarding the
performance impact of the parameters, when the latter are
tested in isolation or combined only with the kryo serial-
izer. The combinations of the parameters in the diagram
of Figure 1 basically reflect the experience of the authors
in [8] with Spark applications on MN3 and thus may not
generalize efficiently for arbitrary platforms.

We address the above concerns through an alternative
methodology, which firstly, directly profiles the impact of pairs
of parameters on benchmarking applications and applies a
graph algorithm to create complex candidate configurations,
and then, follows a different approach to deriving the final con-
figuration for each application instance: namely, a set of can-
didate parameter settings is checked in parallel in a single shot
and the best performing one is chosen (see Figure 2).
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Algorithm 1 Outline of creation of candidate configurations
1: Add the best performing parameter for each benchmark-

ing application to the set of candidate configurations CC
2: Add the best performing parameter pair for each bench-

marking application to CC
3: Discretize relative differences from default
4: Detect beneficial pairs
5: Keep mutually beneficial pairs
6: Construct more complex configura-

tions and add them to CC
7: return CC

Difference Interval Value Difference Interval Value
(−2%, 0%] 0 (0%, 2%] 0

(−5%,−2%] -1 (2%, 5%] 1
(−10%,−5%] -2 (5%, 10%] 2
(−15%,−10%] -3 (10%, 15%] 3
(−20%,−15%] -4 (15%, 20%] 4
(−30%,−20%] -5 (20%, 30%] 5
(−∞%,−30%] -6 (30%,∞] 6

Table 3: Mapping of relative differences from the default to discrete values

Algorithm 2 Constructing more complex configurations (Step
6 in Algorithm 1)

1: L← sorted triangles
2: CCcomplex← empty bit-array with 15 columns
3: while L , ∅ do
4: f lag← 1
5: for tr(i, j, k) ∈ L do
6: if there exists row in CCcomplex where at least 2 of the 3 places

i, j, k are 1 then
7: Set all 3 places i, j, k to 1 in this row
8: L← L − tr
9: else if f lag = 1 then

10: Create a new row in CCcomplex with places
i, j, k set to 1

11: f lag← 0
12: L← L − tr
13: end if
14: end for
15: end while
16: Add CCcomplex configurations to CC

Overall, our new methodology consists of four phases. The
first three are offline and are shared among all Spark applica-
tions to run on the same cluster, while the fourth derives the fi-
nal parameter configuration for a specific application instance.
These phases are detailed below:

(I) Choice of benchmarking applications (offline): a limited
number of representative benchmarking applications, de-
noted as Apps, need to be selected and tested in a set-
ting (i.e., a combination of input dataset and number of
nodes participating in the execution), where the memory
resources are stressed. Moreover, the applications need

to cover both shuffling and computation intensive applica-
tions. This phase is similar to the one in the methodology
in Section 3.1.

(II) Testing of the parameter values (offline): all parameter val-
ues need to be tested for all benchmarking applications.
The different parameter settings are 15 as shown in Ta-
ble 2. The parameters are tested in two modes: individ-
ually and in compatible pairs; non-compatible pairs refer
to values of the same parameter, e.g., 10 and 11 in the
table. Overall, for each benchmarking application, 117
runs are required (15 for single parameters + 101 for com-
patible pairs + 1 for the default values). In each run, the
running time of the benchmarking application is recorded.
The number of runs is high but not prohibitive given that
these experiments are required only once per computing
platform. Compared to the methodology in Section 3.1,
parameter pairs are explicitly profiled, so that correlation
of parameters can be analyzed more systematically.

(III) Creation of candidate configurations (offline): This is a
6-step process, outlined in Algorithm 1. The first 2 steps
are trivial and select the best performing parameters from
the profiles. The rationale of the next 4 steps is to regard
the relationships between parameters as edges in a graph,
in which the parameters are the vertices; this is done in
order to construct more complex parameter configurations,
where more than 2 parameters are modified at the same
time. More specifically, the steps are as follows.

(1) For each benchmarking application, the best per-
forming parameter is added to the candidate set.

(2) Similarly, the best performing parameter pair is
added to the candidate set.

