
Driver input selection for main-memory multi-way joins

Emmanouil Valsomatzis
∗

Department of Computer Science
Aalborg University, Denmark

evalsoma@cs.aau.dk

Anastasios Gounaris
Dept. of Informatics

Aristotle University of Thessaloniki, Greece
gounaria@csd.auth.gr

ABSTRACT

Stream query processing has a particularly broad range of
applications from sensor data processing and internet traffic
analysis to runtime monitoring of stock market and server
logs, and scientific simulations. This work focuses on multi-
way join queries over streamed data, which are processed
with the help of a n-ary join. More specifically, we propose
a novel main-memory variant of the influential MJoin oper-
ator proposed in [35], which processes input data in batches
with a view to improving the CPU efficiency, and explic-
itly controls the order of execution within each batch with-
out being restricted by the time of input arrival, as current
state-of-the-art solutions do. To this end, we also propose
policies for selecting the execution order, and we show that
our approach can yield important performance benefits.

1. INTRODUCTION
In the last decade, the database research community has

focused its attention on query processing over continuous
and possibly unbounded input streams rather than on stored
data sets. A data stream is a real-time, continuous, ordered
(either explicitly by timestamp or implicitly by arrival time)
sequence of items. Stream query processing has a particu-
larly broad range of applications from sensor data processing
and internet traffic analysis to runtime monitoring of stock
market and server logs, and scientific simulations (e.g., [1, 6,
7, 9, 12, 13, 25, 30, 33, 38]). Example queries include mov-
ing averages of recent stock prices and finding correlations
between the prices of several stocks [14].

In general, querying data streams involves running a query
over a period of time, which can be of infinite or finite length,
and generating new answers as new items arrive. These
types of queries are known in the literature as continuous,
standing, or persistent queries. They also share a common
requirement not to employ blocking operators, i.e., operators
that must consume the entire input before any results are

∗Research conducted at the Aristotle University of Thessa-
loniki.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

produced, thus resulting in fully pipelined query plans that
comprise non-blocking operator implementations (e.g., [15,
21]).

This work focuses on multi-way join queries over streamed
data. Several applications which involve decision support,
data intensive solutions and advanced data management over
complex objects, such as graphics, artificial intelligence, and
geometric modeling, usually have to specify their desired re-
sults in terms of multi-way join queries [31]. All such appli-
cations are also encountered in streaming scenarios as well.
For example, in network packet monitoring, the network ad-
ministrator may want to monitor the traffic of data packets
passing though different routers with the objective of finding
packets with the same destination IP address; this task can
be formed as a multi-way join in a straightforward manner
[4]. As another example, in building monitoring using sensor
networks, one may want to keep track of the temperature,
humidity, and light intensity measured by sensors in a room.
The sensor readings of each measurement type are sent to
their respective sinks as a stream. The monitoring task in
each room can be specified as a distributed stream join query
that joins on the same room id from three sensor-reading
streams [33]. In [2, 3], multi-way join queries are used to de-
tect and track the propagation of various phenomena, that
strike a sensor field. Other applications of multi-way joins
in sensor networks are object tracking, surveillance, and en-
vironmental monitoring [17, 32, 29].

That kind of queries are often characterized by unpre-
dictable data arrival rates and stand to benefit from ad-
vanced join algorithms that are capable of tolerating initial
delays, volatile arrival order and bursty arrival rates. We
can classify the corresponding query plans in two broad cate-
gories: (i) traditional left (or right) deep plans that comprise
a series of binary pipelined joins; and (ii) plans in which all
the joins are encapsulated in a single n-ary join operator.
The most prominent representative of n-ary joins is MJoin,
which was initially proposed in [35] and is a generalization
of symmetric binary join algorithms.

TheMJoin algorithm first creates a hash table on each join
attribute of every input stream. When a new tuple arrives
from any input, then this input plays the role of the driver

relation: the new tuple is inserted into the corresponding
hash table and then is used to probe the remaining hash ta-
bles of the other relations (also termed as driven relations)
in order to produce results. There are several options for
choosing the best probing sequence, which may also account
for evolving selectivities (e.g., [11]). In their traditional im-
plementation, MJoins process input tuples for any source as

they arrive, i.e., they do not control the order of processing
of input tuples, although different tuples may follow different
execution paths.

