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Abstract

Data-intensive flows are increasingly encountered in various settings, includ-
ing business intelligence and scientific scenarios. At the same time, flow tech-
nology is evolving. Instead of resorting to monolithic solutions, current ap-
proaches tend to employ multiple execution engines, such as Hadoop clusters,
traditional DBMSs, and stand-alone tools. We target the problem of allo-
cating flow activities to specific heterogeneous and interdependent execution
engines while minimizing the flow execution cost. To date, the state-of-the-
art is limited to simple heuristics. Although the problem is intractable, we
propose practical anytime solutions that are capable of outperforming those
simple heuristics and yielding allocation plans in seconds even when optimiz-
ing large flows on ordinary machines. Moreover, we prove the NP-hardness of
the problem in the generic case and we propose an exact polynomial solution
for a specific form of flows, namely, linear flows. We thoroughly evaluate
our solutions in both real-world and flows synthetic, and the results show
the superiority of our solutions. Especially in real-world scenarios, we can
decrease execution time up to more than 3 times.

Keywords: data flows, resource allocation, heterogeneous machines,
anytime algorithms

1. Introduction

Our entrance into the era of big data has signalled notable changes in
the way scientific research is conducted and enterprises operate. More and
more emphasis is put on processing large volumes of data in less, if not real,
time in order to accomplish scientific or business intelligence tasks [1, 2]. The
most common approach to this end is to design and execute data flows, using
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workflow tools and platforms that take over the integration of multiple data
sources, data manipulation and service orchestration.

Our work is largely motivated by the needs of modern business intelli-
gence (BI) applications and data-intensive scientific workflows, e.g., in bio-
informatics. Traditionally, BI builds on top of data-warehouses and data-
marts, which are populated by periodic Extract-Transform-Load (ETL) flows.
This setting has evolved in two ways. First, flows have become more com-
plex encompassing text analytics and machine learning operations along with
data transformation activities. In addition, they operate on both stored data
and external, rapidly evolving runtime data, such as feeds and click streams.
Second, flows are no longer executed on a single processing engine but their
execution may span multiple engines; such flows are also referred to as hybrid
flows [3]. Examples of execution engines include Hadoop clusters, traditional
DBMS, R scripts and stand-alone tools, each of which may come in several
different instances (e.g., both mysql and Oracle RDBMSs) or configurations
(e.g., number of reducers in Hadoop) resulting in a big set of candidate exe-
cution platforms for executing a single flow (e.g., [4, 3, 5, 6, 7, 8]).

We can follow two main approaches to executing data flows.1 The first
one involves the manual, low-level script-based design of flows, which are then
executed in a step-wise fashion. Such an approach is prone to errors and sub-
optimal execution, due to the complexity of the flows. The second approach
views the workflows at a higher logical level and relies on flow optimizers to
decide the technical execution details; this is akin to the role of optimizers in
database systems. Optimizing data flows is a challenging multi-dimensional
task; two of the most important dimensions include (i) the optimization of
the structure of flows, which comes in a form of a directed acyclic graph,
but its vertices do not necessarily have clear semantics, as is the case for
relational operators; and (ii) the allocation of each of the flow vertices to a
potentially different execution engine, choosing among multiple candidates.

Our work focuses on the second aspect mentioned above, and more specif-
ically, aims to devise a mapping of flow nodes to execution engines so that
the performance is maximized putting emphasis on keeping the optimization
overhead low. The performance is measured in terms of the sum of the ex-
ecution costs over all flow activities (or flow nodes). For this problem, only

1Due to the increased impact of the volume of data in such flows, in the remainder of
the paper, we will use the terms workflows, data flows or simply flows interchangeably.
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simple heuristic or non-scalable algorithms are known to date [4]; here we
show how we can significantly improve upon the state-of-the-art. Moreover,
we show how we can benefit from the existence of multiple execution engine
options, rather than sticking to simple single-engine solutions. The main
challenges of tackling this problem are posed by the following factors: the
number of flow nodes and candidate engine or engine configurations may be
large, the engines are heterogeneous in the sense that each engine is capa-
ble of executing a flow node in different time, and shipping data from one
execution engine to another or switching between engines incurs cost, i.e.,
choosing the best execution engine for each flow node in isolation does not
imply optimality [4].

Overall, we make the following contributions:

• We propose a set of anytime algorithms (Section 3) that, as shown
in our experimental section, they are capable of yielding mappings of
flow nodes to execution engines that are significantly better than naive
approaches (Section 2), even when the flows are very large and our
proposals are allowed to run only for a few seconds on an ordinary
machine. These anytime algorithms fall into three main categories:
branch and bound, random walk and set-cover ones.

• We propose an optimal solution with polynomial time complexity for
the specific case, where the flow structure is linear, i.e., the flow is
a chain of activities. Specifically, we present a polynomial dynamic
programming algorithm that can yield exact solutions for linear flows
and can act as an efficient approximate solver in more generic cases
(Section 4).

• We evaluate our proposals using both real flows and synthetic in a wide
range of settings. We declare winners among our proposals, depend-
ing on the type of the flow. In summary, the value of our solutions
lies in that they are both effective in improving performance and easy
to implement and light-weight. The dynamic programming approach
performs remarkably well in many real-world settings and along with
the anytime heuristics, we perform consistently better than current
heuristics. The anytime proposals can run for any number of iterations
tolerated by the users, e.g., to meet real-time constraints, and they
are capable of yielding improved performance in short time. Especially
when the flows are near-linear, as happens in many real-world cases,

3



the execution cost can be decreased by more than 3 times. If the flows
are completely linear, the improvements are even larger (Section 6).

• We prove the NP-hardness of the problem at hand (which means that
no solution with polynomial complexity can be found in the generic
case) and at the same time it is impossible to approximate it within a
small constant, unless P = NP (Section 5).

2. Problem Definition and Background

In this paper, we will investigate resource allocation techniques, where
each flow activity can run on multiple execution engines, of which, only one
should be selected. At this point, we will not consider the optimization of the
ordering of flow activities or the technical specifications of the available pro-
cessors. To begin with, we represent the logical view of a flow as a directed
acyclic graph (DAG), where each activity corresponds to a node in the graph
and the edges between nodes represent intermediate data shipping among
activities. Since we have different activity implementations for a specific
engine or multiple engines, each flow activity has a processing cost in time
units, which differs between engine instances or engine configurations. Addi-
tionally, data transfer from one engine to another and/or switching between
engines has also a cost.

The main notation and assumptions of this Flow Activity Allocation prob-
lem (henceforth named FAA) are as follows:

• Let G = (A,E) be a directed acyclic graph, where A denotes the nodes
of the graph and E represents the data flow among the nodes, i.e.,
which activity feeds data to which activity.

• Let A = {a1, ..., an} be a set of (possibly streaming) activities of size n.
Each flow activity is responsible for one or both of the following tasks:
(i) reading or retrieving or storing data, and (ii) manipulating data.
The definition of the activities and the complete flow G is left to the
flow designer.