(3) The profiles of parameters for each application can
be represented as a 15 × 15 triangular matrix, where
the cell (i, j) corresponds to the pair of the ith and
jth parameter in Table 2. The results of the tests
of each parameter individually are in the diagonal.
Then, each result is normalized according to its rela-
tive difference from the default configuration. Nega-
tive differences denote speedups, while positive dif-
ferences denote cases, where applying a parameter
yields longer execution times. Finally, the differ-
ences are discretized, as shown in Table 3. The re-
sulting matrices are denoted as Dm, m = 1 . . . |Apps|

(4) In this step, a single binary 15 × 15 non-triangular
matrix B is derived through processing of the ma-
trices containing the discretized values for each ap-
plication of the previous step. Moreover, each cell
B(i, i) is 1 if there exists at least one Dm, for which
Dm(i, i) ≤ t, where t is a cutoff (negative) threshold.
B(i, j), i , j is 1 if there exists at least one Dm, for
which Dm(i, j) ≤ t and Dm(i, j) − Dm(i, i) ≤ −1. Oth-
erwise, the cell values are 0. In our cases, typical
values of t are -2 or -3. The rationale is each cell
of B(i, j) to denote whether a given combination of
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Figure 3: Results of profiling for sort (left), shuffle (middle) and k-means (right).

parameters leads to significant improvements, while
at the same time, adding parameter j to a configu-
ration containing parameter i leads to performance
improvements by at least one discretized scale.

(5) This step keeps only combinations of parameters that
both assist each other in decreasing running time by
at least one discretized scale. A new binary matrix B′

is derived, where B′(i, j) = 1 iff B(i, j) = B( j, i) = 1.

(6) The resulting B′ matrix of the previous step is treated
as an adjacency matrix of an undirected graph, where
vertices are parameters and edges denote positive
correlation between parameters. Then, we extract
all triangles of such graph. Each triangle is denoted
as a triple of parameter identifiers (i, j, k) where 1 ≤
i < j < k ≤ 15. For each triangle, we assign a
score equal to the min1≤m≤|App|(Dm(i, j) + Dm(i, k) +
Dm( j, k)). This score reflects the highest performance
improvement due to the pairs in the triangle in any
benchmarking application. The triangles are then
sorted by the score in ascending order, after prun-
ing all triangles with non-negative score. Then a
greedy algorithm groups triangles. The algorithm
is presented in Algorithm 2. It parses the list with
the triangles and adds triangles to a bit-array matrix,
where each row corresponds to a distinct configura-
tions with 3 or more parameters of Table 2. Its run-
ning time is O(n2), where n is the number of trian-
gles.

(IV) Testing of candidate configurations (online): for each ap-
plication instance, i.e., combination of Spark application
and dataset, all the candidate configurations are tested in
parallel. The best performing one is kept for future reuse.
Compared to the iterative methodology in Section 3.1,
the configuration to be adopted is not built step-by-step
through additional profiling experiments, but is selected
from a pre-defined pool, the candidate set created in the
previous phase. In order to decrease the configuration
overhead, the test runs can be performed using samples
instead of the complete input dataset.

The above methodology yields at most |App| single-
parameter configurations, and |App| 2-parameter configura-
tions; moreover, the number of more complex configurations
is limited in practice. Overall, its main advantage over the iter-
ative methodology in Section 3.1 is that, apart from addressing
the limitations at the beginning of the description (i.e., iterative
nature and ad-hoc-ness in leveraging parameter correlations), it
can adapt to the profiling results different computing platforms.

4.1. Applying the methodology to MN3

Hereby, we describe the application of the first three phases
of our proposed methodology to MN3. We employed three
benchmark applications: (i) sort-by-key; (ii) shuffling and (iii)
k-means. K-means and sort-by-key are also part of the HiBench
benchmark4 [16]. These applications were selected because
they can be considered as representative of a variety of appli-
cations given that they cover both cpu- and shuffling-intensive
cases. Sort-by-key is both computation- and shuffling-intensive.
It was tested on 100GB of raw data, and more specifically 1
billion of 100-byte records, where the key is 10 bytes. Shuffling
was tested on the same dataset but without performing any sort-
ing; as such, it is only shuffling-intensive. Finally, k-means is
CPU-intensive. Its input dataset is 100 million 200-dimensional
double vectors. In all applications, 20 16-core dedicated ma-
chines were employed. MN3 hardware details are described in
the Appendix. According to the results of [6], in the first two
applications, the RDDs were partitioned in a way that there are
2 partitions per CPU core, while, for k-means, we created 1
partition per core. The memory of each executor was limited to
1.5GB per core. The version of Spark was 1.5.2, which, at the
time of the writing of this manuscript, is the latest version com-
piled and installed on MN3. Each experiment was conducted
five times and the median value is computed in order to create
the Dm matrices.