A common problem stemming from the fact that arrival
rates are volatile and potential bursty is that the execution
of MJoins may lead to significantly large idle times when
all sources are temporarily blocked; this problem is evident
even in variants that employ a reactive phase, where data
that have previously been flushed to disk are joined during
the periods where no inputs are available [5, 8, 34]. In this
work, we deal with the problem of such idle times in settings
where all data can fit into main memory, which is rather
common in window joins. Our main rationale is to group
tuples in batches and activate the join algorithm periodi-
cally. The benefits of such an approach are twofold. Firstly,
it improves the CPU efficiency, since the CPU is fully uti-
lized when activated and totally idle otherwise; a similar
approach has been shown to improve energy efficiency in
data centers [22]. Secondly, since input tuples are stored
in incoming buffers, the algorithm is not forced to process
them in strict timestamp order to ensure correctness. For
example, a more recent tuple may be processed before an
earlier tuple from a different input stream without sacrific-
ing result correctness; in this work we show that such an
approach leads to improved performance in terms of run-
ning time and capability of producing early results and of
consuming the input as fast as possible.

In summary, the contribution of this paper is as follows.
We propose a variant of the main-memory MJoin algorithm,
which (i) is activated periodically and processes tuples in
batches, and (ii) does not process tuples in strict timestamp
order in each batch. Further, we propose specific policies for
specifying the order of execution, which result in adaptive
variants for MJoin that aim to optimize the result produc-
tion rate and the input consumption rate within each batch
through dynamic choices of the driver input. Our thorough
experiments prove the proposal’s efficiency. For bursty ar-
rival rates and stream inputs with different selectivities, we
observed reductions in the running time up to 50%. Note
that although we consider finite streams, so that they can fit
into the main memory, our technique can be easily applied
to scenarios that include windowed multi-way joins over infi-
nite streams, where the aggregate size of windows can fit into
the main memory. Furthermore, our proposal can be applied
to any case where a multi-way join over streaming inputs is
employed under the condition that the rate of data arrival
is lower than the processing rate of the join, as typically
happens, and the user can tolerate the small delays due to
batching and the fact that the processor is not continuously
running. In addition, our proposal is applicable to scenarios
where a single processor has to be shared across multiple
multi-way join applications, e.g., in algorithmic trading.

The remainder of the paper is structured as follows. The
next section discusses the related work. In Section 3 we
explain our approach and we present adaptive policies for
choosing the driver input. Section 4 deals with the evalua-
tion, and we conclude in Section 5.

2. RELATED WORK
Non-blocking join algorithms are useful in a wide range of

web-based applications, such as data integration [19], online
aggregation [16, 18], provision of approximate answers [27,
20, 36], spatial databases [26], and adaptive query processing

time

data item arrival data item processing

time
time period

Figure 1: The traditional (top) and our novel (bottom) high
level approach to processing tuples in main-memory MJoins.

[11]. Most of the research effort in this area has been put
on disk-based variants that have the ability to produce join
results even if one or both sources are blocked, and to hide
idle times by employing a reactive phase, where data that
have been previously flushed to disk are joined during the
periods where no inputs are available [5, 8, 23, 34]. All
these proposals are orthogonal to ours, which refers to main-
memory execution only.

The capability to control and adapt the driver tables in
multi-way query plans can be exploited for a variety of pur-
poses as to react to stalls, to an unexpectedly large driver
table, to changing user requirements and to switch drivers
based on improved selectivity estimation [11]. Choosing
the driver inputs has been considered an important topic
in adaptive query processing (e.g., [24]), but to date, has
not been examined in the context of main-memory MJoins,
which process tuples simply in the order they arrive [35].

Reordering the tuples has been also proposed in [28] to
permute the data items at the source so to allow aggregate
queries to report back more interesting results earlier. In
our techniques, we essentially reorder tuples as well but for
a different purpose, namely to improve performance. Fi-
nally, processing and taking decisions at a batch level is not
new in adaptive query processing. For example, in [10], the
adaptive decisions are revised after a batch of tuples has
been processed so that the cost of making routing decisions
can be effectively amortized.

3. ADAPTIVE CHOICE OF THE DRIVER

INPUT IN MJOINS

3.1 High-level approach
In this work, we develop a novel flavor of main-memory

MJoins [35] that is capable of temporarily storing input tu-
ples in limited-sized incoming buffers and activate the join
processing phase periodically. In this way, the processing
takes place in batches. More specifically, we consider a cen-
tralized multi-way join over M remote finite data streams
denoted as S1, S2, ..., SM . The data, upon their arrival, are
concentrated in a unit that consists of M temporary storage
buffers in timestamp order (arrival times). The incoming
tuples are stored in those buffers until the join process kicks