• Let E = {edge1, ..., edgen′} be a set of edges of size n′. Each edge
edgei, 1 ≤ i ≤ n′ equals to an ordered pair (aj , ak), so that edge

head
i = aj

and edgetaili = ak.
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• Let ENG = {e1, ..., em} be a set of execution engines that activities can
be allocated to; ENG’s size is m. In general, the number of execution
engines tends to be smaller than the number of flow activities. However,
different engine instances and/or configurations (e.g., multiple Hadoop
clusters, each with varying number of reducers) are essentially treated
as different engines, so that the number of different engines at our
disposal may well be larger than the number of the flow activities.
Note that nowadays, it has become easier to support multiple execution
engines for each activity; for example, in [5], it is discussed how a
logical data flow activity definition can automatically be translated to
several distinct physical implementations according to the underlying
execution engine including SQL, pig-latin and PDI2 scripts.

• Let ci,j be the execution time of an activity ai when mapped to en-
gine ej . We assume that this information is available, through e.g.,
micro-benchmarking as in [6], and we do not deal with the engine con-
figuration ourselves.

• Let ceakei→j
be the cost associated with the graph edges. It consists of

a) the engine switching cost from engine ei, which executes activity
ak, to engine ej, which executes the subsequent activity; and b) the
data shipping from the output of activity ak (executed on engine ei)
to the subsequent activity. The subsequent activity is the activity the
edge points to. The first component depends on the two engines, while
the second depends additionally on the data volume transferred across
the edge; this volume depends on the sender activity. Overall, ce de-
pends on the sender activity and the execution engines of the activities
connected through the edge. As above, we assume that this metadata
is available to our algorithms either through micro-benchmarking or
through log files. We can support arbitrary settings of ceaki→i values de-
noting the edge cost for activities running on the same engine instance;
however, in the remainder, we assume that ceaki→i cost from engine ei
to engine ei is 0, because there is no data transfer over the network
and/or engine configuration changes involved and we will refer to the
ce cost as inter-engine cost.

Our goal can be stated as the derivation of an allocation function f :

2http://www.pentaho.com/product/data-integration
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[1, n]→ [1, m], which expresses the mapping between activities and processor
engines, so that (i) the total execution time is minimized ; (ii) each activity is
mapped to one and only one engine; and (iii) our allocation algorithms run
in seconds at most. Generally, we denote the mapping between an activity
ai and a processor engine ej as f(i) = j, where 1 ≤ i ≤ n and 1 ≤ j ≤ m.
The total execution time TET for a specific allocation is the sum of all the
execution costs of each activity on their engines plus the cost of transferring
data and switching between different engines. The latter occurs whenever
two nodes of an edge belonging to E are allocated to distinct engines:

TET =

n∑

i=1

ci,f(i) +

n′∑

i=1

ce
edgeheadi

f(edgeheadi )→f(edgetaili )

In a more generic scenario, there are constraints between allocations to
denote the fact that not all activities can run on all engines. In the con-
strained case, the goal is to allocate all activities so that the total execution
time cost is minimized subject to the allocation constraints.

As explained later, our solutions behave differently depending on whether
the flows are linear or not. Linear flows are those that contain one and only
one activity with no incoming edges and one and only one activity with no
outgoing edges; all the other activities have exactly one incoming edge and
one outgoing edge.

2.1. Motivational Example

A real-world data flow, which has the role of analyzing emerging tempo-
ral trends, is illustrated in Figure 1. The data flow builds a taxonomy of
current trends for a specific region, which are extracted from Twitter mes-
sages (tweets), and its purpose is to categorize the trends and derive key
representative features.

This example flow comprises 14 activities for deriving the timestamp from
tweets (Extract timpestamp), deriving the textual content (Extract textual

content), performing look-up operations on auxiliary datasources (LookupRe-
gion, LookupTrends), executing tasks that correspond to ordinary relational
database operators (Select, Join, Aggregation), and performing analysis op-
erators (Qualitative Analysis, Label trends, Quantitative Analysis).

In this example, we assume that 6 of the activities can execute on 2
candidate engines and 5 of the activities can execute on 3 candidate engines.
The engines can be MapReduce engines, GPU accelerators and O-RDBMSs.
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Figure 1: A real-world data flow for interpreting emerging temporal trends.

The remainder 3 activities are performed using stand-alone scripts. In such a
setting, the total number of different engine allocations in the figure is 2635 =
15, 552. However, for each engine, there may multiple engine instantiations
(not shown in the figure). If, for example, there are 3 different instances per
execution engine and stand-alone programs, there are more than 7.4 · 1010 <
314(2635) possible allocations. It is easy to see that this number increases
exponentially in the number of available engines. Furthermore, moving data
from one engine to another, e.g., from a Hadoop cluster to a database is
associated with a time overhead. Also, not all activities can run on any
engine; for example, the last activity can run only with the help of a GPU-
based implementation or as a Map-Reduce program in a specific cluster. Our
goal is to devise a concrete mapping of each flow activity to an execution
engine in a small amount of time.

In the remainder of this section, we present first, an exhaustive solution,
upon which we later propose improvements, and second, heuristics that are
fast albeit not very efficient in improving performance.
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Algorithm 1 Exhaustive Search

Require: G(A,E), ENG,C,CE,CONSTR

1: f ← ∅
2: mincost←∞
3: for all i = 0 . . .mn − 1 do

4: fcandidate ← mapNumberToAllocation(i)
5: if fcandidate satisfies constraints in CONSTR then

6: costcandidate ← calculateCost(fcandidate,C,CE)
7: if costcandidate < mincost then
8: mincost← costcandidate
9: f ← fcandidate
10: end if

11: end if

12: end for

13: return an engine allocation plan f

2.2. An exhaustive solution

The rationale of an exhaustive methodology is to estimate all the possible
combinations of engine allocations with regards to all flow activities. For a
flow with n activities andm available execution engines, we have the following
auxiliary matrices: (i) the n × m C matrix, where the element in the i-th
row and j-th column is the ci,j execution time cost defined earlier; (ii) the
n × m × m CE matrix, where the element with the (k, i, j) coordinates is
the ceaki→j inter-engine data shipping and engine switching cost; and (iii) the
n×m CONSTR matrix, where the element in the i-th row and j-th column
is set to 1 if the activity ai can be mapped to the engine ej.

The exhaustive algorithm iterates over all possible mn allocations of ex-
ecution engines to nodes. Due to this exponential complexity, it can be only
applied to tiny flows, e.g., flows with very few nodes and candidate execution
engines. In the exhaustive algorithm, each allocation is mapped to a distinct
number in the range [0, mn − 1] with the help of the mapNumberToAllo-

cation function. We can imagine each allocation plan as a number with n
digits of base m. The value v of the i-th digit from right to left denotes that
the i-th activity is allocated to the engine v + 1. For example, the alloca-
tion number (3521)6 denotes a mapping of a 4-node flow to engines, where
m = 6, f(1) = 2, f(2) = 3, f(3) = 6 and f(4) = 4. Since the allocations with
the smallest and the largest numbers are (0000)6 and (5555)6, respectively,
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all possible allocations are in the range of [0, 64 − 1].

2.3. Heuristics

Another approach of allocation is to apply simple heuristics in order to
avoid the complexity of estimating all the possible allocation combinations.
For the purposes of this paper, we investigate two different heuristics, similar
to those mentioned in [4]:

H1: this is a 2-step heuristic. First, we rank all engines based on their
average execution cost for all flow activities in increasing order, i.e., the value
for ej is 1

n

∑n

i=1 ci,j. Then, we allocate each activity to the engine with the
highest rank that is capable of executing that activity.