The results of profiling of single parameter configurations
and their improvement over the default are shown in Figure 3.
The red reference line corresponds to the default Spark config-
uration, as described in http://spark.apache.org/docs/

latest/configuration.html. The configuration ids are

4https://github.com/intel-hadoop/HiBench
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Figure 4: The graph representation of the B′ matrix showing the correlations
between parameters.

i j k

2 15 7
2 11 7
2 10 5
1 15 2
1 9 15
2 12 6

Table 4: The triangles in Figure 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 11 0 0 0 0 13 0 12 0 14 0 0 0 11
0 11 0 0 11 0 0 0 0 11 0 0 0 0 0
0 11 0 0 0 11 0 0 0 0 0 11 0 0 0

Table 5: The result bitarray CCcomplex

those in Table 2. The best performing single-parameter changes
for the three benchmarking applications are employing the kryo
serializer, setting spark.shuffle.memoryFraction to 0.1
(and spark.storage.memoryFraction to 0.7), and enabling
the compression of RDDs, respectively. In each plot, the right-
most bar corresponds to the best performing pair of configura-
tions. For sort-by-key, the best performing pair is the kryo se-
rializer combined with the hash shuffle manager. For shuffling,
the best pair is to disable spark.shuffle.spill.compress

and set spark.shuffle.file.buffer to 48Kb. Finally, the
k-means benchmarking application performs better on MN3
when using the lz4 compression codec along with disabling
spark.shuffle.io.preferDirectBufs.

The main observations that can be drawn from Figure 3 are
threefold: (i) the default Spark configuration leaves room for
performance improvements; (ii) combining parameter modifi-
cations yields higher performance; and (iii) the impact of pa-
rameters differs significantly between applications.

Figure 4 shows the graph representation of the B′ matrix of
the 5th step of Phase III, when the threshold t in the 4th step is
set to -2. For completeness, the corresponding Dm matrices are
presented in the Appendix. Table 4 enumerates the triangles in
the graph in ascending order of their scores. Applying Algo-
rithm 2, yields the CCcomplex matrix shown in Table 5. The

subscript in the table denotes the order in which parameters are
added to a configuration. Overall, the set of candidate config-
urations is of size 9, out of which one configuration contains
6 parameter modifications, two contain 3 parameter modifica-
tions and the other six configurations are directly derived from
the initial profiling according to the first two steps in Phase III
(corresponding to 1 or 2 modifications, repsectively).

5. Validating Experiments

In this section, we present our validating experiments on
MN3 (phase IV). The purpose is (i) to provide strong insights
into the capability of our proposals to drop running times using
three real-world case studies; (ii) to show that our new method-
ology performs similarly if not better than the iterative one, de-
spite the fact that the latter is tailored to the MN3 infrastructure;
and (iii) provide evidence that our new methodology is capable
of relying on tests using samples instead of complete runs and
adapting to different default settings.

5.1. Case studies and setup
We consider three real-world validating case studies:

1. Building a collaborative filtering model for providing per-
sonalized recommendations: the dataset used is the Audio-
scrobbler one5 and the application runs on 10 MN3 nodes
with a single partition per participating CPU core.

2. Finding frequent itemsets: the dataset is also the Audio-
scrobbler one and 10 nodes are used, too. The dataset is
partitioned in a way so that there exist two partitions per
CPU core. The support threshold is set to 5%.

3. Latent Dirichlet allocation (LDA) topic modeling: the
dataset is the NYTimes news articles6. As in the previous
cases, 10 nodes are employed with a single partition per
core, and the number of topics is 100.

The new methodology is compared against the previous iter-
ative one from [8] and against employing the Kryo serializer, as
recommended by the cheat-sheet at http://techsuppdiva.
github.io/spark1.6.html. Also, two values of t in Step
4 of Phase III, namely t = −2 and t = −3, and a more con-
servative manner to assign scores in Step 6, namely to take the
maximum of the quantity Dm(i, j)+Dm(i, k)+Dm( j, k) instead of
the minimum, are evaluated. For example, this more conserva-
tive version for t = −2 constructs a single 3-parameter complex
configuration, which is the same as the 2nd row of Table 5.

All experiments were repeated 5 times and the median times
are reported.

5.2. Methodology efficiency
The main results in the three validating case studies are sum-

marized in Figure 5. Figure 7 presents the average speedup

5available from http://www-etud.iro.umontreal.ca/~bergstrj/

audioscrobbler_data.html
6available from https://archive.ics.uci.edu/ml/datasets/Bag+

of+Words
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Figure 5: The performance of the different configurations.
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Figure 6: The average speedup achieved by each tested configuration.

achieved by each of the configuration policies. The key remarks
are summarized as follows:

1. Both the default Spark configuration and simply employ-
ing the kryo serializer are outperformed by our configura-
tion methodologies. The decrease in running time due to
our non-iterative (resp. iterative) methodology is between
21.4% and 28.89% (resp. 24.53% and 33.93%).

2. The behavior of the new non-iterative methodology, where
the average speedup is by a factor of 1.34, is very close to
that of the iterative one, where the speedup is by a factor
of 1.39, despite the fact that the latter is tailored to MN3.

3. The different flavors of our new proposed methodology ex-
hibit similar behavior, which means that the methodology
is robust with regards to changes in its own configurable
parameters.