off. We assume that the length (in time units) of each time
period is fixed. According to this approach, during each pe-
riod, the join process is mostly idle while tuples from any
input arrive. When the join process is activated, at the end
of each period, the CPU is fully utilized, and processes all
the tuples that have arrived up to the activation time point;
the corresponding dataset is referred to as a data batch.
This can lead to better CPU efficiency and thus energy sav-
ings. Moreover, at this point, data from each data source
may have become available, thus the algorithm gains con-
trol on the order of execution of the inputs because it is
not restricted to process the buffered tuples in strict times-
tamp order. The high-level approach is depicted in Figure 1,
where the traditional and the proposed processing in MJoins

are shown at the top and the bottom part, respectively.
After a tuple from a specific input has been selected for

processing, we assume that the probing sequence is defined
using known techniques, such as those described in [11], since
it is important for the probing sequence to be declared in
such a way that the most selective predicate is evaluated
first. In that case, the smallest number of temporary results
is generated. With the probing sequence having been defined
for each input, the main choice to be made by the algorithm
is the selection of the appropriate input to serve as the driver
one. To this end, we focus on the selection of the driver
input, testing different policies and checking their impact
on the rate of consuming the incoming tuples and producing
early results. This implies that, within each batch, tuples
may not be processed in timestamp order. For example, a
tuple with a later timestamp may be processed earlier than
a more recent tuple from another input.

Our policies are inherently adaptive in that the result-
ing processing plans are continuously revised across differ-
ent batches to reflect changes in arrival rate characteristics.
Moreover, the probing sequence techniques in [11] can also
account for evolving selectivities as well. In this work, we as-
sume that the selectivities are known throughout the multi-
way join execution (either through offline statistics or online
monitoring). For presentation simplicity reasons, we will as-
sume that there is a single join attribute per input. The
notation used for describing our policies is summarized in
Table 1.

3.2 Policies for Driver Selection
In this section, we elaborate on the policies for driver se-

lection. These policies are applied during the processing of
each batch separately. The first one, termed as Timestamp-

based, is the one employed in the original proposal of MJoins

in [35], whereas the next three ones aim at optimizing as-
pects such as the result output rate and the input consump-
tion rate. We assume that, when an input tuple is selected,
then it completes its processing (i.e., probes all hash tables
until it is dropped or produced in the output) before the
next tuple is processed.

Timestamp-based: this policy simply processes tuples
in timestamp order and is presented in Figure 2. This means
that the driver input stream may vary arbitrarily during the
batch processing based on the relative order of the tuple ar-
rival for each input stream. No effort is made to optimize any
property. In Fig. 2, the method process next tuple(bufferij)
denotes the processing of the tuple with the smallest times-
tamp from Sj in the i-th batch We also employ another
method called input stream ts() that returns the input iden-

Sj the j-th finite data stream, j ∈ [1,M]
|Sj | the size of Sj

|Mjoin| the size of the complete result set produced
by the Mjoin operator

σSj
selectivity of stream Sj = |Mjoin|

|Sj |
σj⊲⊳l selectivity of the join operator Sj ⊲⊳ Sl, which

is equal to the ratio of the size of Sj ⊲⊳ Sl

to the size of their cartesian product, j, l ∈
[1,M]

σMjoin the ratio of the size of the complete join
to the product of the sizes of all streams,

|Mjoin|

|S1|×|S2|×...×|Sj |
K the total number of batches,

⌈ last timestamp−first timestamp

time period
⌉

batchi the set of all tuples in the i-th batch, i ∈
[1, K]

bufferij the set of tuples from stream Sj in batchi

htj the hash table built for Sj

outBufferij the number of tuples produced when bufferij
is processed

outRateij the rate of producing output tuples output

when bufferij is processed,
outBufferij

|bufferij |

Table 1: Definitions of terms used in techniques

1: for i = 1 to K do

2: while batchi NOT EMPTY do

3: j ← input stream ts()
4: process next tuple (bufferij)
5: end while

6: end for

Figure 2: The Timestamp-based policy.

tifier of the stream, the buffer of which contains the tuple
with the smallest timestamp.

Consumption rate: the rational of this policy is to max-
imize the consumption rate in the sense that it aims to re-
duce the size of each buffer in the batch that is being pro-
cessed as fast as possible. This is performed with a view
to freeing up memory earlier in the execution. To achieve
this, we select the driver inputs according to their selectivity.
More specifically, as the selectivities of each join considered
to be known, we sort all the plans in an ascending order of
selectivities σSj

. Then, we first choose to process all the
tuples from the most selective input, then from the second
most selective, and so on. Apart from the different criterion
used, a main difference compared to the timestamp-based
policy is that the complete buffer of an input stream is pro-
cessed before the first tuple of another buffer is processed,
i.e., the processing of buffers is not interleaved. The pseu-
docode for this policy is in Figure 3.