H2: this is also a 2-step heuristic. First, we rank all engines based on
their execution cost for each flow activity separately. Then, we allocate each
activity to the engine with the highest rank that is capable of executing that
activity.

In Figure 2, we show an example for a linear and a non-linear flow with
n = 5 and m = 3. Because of the constraints between the engines, some
allocations are not considered and the corresponding cells in C are shaded.
Additionally, in this example we consider a CE matrix; for simplicity this
matrix is m ×m assuming that the values are the same for all n. For both
flows, H1 and H2 provide a single allocation plan as shown in the figure; this
is because the two flows differ only in their edges, which are not considered
by naive heuristics.

In the remainder of this work, we will refer to those solutions as simple
or naive heuristics to distinguish them from our proposals in the next two
sections.

3. Anytime algorithms

We now introduce anytime algorithms that can be stopped at any point
and they are guaranteed to move closer to the optimal allocation the longer
they are allowed to run. In a sense, the exhaustive algorithm can be classified
as an anytime algorithm, too. But here, we present three types of solutions
that are both efficient and effective, as verified by our experiments.

3.1. A branch and bound solution

A branch-and-bound (BB) approach can improve upon the naive exhaus-
tive algorithm of the previous section. More specifically, we can perform the
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Figure 2: An application of H1 and H2.

following two main improvements. First, we can calculate the flow execu-
tion cost after each activity gets allocated and to abandon an intermediate
allocation plan as soon as it exceeds the current minimum cost, which is the
minimum of H1 and H2 algorithms for the first time. Second, when an allo-
cation of an activity to a node is found not to satisfy the engine constraints,
we move the allocation id counter as many steps as required in order not to
examine a similarly invalid allocation of the same engine to the same node.
For example, let us suppose that the (3300)6 allocation is invalid because the
3rd node cannot run on engine 4. Instead of examining (3301)6, (3302)6, and
so on (which are bound to be invalid as well), we move directly to (3400)6.

Although, the two afore-mentioned improvements can yield speedups in
the decision taking time, the computational complexity remains exponential,
which renders the algorithm unsuitable for use in large flows. A remedy
to this complexity problem is to cap the number of the allowed iterations.
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More specifically, we derive the BB-IC (Branch-n-Bound-Iteration Capping)
algorithm, which, in addition to the two previous improvements allows only
a pre-specified number of iterations (termed as noi). Given that threshold,
the algorithm first estimates the maximum number nmax of nodes the allo-
cation of which can be examined without exceeding the iteration threshold:
nmax = ⌊logm(noi)⌋. Then, it runs the H1 and H2 and it keeps the best
performing one. From the allocation plan of the best performing heuristic,
it detects the nmax most expensive nodes, and investigates all their possible
allocations using the branch-and-bound approach. The rationale behind this
is to investigate other allocations for the parts of the flow that contribute the
most to the total cost. The remaining nodes are allocated according to the
allocation of the best performing heuristic.

Compared to the Algorithm 1, the main changes are in three places: (i)
the iteration of i is up to mnmax − 1 in line 3; (ii) fcandidate corresponds
to a plan with a subset of activities where the allocation of the remainder
activities is defined by the best performing simple heuristic; as such, the cost
estimation in line 6 needs to take this into account, and (iii) after line 11, we
insert an else statement to increase the value of i, as explained above.

3.2. Random-walk solutions

Our second approach to coping with the complexity of the problem is
to explore the search space with random walks. We examine three main
variants:

RW: Starting from the allocation derived from the best performing heuris-
tic between H1 and H2, we make random perturbations for a pre-specified
number of times; this number is the length of the walk. In each iteration,
we choose an activity in a round-robin fashion and we randomly alter its
allocation.

RWR-r: This flavour extends the previous one by restarting the random
walk r times. Each time, the starting point is a randomly selected allocation
of all activities.

RWR-b: This flavour also employs restarts, but the starting point is the
best performing allocation detected thus far (see Algorithm 2).

3.3. Dealing with large flows

For flows with large sets of activities and candidate engines, BB-IC and
RW can explore only a very small part of the search space. E.g., in BB-IC,
if n = m = 100 and noi = 10000, then nmax is only 2. The two algorithms
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Algorithm 2 RWR-b

Require: G(A,E), ENG,C,CE,CONSTR, length, r
1: f ← best(H1, H2)
2: mincost← calculateCost(f)
3: for all i = 1 . . . r do

4: fcandidate ← f
5: for all j = 1 . . . length do

6: make a random change in fcandidate that satisfies constraints in
CONSTR

7: costcandidate ← calculateCost(fcandidate,C,CE)
8: if costcandidate < mincost then
9: mincost← costcandidate, f ← fcandidate
10: end if

11: end for

12: end for

13: return an engine allocation plan f

presented below, employ set-cover approaches in order to prune the search
space; more specifically, they preprocess the candidate engines, and select a
subset of ENG before applying the BB-IC and RW solutions. The intuition
is that if, for large flows, we can derive a much smaller engine candidate set
than the initial one, BB-IC and RW can improve their performance.

SC1: This set-cover based approach reduces the ENG set as follows.
In each iteration, we count the number of activities each engine is allowed
to execute, and we select the engine that is capable of processing the most
activities. Conflicts are resolved arbitrarily. Then, we remove the activities
supported by that engine and we proceed to the next iteration, unless there
are no activities left. After we have selected the subset of engines, we apply
both BB-IC and RWR-b (which run in very short time) and we choose the
allocation with the lowest cost.

SC2: The SC2 is another set-cover flavour, which takes into account the
inter-engine cost. More specifically, it performs the first iteration exactly as
SC1 does. Then, in each subsequent iteration, it chooses the engine with
the lowest average inter-engine cost with respect to the last added engine
across all activities. Similarly to SC1, this procedure continues until all the
activities can be executed on at least one engine, and the final allocation is
found after applying both BB-IC and RWR-b to the reduced engine set.
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Algorithm 3 DP-cost

Require: G(A,E), ENG,C,CE,CONSTR

1: for all j = 1 . . .m do

2: if f(1) = j satisfies constraints in CONSTR then

3: DPcost(1, j)← C(1, j)
4: end if

5: end for

6: for all i = 2 . . . n do

7: for all j = 1 . . .m do

8: if f(i) = j satisfies constraints in CONSTR then

9: kmin ← min1≤k≤m{DPcost(i− 1, k) + CE(i, k, j)}
10: DPcost(i, j)← C(i, j) +DPcost(i− 1, kmin)
11: DPnodes(i, j)← kmin

12: end if

13: end for

14: end for

The maximum number of iterations in the pre-processing engine selection
phase for both set-cover approaches ism, but in practice, it is a small fraction
of m and thus, the pre-processing step runs in a few milliseconds on a simple
modern machine. Additionally, the number of iterations or restarts of BB-IC
and RWR-b algorithms define the actual execution of the SC flavours that
can be classified as anytime, too.