5.3. Sample-based configuration tests
As discussed in Section 4, applying the methodology to MN3

with t = −2 yielded 9 candidate configurations. Thus, running 9
times the application in order to find the best performing config-
uration incurs a non-negligible overhead. However, it is possi-
ble to use samples in a smaller cluster and produce dependable
results. In general, performance estimates using samples and

rec. model freq. item. LDA
full sample full sample full sample

conf1 10.82 4.51 -28.89 -2.87 -15.38 -20.52
conf2 1.63 -1.22 -17.99 12.83 6.69 -3.99
conf3 2.66 -3.80 -1.13 1.00 -2.87 -7.81
conf4 -21.65 -18.11 -25.65 2.45 -14.13 -24.95
conf5 7.42 -0.90 3.43 7.15 2.89 0.35
conf6 3.46 1.63 -1.57 7.14 1.23 -1.25
conf7 -19.15 -18.43 -27.07 -3.07 -20.46 -20.84
conf8 -19.46 -19.55 -0.01 5.65 -21.40 -8.18
conf9 -25.95 -18.91 7.34 9.44 -8.55 -12.06

Table 6: Comparison of relative difference percentages from the default of runs
on full input vs samples
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Figure 7: The performance of the different configurations when tested against
the default MN3.

fewer nodes for Spark applications is a very challenging topic
[10]. In our cases, we observed that when we ran the same val-
idating applications on 20% of their normal input using 20% of
the nodes (i.e., just 2 nodes), the actual best performing con-
figuration was either within the first two best performing ones
using samples or very close to them. The results are presented
in Table 6. As such, our non-iterative methodology can em-
ploy samples in order to prune the candidate set to a very small
number, e.g., 2 or 3.

5.4. Additional Experiments

Until now, all tests were against the default Spark config-
uration. However, the default installation of Spark on MN3
employs a modified default configuration, the most prominent
features of which is that spill and all kinds of compression are
disabled and buffer sizes are larger. We applied our method-
ology against this default setting, which yielded a different set
of candidate configurations. We tested again the methodologies
using the case studies with the Audioscrobbler dataset, and the
results are shown in Figure 7. We can observe (i) that, through
comparison with Figure 5, MN3 default yields higher execu-
tion time for the first case study and lower for the second; (ii)
the decrease in running times due to our methodology is far
more significant reaching speedup by a factor of more than 4
times; and (iii) the new non-iterative methodology outperforms
the iterative one.
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6. Conclusions

This work deals with configuring Spark applications in an
efficient manner. We focus on 12 key application instance-
specific configurable parameters with 15 different parameter
values overall and we assess their impact using real runs on
a petaflop supecomputer. Based on the results and the knowl-
edge about the role of these parameters, initially we derive a
trial-and-error methodology, which requires a very small num-
ber of experimental runs. We then go a step beyond, and we
propose a systematic methodology for profiling and deriving
candidate configurations that can adapt to any Spark platform.
We evaluate the effectiveness of our proposals using three real-
world case studies, and the results show that we can achieve
significant speed-ups yielding at least 20% lower running times,
simply by tuning the configuration parameters in an informed
manner.
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Clash of the titans: Mapreduce vs. spark for large scale data analytics,
PVLDB 8 (2015) 2110–2121.

[4] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.-G. Chun, Making
sense of performance in data analytics frameworks, in: 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2015, pp. 293–307.

[5] A. J. Awan, M. Brorsson, V. Vlassov, E. Ayguade, How data volume
affects spark based data analytics on a scale-up server, arXiv:1507.08340
(2015).

[6] R. Tous, A. Gounaris, C. Tripiana, J. Torres, S. Girona, E. Ayguadé,
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Appendix A. MN3 details

MN3 is an IBM System X iDataplex based on Intel Sandy
Bridge EP processors at 2.6 GHz (two 8-core Intel Xeon pro-
cessors E5-2670 per machine), 2 GB/core (32 GB/node) and
around 500 GB of local disk (IBM 500 GB 7.2K 6Gbps NL
SATA 3.5). Currently the supercomputer consists of 48,896 In-
tel Sandy Bridge processors mentioned above in 3,056 JS21
nodes, and 84 Xeon Phi 5110P in 42 nodes (not used in this
work), with more than 104.6 TB of main memory and 2 PB of
GPFS (General Parallel File System) disk storage. More specif-
ically, GPFS provides 1.9 PB for user data storage, 33.5 TB for
metadata storage (inodes and internal filesystem data) and to-
tal aggregated performance of 15GB/s. With the last upgrade,
MN3 has a peak performance of 1.1 Petaflops. At June 2013,
MareNostrum was positioned at the 29th place in the TOP500
list of fastest supercomputers in the world, whereas according
to the latest TOP500 list in November 2015, MareNostrum is
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93rd. A full technical description of MN3 and how it supports
Spark applications is in [6].

Appendix B. Benchmarking applications on MN3

Table .7 shown the Dm matrices when applying the proposed
methodology to MN3, based on which Figure 4 is produced.
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