Initial output size: our third decision policy aims at
maximizing the production of early results. Given the se-
lectivities for each join, we can estimate the size of the re-
sult size for each input tuple by multiplying the selectivity
with the size of the relevant hash table that the input tuple
probes. Given also that we know the number of tuples from
each buffer in each batch, we can estimate the total number
of output tuples that are expected to be produced for each
buffer. An estimate of outBufferij is provided with the help

1: for i = 1 to K do

2: while batchi NOT EMPTY do

3: order streams by ascending order of σSj

4: j ← next stream in the ordered list
5: while bufferij NOT EMPTY do

6: process next tuple (bufferij)
7: end while

8: end while

9: end for

Figure 3: The Consumption rate policy.

1: for i = 1 to K do

2: while batchi NOT EMPTY do

3: order streams by descending order of outBufferij
4: j ← next stream in the ordered list
5: while bufferij NOT EMPTY do

6: process next tuple (bufferij)
7: end while

8: end while

9: end for

Figure 4: The Initial output size policy.

of the following equation:

outBuffer
i
j = |bufferij | ∗ σMjoin ∗

M−{j}∏

l=1

|htl| (1)

Thus we employ a greedy algorithm that, in each step, se-
lects the input stream with the highest value of outBufferij ,
as shown in Figure 4.

Output rate: Our final policy extends the previous one
by taking into account also the number of incoming tuples
required to produced the output dataset. In this way, this
policy focuses on the output production rate, whereas the
previous one focuses on the output size. The difference is in
Line 3 of the algorithm in Figure 4, where the ordering is by
outRateij instead of outBufferij ; the outRateij is defined in
Table 1.

4. EVALUATION

4.1 Experimental setup
We examine a 3-way join over a common attribute of three

different artificial finite data streams, namely S1, S2 and
S3. We use six different datasets, which differ in the input
stream arrival patterns. Although the streams in all six
datasets do not have the same arrival rate and may also be
of different size, we ensure that they finish approximately
simultaneously.

The combination of the different selectivities and the ar-
rival rate patterns aim to cover a broad range of illustrative
scenarios. In all our experiments each time unit corresponds
to a nanosecond. In the first dataset, the data arrival rates
are as follows: S1 and S2 tuples arrive at a uniform aver-
age rate of 1 tuple per 10 time units. However, the rate
of S3 varies during the execution of the query. The arrival
rate changes from 1 tuple per 5 time units to 1 per 15 time
units approximately each quarter of the input. In the second
dataset, the tuples of S1 arrive at a uniform average rate of
1 tuple per 10 time units, and the arrival rates of both S2

Dataset I - IV Dataset V-VI

σS1⊲⊳S2 5 ∗ 10−9 10−5

σS1⊲⊳S3 10−6 10−5

σS2⊲⊳S3 5 ∗ 10−6 10−5

σ(S1⊲⊳S2)⊲⊳S3 10−3 10−4

σ(S1⊲⊳S3)⊲⊳S2 5 ∗ 10−6 10−4

σ(S2⊲⊳S3)⊲⊳S1 10−6 10−4

σS1
5 ∗ 10−12 102

σS2
5 ∗ 10−12 10

σS3
5 ∗ 10−12 1

Table 2: Selectivities for the datasets used in the experi-
ments.

Stream Dataset I - IV Dataset V-VI

S1 106 104

S2 106 105

S3 106 106

Table 3: Streams’ cardinalities.

and S3 vary during the execution of the query. More specifi-
cally, the arrival rate of S2 alternates between 1 tuple per 15
times units to 1 per 5 times units approximately each quar-
ter of the input. The arrival rate of S3 varies in an inverse
manner: it changes from 1 tuple per 5 time units to 1 per 15
time units every almost one fourth of the execution. In the
third dataset, we follow the same fluctuation for streams S1
and S2 as in the second dataset. However the arrival rate
of stream S3 follows a sinusoidal distribution.

The next three datasets employ a b-model of 20%-80%
distribution introduced in [37] and used to simulate bursty
network behaviour. In the fourth dataset, the data arrival
rates are as follows: S1 and S2 tuples arrive at a uniform
average rate of 1 tuple per 10 time units, whereas S3 follows
a 20%-80% b-model distribution. Datasets V and VI follow
a similar data arrival pattern (the b-model distribution in
Dataset V is 80%-20% though) but the selectivities of the
streams vary, as explained below. The arrival rates for all
datasets are presented in Figure 5.

Since our policies are orthogonal to issues related to adap-
tations to changing selectivities, and in order to allow eas-
ier analysis of the evaluation results, we consider scenar-
ios where the selectivities are uniform across the complete
datasets as shown in Table 2. The total size of each stream
for each dataset is shown in Table 3.