3.4. A hybrid solution

According to our experience, each of the previous anytime solutions may
exhibit the best performance in different settings. Since all of them are
lightweight and explore the search space in different ways, it is both possible
and effective to run all of them and choose the best each time. Therefore, we
introduce the BEST meta-heuristic that, after executing all BB-IC, RWR-

b, SC1 and SC2, chooses the one that yields the allocation plan with the
lowest execution cost. As shown in Section 6, we can further increase the
performance benefits by more than 10% because of that.

4. Dynamic programming

The previous proposals put emphasis on improving the naive heuristics
without significantly raising the optimization overhead. Here, we propose a
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dynamic programming proposal that can find the optimal solution for linear
flows and can act as an approximate solver for arbitrary flows.

4.1. Detailed Description

The rationale of the DP algorithm is to calculate the cost of increasingly
larger portions of A, i.e., it starts of flows containing only a1, then it examines
flows containing (a1, a2), and so on, until it examines the complete flow.
When examining flows with the first i activities, we consider the allocation
costs of the flow consisting with the first i−1 activities. We employ a DPcost

matrix of size n × m, where each cell (i, j) denotes the optimal cost of the
plan with the first i activities when f(i) = j. The first row is initialized
with the activity costs in C[1, ∗]. For the other rows, we have DPcost(i, j) =
C(i, j)+mink∈[1,m]{DPcost(i−1, k)+CE(k, j)}. We also employ an auxiliary
matrix, DPnodes, which, in each cell (i, j), stores the engine for which the last
part of the sum expression in the recursive formula is minimized. Overall,
the last row of the DPcost contains the costs when all activities are considered
for all possible allocations of the last activity. In Algorithm 3, we show how
the matrices are populated. The exact allocation is found by recursively
examining the rows of the DPnodes matrix from bottom to top (not included
in the pseudocode).

When the flow is linear, the DP algorithm finds the optimal cost of an
allocation; that cost is the minimum cost in the last row of DPcost. To find
the allocation function f , we start from the minimum value of the last row
of DPcost, the column of which denotes the allocation of the last activity
f(n); then, with the help of DPnodes, we can recursively find the allocations
f(n − 1), f(n − 2), . . . , f(1). Interestingly, the algorithm can be employed
as an approximate solver for arbitrary flows. In that case, we can run the
algorithm as previously and build the allocation plan, but such an allocation
is not guaranteed to be optimal.

In Figure 3, the allocation plan of DP for the metadata of example in
Figure 2 is the same for both flows as well, i.e., f = (3, 3, 3, 3, 2). We can
see that for both flows, DP yields a better solution than H1 and H2. The
allocation of DP is optimal for the linear case, but it is sub-optimal for the
non-linear case.

Additionally, we should mention that for reasonable values of noi, r and
length, BB, BB-IC and the random walk flavours find the optimal solution
for both flows. The optimal solution of the non-linear case is f = (3, 3, 2, 3, 2)
with total cost 22 instead of 25.
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Figure 3: An application of DP.

4.2. Analysis

The time complexity of DP is O(nm2) because the size of the DPcost

matrix is n×m and in order to fill in each cell, the algorithm examines all m
values of the cells in the previous row. As shown in the experiments, for a few
hundreds of nodes and engines, the algorithm terminates in a few seconds.
The space complexity is O(nm), because of the n × m size of the DPnodes

matrix, which stores intermediate allocation. Note that, although we assume
an n × m DPcost matrix, we only need to keep two rows each time, thus
the space complexity depends on DPnodes. Below, we provide a sketch of the
proof that DP is correct for linear plans; due to space limitations, we prove
only that the cost found by DP is optimal.

Theorem 1. DP finds the minimum cost of a linear flow.

Proof. A sketch using induction on the size of the set A is as follows. If
n = 1, the optimal solution is trivial and is found by the algorithm. Let
the algorithm find the optimal solution OPT (n, j) for n = x and all engines
1 ≤ j ≤ m. Assume now that n = x + 1. For the cost of the (x + 1)th

running on ej, the DP algorithm examines, for all possible allocations of the
xth activity, the sum of the allocation cost of the first x activities and the
inter-engine cost cexf(x)→j . The first part of that sum is optimal. The second

part of the sum corresponds to the cost incurred by an edge (x, x+1), which
is the only real edge that exists between the first x activities and the (x+1)th

one. Thus, for n = x+1, DP examines the whole set of valid combinations of
optimal allocations of the first x activities plus the inter-engine cost between
the first x activities and the (x + 1)th one, i.e., it does not miss any valid
solution.
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5. Theoretical Analysis

In the following we prove that the FAA (Flow Activity Allocation) prob-
lem is not onlyNP-hard (the corresponding decision problem isNP-complete)
but at the same time it is impossible (unless P = NP) to approximate it
within a small constant factor. The proof concerns a simplification of FAA,
where ci,j = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m (uniform engines and activities with
unit-processing times) while ceaki→j = 0 when i = j and ceaki→j = 1, when i 6= j.
We consider the case where the number of enginesm can be arbitrary. In case
where the number of engines is restricted we can get similar but slightly bet-
ter results with respect to the approximation ratio bound. The proof is based
on a transformation of the scheduling problem P∞|prec, c = 1, pj = 1|Cmax

(we use the notation introduced in [9] to denote scheduling problems). In
this scheduling problem, the number of engines is arbitrary (P∞), there are
precedence constraints (prec) with unit-processing times for the activities
(pj = 1), there is a unit-time communication cost among engines (c = 1)
and the goal is to minimize the makespan, that is the total length of the
schedule. Note, that the simplified FAA problem could be represented as
P∞|prec, c = 1, pj = 1|

∑
Cj , since the goal is to minimize the total activity

completion time. The following theorem is stated without a proof in [10],
which we provide here for the sake of completeness.

Theorem 2. The simplified FAA is NP-hard and cannot be approximated by

a polynomial-time algorithm with approximation error bound less than 8/7.

Proof. [11] provides a polynomial-time transformation to prove that the de-
cision scheduling problem P∞|prec, c = 1, pj = 1|Cmax is NP-complete. In
particular, given an instance S of the 3-SAT problem, we construct an in-
stance J for the scheduling problem. In a nutshell, for each variable in S,
6 activities are constructed and for each clause in S, 13 activities are con-
structed. Appropriate precedence constraints between these activities are
enforced so that S has a truth assignment if and only if there is a schedule of
J with makespan 6. This means, than in the case where S is a YES-instance
of 3-SAT, then all activities in J are processed in the time interval [0, 6],
while in the case where S is a NO-instance then in every possible feasible
schedule of instance J there is at least one activity that completes at time 7
or later.

Let there be a polynomial-time approximation algorithm for the problem
in the current paper with approximation 8/7 − ǫ, ǫ > 19

114k
. We construct
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k copies of the instance J , J1, J2, . . . , Jk, adding the precedence constraint
that all activities in instance Ji are predecessors to all activities in Ji+1,
1 ≤ i ≤ k − 1. Let the resulting schedule be denoted by J∗. If S is a
YES-instance of 3-SAT, then instance J∗ has a schedule with total activity
completion time equal to 57mk2. This quantity is computed based on the
precedence graph of the activities related to variables and clauses (see [11]).
If S is a NO-instance of 3-SAT then the earliest possible time that Ji can
start is 7i − 7. Based on the precedence graph we get that at each integer
time in the range [7i− 6, 7i− 3] at most 4m activities can be completed. At
time 7i−2 at most m activities can be completed and finally at time 7i−1 at
most 2m activities can be completed. As a result, the total completion time
of Ji is at least 133mi − 76m, which when summed for all i, gives that the
minimum total completion time for all activities in J∗ is 66.5mk2 − 9.5mk.