Apart from the varying arrival rates and the different se-
lectivities considered, we also investigate the impact of dif-
ferent time periods. As such, we consider two types of data
batches: in the former, the data items in a data batch belong
to a period of 100K time units, and in the latter, the period
is 1M time units. All experiments were repeated 10 times,
and here, we present the average values. The experiments
were conducted on a 2GHz Intel core i7 processor with four
cores, L2 Cache of 256 KB, L3 Cache of 6 MB and phys-
ical memory of 4 GB (2 of 2 GB of 1333MHz DDR3). In
such a setting (i.e., for those arrival rates, data sizes and re-
sources available), the complete execution of the multi-way
join can fit into the main memory and the processing rate is
significantly higher than the arrival rate, which allows us to
activate the CPU only periodically without sacrificing the

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time units

T
u

p
le

s
/T

im
e

 u
n

it

Dataset1 (Arrival rates)

S1

S2

S3

0 1 2 3 4 5 6 7 8 9 10

x 10
6

10
−3

10
−2

10
−1

10
0

T
u

p
le

s
/T

im
e

 u
n

it
 (

lo
g

 s
c
a

le
)

Time units

Dataset4 (Arrival rates)

S1

S2

S3

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time units

T
u

p
le

s
/T

im
e

 u
n

it

Dataset2 (Arrival rates)

S1

S2

S3

0 1 2 3 4 5 6 7 8 9 10

x 10
6

10
−4

10
−3

10
−2

10
−1

10
0

Time units

T
u

p
le

s
/T

im
e

 u
n

it
 (

lo
g

 s
c
a

le
)

Dataset5 (Arrival rates)

S1

S2

S3

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Dataset3 (Arrival rates)

Time units

T
u

p
le

s
/T

im
e

 u
n

it

S1

S2

S3

0 1 2 3 4 5 6 7 8 9 10

x 10
6

10
−4

10
−3

10
−2

10
−1

10
0

T
u

p
le

s
/T

im
e

 u
n

it
 (

lo
g

 s
c
a

le
)

Time units

Dataset6 (Arrival rates)

S1

S2

S3

Figure 5: Arrival rates for the datasets used in the experiments.

performance in terms of elapsed time between the arrival of
the first tuple and the finish of the processing of the last
tuple.

4.2 Experiments
In the experiments, we investigate two aspects, namely

the total running time, and the capability to produce re-
sults in each batch as early as possible. The total running
time is the time spent on processing, where the CPU is uti-
lized and is measured with the help of the nanoTime() Java
method. The figures presented in this section correspond to
the average behaviour across the last 80% of the batches.
We disregard the first 20% of the batches in order to allow
the hash tables of the MJoin to be filled in with a consid-
erable amount of data. When the behaviour of each policy
differs significantly throughout the complete execution, we
examine the behaviour of the first and the second 40% of the
batches separately. Since we present the average behaviour
based on the behaviour across several batches, all values are
normalized based on the behaviour of the timestamp-based

policy, i.e., running time 1 corresponds to the running time
the timestamp-based policy needs to complete the processing
of a batch. Additionally, for comparison purposes, we also
investigate the behaviour of a round-robin driver input se-
lection policy. According to that policy, we select the oldest
remaining tuple from each buffer in a batch in a round robin
manner.

The average behaviour of all policies regarding the result
production for Datasets I-III in a single batch are shown
in Figure 6. We do not show the consumption rate policy
because it is based on the selectivities; however, in these sce-
narios the selectivities are equal and thus the policy degrades
to a round-robin one. From the figure, one can observe that
the timestamp-based and the round robin policies act simi-
larly and finish almost at the same time in all the scenarios
(the deviation is less than 0.2%, which is considered negligi-
ble). The initial output size and the output rate policies also
exhibit similar behaviour and they are more efficient than

the other approaches: firstly, they manage to produce the
60% of the results in less than the 30% of the time needed
the timestamp-based policy to process a batch. Secondly,
their total running time is approximately 20% lower than
the timestamp-based policy.

We now turn our attention to cases with bursty arrival
patterns, as covered by Datasets IV-VI. The results are sum-
marized in Figures 7 and 8. For Dataset IV (1st column in
the figures), we observe a similar behaviour of the policies
for both time period sizes. The timestamp-based and the
round robin policies still behave similarly and finish almost
at the same time. In the first half of the join process (Figure
7) the round robin policy is slightly faster. The initial output
size policy and the output rate have also similar behaviour
and, on average, manage to reduce the total running time
by approximately 25% for batches corresponding to a period
of 0.1M time units and by 20% for batches with period of
1M time units. The improvements in the running time are
higher in the initial part of the execution, where the data
distribution is sparse.