From the above discussion we get that a polynomial-time approximation
algorithm for our restricted problem with approximation ratio strictly less
than 8/7− 19

114k
is impossible unless P = NP, since this algorithm could be

used to distinguish between the YES- and NO-instances of 3-SAT. This also
proves the fact that the FAA problem is NP-hard.

6. Evaluation

In this section, we conduct a thorough evaluation of the solutions pre-
sented in the previous sections. We use both synthetic and real-world flows.
First, we examine real-world flows, where the focus is on the performance
(Section 6.1.1) and testing under “real-world” conditions. For the latter,
we examine two main aspects: the impact of inaccuracy in the statistical
metadata (Section 6.1.2) and behaviour under settings where, intuitively,
employing multiple engines does not seem promising; e.g., when all tasks can
be executed on any engine, and the inter-engine costs are an order of magni-
tude higher than task processing costs (Section 6.1.3). The real-world flows
are taken from [12]; they correspond to data-intensive scientific scenarios
from several disciplines including astronomy, earthquake hazard characteri-
zation, biology and physics, and they are commonly used in the evaluation
of techniques for data flows (e.g., [13]).

The purpose of the synthetic flows’ experiments is to unveil the strengths
and weaknesses of each allocation algorithm in random flow instances. In
the synthetic flows, we focus on the following dimensions: (i) performance
of the alternatives presented in terms of the estimated flow execution cost
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(Section 6.2.1); (ii) associated overhead of each solution in terms of real time
spent in reaching allocation decisions (Section 6.2.2); (iii) accuracy, which
refers to the deviation of the approximate flow execution costs compared to
the optimal ones and is examined only when the optimal solution can be
found in reasonable time (Section 6.2.3); and (iv) sensitivity analysis, which
investigates the impact of different flavours and parameter values for the
random walk proposals (Section 6.2.4).

In order to cover a wide range of settings, the flows vary in terms of
the number of activities, engines, execution time of activities, transfer and
switching costs between engines, and density of the DAG representing the
flow. The probability of an engine to be capable of executing a specific
activity is set to 50% unless otherwise stated. The activity and the inter-
engine cost values are uniformly distributed in the range [1,100]. To generate
the inter-engine cost values we take into account the engine-independent
amount of data outputed by each activity. The default settings of the random
walk solutions are: number of restarts r = 50 and length of walk l = 103. The
default setting of the number of iterations (noi) for the BB-IC solution is
104. These values are set in such a way that the anytime algorithms complete
in a few seconds at most.

All the algorithms are implemented in MATLAB and the experiments
were executed on a machine with an Intel Core i5 660 CPU and 6GB of
RAM. All experiments were repeated 50 times and we report the average
values (except in Table 5).

6.1. Real-World Flows

We experimented with 4 real-world flow structures, described in [12].
In particular, we created instances of the following flow types: Montage,
Epigenomics, LIGO and CyberShake (see Figure 4). For those flows, we
experimented with n = m = 100 and the rest of the settings as in the
introduction of this section. Initially, we assume that each activity processes
the same amount of data and the inter-engine connection speed is the same
for all pairs of engines; this implies that the inter-engine costs are activity-
independent but we relax this assumption later.

6.1.1. Performance

In this experiment, we evaluate the relative performance in terms of ex-
ecution time TET of the different policies (see Table 1). The numbers are
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Montage Epigenomics

LIGO CyberShake

Figure 4: The structure of the real workflows used in our experiments.

Table 1: Normalized performance for real-world flows with 50% engine constraints
ACCURATE STATISTICS

flow/alg H1 H2 DP BB-IC RWR-b SC1 SC2 BEST

Montage 1.3355 1.4083 1.4043 1.2555 1.2362 1.1578 1.0815 1

Epigenomics 1.5147 1.0282 0.3208 1.0057 1.0118 1.3652 1.1720 1
LIGO 1.3559 1.0512 0.7601 1.0245 1.0358 1.2604 1.0843 1

CyberShake 1.2858 1.1806 0.9751 1.1267 1.1304 1.1577 1.0489 1

Table 2: Normalized performance for real-world flows with 50% engine constraints and
inter-engine cost activity-dependent.

ACCURATE STATISTICS

flow/alg H1 H2 DP BB-IC RWR-b SC1 SC2 BEST

Montage 1.3463 1.2507 1.2589 1.1427 1.0984 1.1443 1.0984 1
Epigenomics 1.9009 1.2167 0.4664 1.1390 1.0911 1.5464 1.3353 1

LIGO 2.0327 1.4644 0.9433 1.3526 1.2668 1.5341 1.3177 1
CyberShake 1.5200 1.3433 1.1649 1.1749 1.1308 1.2738 1.1899 1

normalized according to the execution cost yielded by BEST. For the mon-
tage flow, the BEST meta-heuristic is the best performing policy, while the
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Table 3: Normalized performance for real-world flows with 50% engine constraints
INACCURATE STATISTICS

10% inaccurate statistics
flow/alg H1 H2 DP BB-IC RWR-b SC1 SC2 BEST

Montage 1.0660 1.1054 1.1035 1.0373 1.4565 1.1331 1.2793 1

Epigenomics 1.4548 0.9874 0.3107 1.0000 1.8556 1.6620 1.7467 1
LIGO 1.3206 0.9844 0.7026 1.0000 1.7263 1.4803 1.5855 1

CyberShake 1.1728 1.0381 0.8469 1.0215 1.5245 1.2302 1.3635 1
30% inaccurate statistics

flow/alg H1 H2 DP BB-IC RWR-b SC1 SC2 BEST

Montage 1.1082 1.1542 1.1512 1.0649 1.5024 1.2354 1.3023 1

Epigenomics 1.4429 0.9789 0.3034 1.0000 1.8527 1.6091 1.7258 1
LIGO 1.2789 0.9890 0.7188 1.0000 1.7321 1.4334 1.5649 1

CyberShake 1.1614 1.0558 0.8744 1.0390 1.5639 1.2124 1.3491 1

Table 4: Normalized performance for real-world flows with no engine constraints
Inter-engine cost ∈ [1,100] and no engine constraints

flow/alg H1 H2 DP BB-IC RWR-b SC1 SC2 BEST

Montage 1.0502 3.4899 3.42259 1.0307 1.0453 1.1453 1.0196 1

Epigenomics 1.0293 1.2458 0.2980 1.0018 1.0248 1.1788 1.0359 1
LIGO 1.0328 1.4764 0.9932 1.0023 1.0265 1.1653 1.0396 1

CyberShake 1.0645 2.2775 1.8019 1.0387 1.0615 1.1628 1.0288 1

Inter-engine cost ∈ [1,1000] and no engine constraints
flow/alg H1 H2 DP BB-IC RWR-b SC1 SC2 BEST

Montage 1.4840 32.4686 30.3408 1.4739 1.4761 1.1429 1.0012 1

Epigenomics 7.0332 1.0136 0.5915 1.0012 1.0099 8.1907 7.1936 1
LIGO 1.2568 13.6752 7.7084 1.2489 1.2514 1.1293 1.0037 1

CyberShake 1.2459 21.2047 15.6062 1.2424 1.2429 1.1289 1.0002 1

naive heuristics H1 and H2 yield 33% and 40% higher execution cost, re-
spectively. However, the pattern changes for the rest of the real-world flow
types. Those flows are not linear but they comprise linear subflows. So,
DP outperforms the other policies. For Epigenomics, DP ’s execution time
is more than 3 times lower than those from the best performing heuristic,
which is H2, and BEST. For LIGO and Cybershake, the DP’s performance
benefits are higher than 20% compared to the simple heuristics.