For Datasets V and VI, where the stream selectivities
differ, we also evaluate the consumption rate policy. For
Dataset V (2nd column in Figures 7 and 8), the initial output
size and output rate policies produce 80% of the result tuples
in the first 20%-30% of the processing time, which is much
faster than any other policy. In addition, they both manage
to reduce the total running time, whereas the timestamp-

based policy is inferior also to the other two policies with
regards to the total running time. The behaviour of the
consumption rate policy is interesting: although it produces
only a very small portion of the final results up to 70% of
the total time, it reduces the total running time similarly
to the output rate policy. The highest speed-up is achieved
by initial output size for batch period of 1M time units,
where the reduction is about 50% (i.e., half the time of the
timestamp-based method)). The same policy is also the one
that incurs the lowest total running time for Dataset VI. For
Dataset VI, the consumption rate reduces the total running

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dataset I − batch of 100K time units

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Normalized running time

Round Robin

Timestamp

Initial output size

Output Rate

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized running time

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Dataset II − batch of 100K time units

Round Robin

Timestamp

Initial output size

Output Rate

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dataset III − batch of 100K time units

Normalized running time

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Round Robin

Timestamp

Initial output size

Output Rate

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized running time

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Dataset I − batch of 1M time units

Round Robin

Timestamp

Initial output size

Output Rate

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dataset II − batch of 1M time units

Normalized running time

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Round Robin

Timestamp

Initial output size

Output Rate

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Normalized running time

Dataset III − batch of 1M time units

Round Robin

Timestamp

Initial output size

Output Rate

Figure 6: Total running time and production rate for Datasets I-III. The batch time period is 0.1M time units (top) and 1M
time units (bottom).

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Normalized running time

Dataset IV − batch of 100K time units

Round Robin

Timestamp

Initial output size

Output Rate

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized running time

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Dataset V − batch of 100K time units

Round Robin

Timestamp

Consumption

Initial output size

Output Rate

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized running time

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Dataset VI − batch of 100K time units

Round Robin

Timestamp

Consumption

Initial output size

Output Rate

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Normalized running time

Dataset IV − batch of 1M time units

Round Robin

Timestamp

Initial output size

Output Rate

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dataset V − batch of 1M time units

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Normalized running time

Round Robin

Timestamp

Consumption

Initial output size

Output Rate

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized running time

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Dataset VI − batch of 1M time units

Round Robin

Timestamp

Consumption

Initial output size

Output Rate

Figure 7: Total running time and production rate for the 1st half of the batches of Datasets IV-VI. The batch time period is
0.1M time units (top) and 1M time units (bottom).

time similarly for the first half, but is much slower in pro-
ducing early results. In general, also for this dataset, the
timestamp-based policy is inferior to all three policies pro-
posed in terms of running time and early result production.
Tables 4 and 5 summarize the results of this experiment.

Discussion. The experimental evaluation supports our in-
tuition that it is not beneficial to process input tuples in
timestamp order. Actually, the timestamp-based method is
dominated by our proposals in all three dimensions inves-

tigated: aggregate running time, early result production,
and early input consumption. Interestingly, even a simple
round-robin technique may outperform the timestamp-based

method for bursty arrival rates and large batch sizes. The in-
ferior performance of the timestamp-based method is due to
both (i) the higher number of probes, and (ii) the more fre-
quent changes in driver selection that incur some overhead.
Among the three proposed techniques, there is no technique
that is consistently better in all our experiments. However,

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Normalized running time

Dataset IV − batch of 100K time units

Round Robin

Timestamp

Initial output size

Output Rate

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized running time

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Dataset V − batch of 100K time units

Round Robin

Timestamp

Consumption

Initial output size

Output Rate

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Normalized running time

Dataset VI − batch of 100K time units

Round Robin

Timestamp

Consumption

Initial output size

Output Rate

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Normalized running time

Dataset IV − batch of 1M time units

Round Robin

Timestamp

Initial output size

Output Rate

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized running time

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Dataset V − batch of 1M time units

Round Robin

Timestamp

Consumption

Initial output size

Output Rate

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized running time

%
 o

f
re

s
u
lt
s
 p

ro
d
u
c
e
d
 d

u
ri
n
g
 a

 b
a
tc

h
 p

ro
c
e
s
s
in

g

Dataset VI − batch of 1M time units

Round Robin

Timestamp

Consumption

Initial output size

Output Rate

Figure 8: Total running time and production rate for the 2nd half of the batches of Datasets IV-VI. The batch time period
is 0.1M time units (top) and 1M time units (bottom).

Round-robin Timestamp-based Consumption Rate Initial Output size Output Rate
Dataset batch

0.1M
batch
1M

batch
0.1M

batch
1M

batch
0.1M

batch
1M

batch
0.1M

batch
1M

batch
0.1M

batch
1M

Dataset I 0.985 1.012 1 1 N/A N/A 0.854 0.791 0.903 0.769
Dataset II 1.002 1.002 1 1 N/A N/A 0.859 0.773 0.840 0.777
Dataset III 1.003 1.014 1 1 N/A N/A 0.871 0.811 0.884 0.815
Dataset IV 0.966 0.997 1 1 N/A N/A 0.744 0.801 0.755 0.789
Dataset V 0.948 0.927 1 1 0.863 0.808 0.882 0.5 0.906 0.851
Dataset VI 1.128 0.926 1 1 0.785 0.728 0.785 0.611 0.956 0.819

average 1.005 0.979 1 1 0.824 0.768 0.832 0.714 0.874 0.803

Table 4: Normalized running time of join results.

Round-robin Timestamp-based Consumption Rate Initial Output size Output Rate
Dataset batch

0.1M
batch
1M

batch
0.1M

batch
1M

batch
0.1M

batch
1M

batch
0.1M

batch
1M

batch
0.1M

batch
1M

Dataset I 0.5 0.4 0.45 0.45 N/A N/A 0.85 0.85 0.85 0.85
Dataset II 0.45 0.4 0.5 0.45 N/A N/A 0.85 0.85 0.85 0.85
Dataset III 0.5 0.45 0.5 0.45 N/A N/A 0.8 0.8 0.8 0.8
Dataset IV 0.55 0.5 0.5 0.45 N/A N/A 0.65 0.6 0.6 0.6
Dataset V 0.85 0.9 0.5 0.45 0.1 0.05 0.95 1 0.9 0.95
Dataset VI 0.65 0.55 0.5 0.45 0.4 0. 35 0.8 0.95 0.7 0. 7

average 0.58 0.53 0.49 0.45 0.25 0.2 0.82 0.84 0.78 0.79

Table 5: Fraction of join results produced at 0.5 of normalized time units of execution.

Initial-output size is the most efficient, mainly because it is
the fastest, especially in scenarios with bursty arrival rates
and non uniform selectivities across the streams; in those
scenarios we observed reductions in the running time by up
to 50%. Due to its low running times, it manages to con-
sume the input buffers earlier than even the consumption

rate policy.

5. CONCLUSIONS
In this work, we proposed a novel variant of main-memory

MJoins, which does not process input tuples eagerly but

stores them in temporary buffers and periodically activates
the CPU to process all the accumulated data. Since MJoins

have multiple inputs, the choice of the driver input in our
approach becomes flexible. Apart from processing tuples in
timestamp order as in [35], we propose policies to perform
driver input selection, and we show that our policies can out-
perform timestamp-based methods in terms of the aggregate
time that the CPU needs to process the join. Moreover, the
proposed driver selection policies are more efficient in pro-
ducing early results and consuming the input buffers as early
as possible. Among our proposals, the best performing one

is shown to be the one that decides on the driver input se-
lection based on the expected size of results to be produced.
In realistic scenarios, where the data arrival rates are bursty
the stream selectivities differ, the reduction in running time
can reach 50%.

This work can be extended in several ways. Firstly, an in-
teresting direction for future work is to conduct theoretical
analysis of the relative performance of the proposed policies
in order to identify the conditions under which a policy be-
comes the most efficient one. Secondly, we aim to further
examine the impact of more inputs in the multi-way join; in
our evaluation, we have evaluated only 3-way joins. Finally,
we plan to integrate our methodology to adaptive disk-based
MJoin variants.

6. REFERENCES
[1] G. Abdulla, T. Critchlow, and W. Arrighi. Simulation data

as data streams. SIGMOD Record, 33(1):89–94, 2004.
[2] M. H. Ali, W. G. Aref, R. Bose, A. K. Elmagarmid,

A. Helal, I. Kamel, and M. F. Mokbel. Nile-pdt: A
phenomenon detection and tracking framework for data
stream management systems. In VLDB, pages 1295–1298,
2005.

[3] M. H. Ali, M. F. Mokbel, W. G. Aref, and I. Kamel.
Detection and tracking of discrete phenomena in
sensor-network databases. In SSDBM, pages 163–172, 2005.

[4] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and
J. Widom. Adaptive ordering of pipelined stream filters. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, Paris, France, June
13-18, 2004, pages 407–418, 2004.