We now relax the assumption regarding the homogeneity of inter-engine
network and the volume of data processed by each activity. More specifically,
we experiment with scenarios where the inter-engine cost is a linear function
of the data volume, and each activity may alter this volume by a factor
uniformly drawn from 0.5 to 1.5 (denoting the pruning of half of the data
and generating half as much additional data, respectively). The results are
shown in Table 2. We observe that the heuristics yield relatively better
performance for the montage flow, but the performance degradation with
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regards to BEST remains significant (25%). For the other three types of
real-world flow structures, we observe that both H2 and DP exhibit worse
performance than the one reported in Table 1 and difference between our
best performing proposal and the best performing heuristic widens. This is
attributed to the fact that the more the heterogeneity in the cost associated
with the graph edges, the more the need to consider these costs carefully,
something that H2 does not perform and DP performs only partially (since
it considers only some of the existing edges). In the remainder and in order
to keep the evaluation concise, we will discuss mostly the case, where inter-
engine costs are assumed to be activity-independent showing that even for
that setting our solutions manage to yield improvements.

Regarding the time overhead, this is a couple of seconds even for the most
time consuming techniques, such as the dynamic programming and random
walk. Detailed experiments for the decision making overhead are presented
later.

6.1.2. Imprecise Statistical Metadata

So far, we have assumed that the statistics in C and CE (the execution
time and inter-engine shipping and switching costs) are accurately known.
Here, we relax this assumption and we allow for imprecise statistics. We re-
peat the first part of the experiment in Section 6.1.1, but after we determine
the allocation, we perturb the values in C and CE and we re-evaluate the to-
tal cost. In particular, we multiply each element in the two cost matrices with
a scalar value α ∈ [0.9, 1.1] (denoting inaccuracies of ±10%) or α ∈ [0.7, 1.3]
(denoting inaccuracies of ±30%). In this way, we emulate a situation, where
the actual costs differ from those used during decision taking.

The results are shown in Table 3. For smaller inaccuracies of up to 10%,
DP stills outperforms the other policies for the last 3 flow types. The perfor-
mance improvements vary from 15% up to more than 3 times. For Montage
flows, BEST performs better, as in the case with no inaccuracies. However,
the difference of BEST from the naive heuristics drops to 6.6%. When the
inaccuracies grow larger, this difference is up to 10% for Montage flows. For
such inaccuracies, DP clearly outperforms all the other policies for the other
flow types.

6.1.3. Settings discouraging multiple execution engines

Intuitively, one might expect that when allowing any engine to run the
complete flow (i.e., not having engine constraints), then not switching be-
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tween engines, as in H1, yields the highest performance. However, as shown
in the top part of Table 4, for the Epigenomics flow, DP still achieves more
than 3 times lower execution cost. For the rest of the real-world flows, the
improvements are significantly lower (between 3.2% and 6.4%). H2 produces
much worse results.

In addition, in real world, one might expect the inter-engine data transfer
and switching costs to dominate. So, we perform another experiment, where
the CE values are an order of magnitude higher than the values in C. The
results are presented in the lower part of Table 4. Our solutions in that case
improve the performance from 24.5% to 42%.

6.2. Synthetic Flows

The results regarding the real-flows provide strong insights into the strengths
of our solutions but they are tailored to the specific flows examined. To com-
plement the evaluation, we randomly generate DAGs. The flows considered
consist of n=10, 20, 50, 100, 200 activities. We categorize the flows depend-
ing on their number of activities, as small (10 or 20 activities), medium (50
activities), large (100 activities) and very large (200 activities), based on the
categorization in [14]. Regarding the exact shape of the flow graph G, we
consider dense flows, where the probability of two activities to be connected
with an edge is 50% (i.e., there exist n(n−1)

4
edges), sparse flows, where the

edge probability is 20% (i.e., there exist n(n−1)
10

edges), and linear flows, where
activity ai is connected only with ai+1.

The number of the available engines is m=10, 20, 50, 100, 200. The
Montage flow is the one closer to the random flow instances tested below.
Also, the sparse flows are less sparse than the rest of the flows in Section 6.1.

As in the experimental setting of real-world flows, by default we as-
sess the performance improvement where the inter-engine cost is activity-
independent, but we later relax this to show that the our results hold for a
wide range of inter-engine cost values.

6.2.1. Performance improvement

In the first set of experiments, we evaluate the flow performance in terms
of flow execution time. We compare the two heuristics H1 and H2 against
DP, BB-IC, RWR-b, SC1, SC2 and BEST, which is the best among the last
four. For the random walk flavours, we choose only the best performing
one, and we leave their comparison for Section 6.2.4. The average results of
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Figure 5: Performance comparison when n = 10, 20, 50, 100 and 200 (from top to bottom).
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Figure 6: Performance comparison when the inter-engine cost ∈ [1, 10] for dense flows.
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Figure 7: Performance comparison when n = 10, 20, 50, 100 and 200 and the inter-engine
cost is activity-dependent.

these experiments are presented in Figure 5. The numbers are normalized
according to the execution cost yielded by BEST as previously.

The main observation for dense and sparse flows is that the proposed
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Table 5: Maximum performance degradation of H1 and H2 in a single iteration compared
to our solutions.

Dense flows
n / m 10 20 50 100 200

10 2.92 2.78 3.16 3.77 4.37
20 3.03 2.96 3.46 4.38 3.65
50 3.23 2.88 3.01 3.09 4.68
100 2.41 2.32 2.58 2.80 3.09
200 1.89 2.39 3.58 3.83 2.56

Sparse flows
n / m 10 20 50 100 200

10 2.10 2.67 2.24 2.31 2.80
20 2.70 2.22 2.67 3.41 2.90
50 3.15 3.01 2.67 2.62 3.10
100 2.60 3.50 2.75 2.42 2.68
200 3.27 2.68 2.42 2.25 2.24

Linear flows
n / m 10 20 50 100 200

10 2.15 2.70 4.36 5.64 6.99
20 1.93 2.60 3.84 4.95 6.65
50 2.09 2.47 3.51 4.29 5.84
100 1.72 2.39 3.13 4.14 5.53
200 1.82 2.10 2.94 4.02 5.40

anytime algorithms (i.e., BB-IC, RWR-b, SC1, SC2 and BEST ) consistently
outperform the two simple heuristics; this is not the case for the DP proposal,
which is proved to be optimal for linear flows and the more dense a flow is
the higher the deviation of DP ’s solution from the optimal one. Specifically,
for dense flows (left column in Figure 5), when the flow size is small, the
best performing simple heuristic can run on average up to 100% longer than
BEST (for n=10 and m=100). The best performing heuristic is H1 because
it implicitly tackles edge cost minimization contrary to solutions, such as H2
and DP. The relative degradation decreases but remains significant as the
flow size grows. For instance, the average degradation can be up to 70% for
dense flows of medium size, 45% for large flows and 33% for very large flows.
Note that the maximum performance degradation in a single iteration can
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be much higher, as shown in the upper part of Table 5. That table presents
the highest number of times the best performing heuristic cost is higher than
our best performing solution, which is always BEST for dense and sparse
flows, and DP for linear flows. In a single iteration, the simple heuristics’
execution costs observed are up to 368% larger for medium flows and up to
283% for very large flows.

In sparse data flows, the performance improvement is lower than in dense
flows, but it is still considerable and up to 66%, 51%, 47% and 34% for small,
medium, large and very large flows, respectively. We always compare our best
performing solution against the best performing naive heuristic. Another
observation is that both in dense and sparse data flows, H1 outperforms the
other heuristic H2, with some exceptions for small sparse flows.

As explained in Section 3, BEST is a meta-heuristic, which leverages
BB-IC, RWR-b and set cover solutions. In general, the set cover solutions
are the ones with the highest average performance between the approaches
considered by BEST (apart from sparse flows when n = m = 10). Without
BEST, our proposal with the highest performance would be at least 10%
slower. Between BB-IC and RWR-b, which are used by all SC1, SC2 and
BEST, there is no clear winner, but in the majority of the settings, RWR-b

is superior to BB-IC.
As far as the linear data flows are considered, the DP algorithm finds

the optimal solution, and as such, achieves the lowest execution times. On
average, DP can exhibit up to 7.5 times better performance than the naive
heuristics. BB-IC and RWR-b attain similar performance improvements for
large and very large flows. In all cases, both the SC1 and SC1 algorithms
are outperformed by the BB-IC and RWR-b solutions. H2, which does not
consider edge costs, performs better than H1, and in some cases better than
some of our proposals, such as SC1.

In the next experiment, we show the performance of the algorithms when
the average inter-engine cost becomes an order of magnitude lower than the
average activity cost. More specifically, Figure 6 depicts the execution cost
of dense data flows when the inter-engine cost between engines ∈ [1, 10]. In
this figure, we can see that, especially for non large flows, the naive heuristics
perform very slightly worse than our solutions. This is expected since, when
the inter-engine cost becomes zero, H2 yields an optimal solution. However,
even in this setting, the performance degradation for large and very large
flows is significant and can reach 21%.

As for real flows, we relax the assumption and we consider activity-
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Figure 8: Performance comparison when the probability of an engine to be capable of
executing an activity is 20% for dense flows.
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Figure 9: Performance comparison when the probability of an engine to be capable of
executing an activity is 80% for dense flows.

dependent inter-engine costs as in Section 6.1.1. The results are shown in
Figure 7 and confirm the conclusions that we discussed for real flows about
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Figure 10: Decision making time for n = 10, 20, 50, 100 and 200 (from top to bottom).
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the impact of execution engine homogeneity on the performance improvement
of data flows. Specifically, we observe that the performance improvement of
the data flows due to our proposals follow the same pattern for both inter-
engine activity-dependent and activity-independent cases. We have observed
that our solutions can be up to more than 5 times faster than the existing
heuristics in isolated runs. Comparing Figure 7 against the left column of
Figure 5, we see that H1 is better than H2 in Figure 7, but its performance
against our solutions is even worse for small and medium flows. For large
and very large flows, the performance gap is slightly narrower, especially for
a large number of candidate execution engines. In the remainder, we will
only discuss the case where the inter-engine costs are activity-independent
for simplicity.

Figures 8 and 9 refer to a more and a less constrained setting, where,
on average, each flow activity can run on only 20% or 80% of the engines,
respectively (instead of 50%). When having 20% engine probability, the
performance degradation of the naive solutions is more evident for small
flows (where it can be up to 51%), but becomes smaller for very large flows
(where it can be up to 12%). In the case of 80% engine probability, the
performance degradation increases compared to the results of 20% or 50%
engine constraints. Specifically, for small flows, the simple heuristics in the
best case are 63% worse than our proposals, while, in large flows, our average
performance improvements are at least 60%.

6.2.2. Decision making overhead

We show the running time of the optimization process in Figure 10. For
simplicity, we discuss only dense flows, but the observations apply to all flow
types. We can draw the following observations: the naive heuristics run in
milliseconds for any size of flows and candidate engine sets. If the number
of engines is up to 50, the DP and BB-IC algorithms run in hundreds of
milliseconds. For m = 100, DP still runs in less than 1 sec, except when
n = 200. For m = 200, the average time overhead of DP is between 0.3 secs
and 6.7 secs.

RWR-b runs in 1 sec for small flows, up to 1.8 secs for medium flows;
for large and very large flows, RWR-b does not exceed 4.2 and 13.7 secs,
respectively.3 The overhead of the set cover solutions are largely determined

3The overhead of RWR-b is mostly due to the estimation of the cost of each allocation
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Figure 11: Performance when m = 5, 6, 7, 8 and n = 5, 6, 7, 8.

by the overhead of RWR-b; it is slightly smaller than that of RWR-b since
SC1 and SC2 examine a smaller set of engines. Overall, the running overhead
is low, which supports our claim that our proposals are practical.

plan after each random change from scratch; for large flows, more efficient cost estimation
approaches that reuse previous results can be devised.
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6.2.3. Accuracy

The accuracy of the algorithms can be accurately measured only if the
optimal solution can be found. This can be done in reasonable time in two
cases: i) when the flows are linear; and ii) when n andm are sufficiently small
so that BB can be applied. For the first case, we can use the third column
of Figure 5, which shows the average performance of the algorithms. The ac-
curacy of the anytime algorithms degrades as n and m increase. In addition,
the bottom part of Table 5 shows the maximum performance degradation
observed for the two simple heuristics.

We also check the accuracy of the algorithms for very small dense flows,
where n,m = 5, 6, 7, 8. For such flows, RWR-b is remarkably accurate, and,
on average, it is within 2% of the optimal solution provided by BB. The next
more accurate algorithm is BB-IC, the average degradation of which is 15%.
DP is 29% slower, whereas, the best performing naive heuristic, H1 incurs
63% higher execution costs.

6.2.4. Random Walk Flavours

In Section 3, we discussed a set of random walk flavours and here we
explain why we used only RWR-b in the previous experiments. We present
the comparison of the flavours only for a representative setting: dense data
flows with n = 50, m = 50. The results of this experiment are presented in
Figure 12. RWR-b algorithm has the best performance compared to RW and
RWR-r, although the difference of performance and time overhead between
RWR-r and RWR-b is negligible. Nevertheless, the optimization time of
the simple RW is much lower than 1 sec for activities at the expense of
approximately 4.2% of performance degradation.

For the same experimental setting, we investigate the impact of the ran-
dom walk length for RWR-b. We evaluate walk lengths of 103, 104 and 105,
as shown in the middle row of Figure 12. The main observation is that as
we increase the length of the walks, the execution cost of the algorithm is
slightly increased too, whereas the optimization time increases proportion-
ally to the length of the walk. For large lengths the optimization overhead
is on the orders of minutes without significant performance benefits. Fi-
nally, in the last set experiment, we evaluate the impact of the number of
restarts (r = 10, 20, 30, 40, 50), as shown in the bottom row of Figure 12.
According to the results, the impact of restarts do not significantly affect
the performance: going from 10 restarts to 50 yields approximately 2% of
improvement.
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Figure 12: 1st row: performance and optimization time of random walk flavours. 2nd and
3rd row: impact of random walk length and restarts on RWR-b, respectively.

6.3. Summary of Lessons Learnt and Discussion

The real-world flows in scientific scenarios tend to be sparse and either
close to linear ones, or comprising many linear subflows. This implies that
the contribution of the inter-engine cost to the flow execution cost is less
significant compared to arbitrarily random flows. In scenarios, where there
are many linear subflows, DP exhibits clearly better performance; otherwise
BEST yields the lowest execution times. Our solutions can also yield signif-
icant benefits when there is no obligation to switch between engines (in the
sense that an engine can run the complete flow) and the inter-engine costs
are an order of magnitude higher than the processing costs.

From the experiments with the synthetic data, we can draw the following
conclusions for random flows: (i) our solutions can efficiently handle even
very large flows and outperform naive solutions; (ii) we can declare clear
winners for different types of flows: for dense and sparse flows, BEST is
the superior algorithm; for linear flows, DP is optimal; (iii) the performance
improvements of our proposals compared to naive solutions are significant in
every type of flows; and (iv) the running time of the decision making process
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completes in less than a second in most of the cases, which supports our
claim that our proposals are practical.

Note that for random flows, BEST is a practical and efficient solution,
and its efficiency is largely due to the set cover algorithms. For those al-
gorithms, several additional flavours can be devised; for example to select
engines according to their average inter-engine costs. Such flavours may sup-
port better specific scenarios, e.g., flow types where some tasks play the role
of a hub with high degree of incoming and outgoing edges. In this work, we
mostly focus on generic flows; the development of additional flavours tailored
to specific flow structures is out of our scope.

7. Related Work

The closest proposal to our work appears in [4, 3], where the authors also
deal with the complexity of flows in multi-engine environments and present
a concrete workflow enactment system that supports hybrid flow execution.
Apart from the system presentation, in [4], an exhaustive approach for al-
locating the activities of a flow to different execution engines is proposed in
order to meet multiple-objectives, such as performance and fault-tolerance.
In addition, heuristic techniques are presented for pruning the search space;
those heuristics are equivalent to H1 and H2. In our work, we improve upon
such allocation schemes, and, through our evaluation, we show that our ap-
proaches are both scalable and significantly better than simple heuristics,
when performance is the single optimization criterion.

[15] introduces an ant colony optimization algorithm that selects ser-
vice instantiations between multiple candidates, in a setting where the flows
mainly consist of a series of remote service invocations. In our work, we do
not employ such type of algorithms, because their optimization overhead is
at least two orders of magnitude higher (see indicative running times in [16]).

A state-of-the-art approach to flow scheduling is presented in [17, 13].
Specifically, a set of optimization algorithms based on deadline and time
constraints was analyzed for scheduling flows. If we consider to adapt these
methodologies in order to fit in our problem keeping only the allocation part
regardless of deadlines, we will come to the conclusion that these method-
ologies are reduced to the simple heuristics presented in Section 2; more
specifically the allocation part is reduced to H2, to which our proposals are
shown to be superior. Another family of proposals aim at finding allocations
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of flow nodes to processors within a cluster, when the processors are homo-
geneous. Apart from that difference, which renders them inapplicable to our
setting, typical assumptions are that there is no notion of inter-engine cost
and there are no constraints with regards to the capabilities of an engine to
execute a specific flow activity. Examples of such allocation approaches are
described in [18, 19, 20].

For completeness, we briefly discuss additional aspects of flow optimiza-
tion, which differ from our problem setting. [21] discusses optimal time
schedules given a fixed allocation of activities to engines. Scheduling issues
are also considered in works such as [22], which exploit existing systems, e.g.
Pegasus, for task mapping procedure and [23], in which deadline constraints
are taken into account. The proposals of [24, 25, 26] focus on methodolo-
gies of re-ordering and/or merging flow activities in order to yield improved
performance, while keeping the flow semantics. In [27], flow activities are
transformed in order to benefit from underlying data management infras-
tructures. [28] and [14] discuss optimization of data flows according to mul-
tiple objectives without considering engine allocation issues. In [29], a data
oriented method for workflow optimization is proposed in order to minimize
execution cost. This method is based on the fact that data may be shared
across several functions, and, as such, workflow performance stands to ben-
efit from optimizations in the form of incorporating a shared database to
handle common data-oriented tasks. Another proposal of flow optimization
is presented in [30] based on soft deadline rescheduling in order to deal with
the problem of fault tolerance in flow executions. In [31], an auction-based
scheduling methodology for multi-objective flow optimization is presented; in
our setting, choosing the most inexpensive engine is similar to the policy of
the naive heuristic H2. Also, a methodology for minimizing the performance
fluctuations that might occur by the resource diversity is proposed in [32].
Their proposal focuses on the delay correction during task execution. All
these optimization aspects are orthogonal to our research.

The optimization of flows bears also similarities to distributed query op-
timization [33] and optimization of queries with user-defined functions [34];
however, in those problems, the focus is on the shape of the query plan and
the ordering of the distributed operators (e.g., [34, 35]) instead of deciding
the mapping of a plan node to a specific engine. Other issues that differ-
entiate query and flow optimization include the definition of the semantics
of flow nodes, algebraic re-writing of flow plans and respecting inter-task
dependencies.
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8. Conclusions and Future Work

In this work, we investigate the problem of allocating nodes of data-
intensive flows to concrete executing engines. We prove that this problem is
NP-hard and cannot be approximated within a small constant. Due to the
problem complexity, to date this problem is addressed using naive heuris-
tics. In this work, we show that we can do significantly better without much
overhead. We propose an optimal polynomial time dynamic programming
solution for the specific case of flows that are linear, i.e., a chain of activities.
Furthermore, we propose anytime algorithms that can handle any type and
size of flows. With the help of our thorough experimentation, we declare
clear winners depending on the type of the flow. Our proposals are capa-
ble of yielding solutions that are significantly better than naive approaches;
actually, in real-world flows and conditions, they outperform those naive ap-
proaches by a factor of up to three. Our proposals are also easy to implement
and light-weight.

This work aims to propose fast algorithms for engine selection and fo-
cuses on the generic properties of the solutions. Apart from devising tailored
solutions for each type of real-world flow, in the future, it is interesting
to investigate solutions without the constraint of finding an allocation in a
limited time period. Two further avenues for extending this work are to con-
sider multiple objectives (e.g., both total time and makespan) and consider
the impact of co-allocating activities to the same engine on the costs of those
activities.
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