[5] M. Bornea, V. Vassalos, Y. Kotidis, and A. Deligiannakis.
Adaptive join operators for result rate optimization on
streaming inputs. IEEE Trans. Knowl. Data Eng.,
22(8):1110–1125, 2010.

[6] D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S. B.
Zdonik. Monitoring streams - a new class of data
management applications. In VLDB, pages 215–226, 2002.

[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq:
A scalable continuous query system for internet databases.
In SIGMOD Conference, pages 379–390, 2000.

[8] S. Chen, P. Gibbons, and S. Nath. Pr-join: a non-blocking
join achieving higher early result rate with statistical
guarantees. In SIGMOD Conference, pages 147–158, 2010.

[9] C. Cortes, K. Fisher, D. Pregibon, and A. Rogers. Hancock:
a language for extracting signatures from data streams. In
KDD, pages 9–17, 2000.

[10] A. Deshpande. An initial study of overheads of eddies.
SIGMOD Record, 33(1):44–49, 2004.

[11] A. Deshpande, Z. Ives, and V. Raman. Adaptive query
processing. Foundations and Trends in Databases,
1(1):1–140, 2007.

[12] J. Gehrke and S. Madden. Query processing in sensor
networks. IEEE Pervasive Computing, 3(1):46–55, 2004.

[13] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J.
Strauss. Quicksand: Quick summary and analysis of
network data. Technical Report 2001-43, DIMACS, 2001.

[14] L. Golab and L. Golab. Sliding Window Query Processing
over Data Streams. PhD thesis, University of Waterloo,
2006.

[15] L. Golab and M. T. Özsu. Processing sliding window
multi-joins in continuous queries over data streams. In
VLDB, pages 500–511, 2003.

[16] P. J. Haas and J. M. Hellerstein. Ripple joins for online
aggregation. In Proc. of ACM SIGMOD, pages 287–298,
1999.

[17] M. A. Hammad, W. G. Aref, and A. K. Elmagarmid.

Stream window join: Tracking moving objects in
sensor-network databases. pages 75–84, 2003.

[18] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. pages 171–182, 1997.

[19] Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and D. S.
Weld. An adaptive query execution system for data
integration. In Proc. of ACM SIGMOD, pages 299–310,
1999.

[20] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable
approximate query processing with the dbo engine. ACM
Trans. Database Syst., 33(4), 2008.

[21] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating
window joins over unbounded streams. In ICDE, pages
341–352, 2003.

[22] W. Lang and J. Patel. Energy management for mapreduce
clusters. Proc. VLDB Endow., pages 129–139, 2010.

[23] J. J. Levandoski, M. E. Khalefa, and M. F. Mokbel.
Permjoin: An efficient algorithm for producing early results
in multi-join query plans. pages 1433–1435, 2008.

[24] Q. Li, M. Shao, V. Markl, K. Beyer, L. Colby, and
G. Lohman. Adaptively reordering joins during query
execution. In ICDE, pages 26–35, 2007.

[25] B. Liu, Y. Zhu, and E. A. Rundensteiner. Run-time
operator state spilling for memory intensive long-running
queries. In SIGMOD Conference, pages 347–358, 2006.

[26] G. Luo, J. F. Naughton, and C. J. Ellmann. A non-blocking
parallel spatial join algorithm. In ICDE, pages 697–705,
2002.

[27] A. Motro. Using integrity constraints to provide intensional
answers to relational queries. In Proc. of VLDB’ 89, pages
237–246, 1989.

[28] V. Raman, B. Raman, and J. M. Hellerstein. Online
dynamic reordering for interactive data processing. In In
VLDB, 1999.

[29] S. Srinivasan, H. Latchman, J. Shea, T. Wong, and
J. McNair. Airborne traffic surveillance systems: video
surveillance of highway traffic. In Proc. of the ACM 2nd
Int. Workshop on Video surveillance & sensor networks,
VSSN, pages 131–135, 2004.

[30] M. Sullivan and A. Heybey. Tribeca: a system for
managing large databases of network traffic. In Proceedings
of the annual conference on USENIX Annual Technical
Conference, ATEC ’98, pages 2–2, 1998.

[31] M. syan Chen, M. Lo, P. S. Yu, and H. C. Young. Applying
segmented right-deep trees to pipelining multiple hash
joins. IEEE Transactions on Knowledge and Data
Engineering, 7:656–668, 1995.

[32] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton,
A. Mainwaring, and D. Estrin. Habitat monitoring with
sensor networks. Communications of the ACM, 47:34–40,
2004.

[33] T. M. Tran and B. S. Lee. Distributed adaptive windowed
stream join processing. IJDST, 2(2):59–81, 2011.

[34] T. Urhan and M. J. Franklin. Xjoin: A reactively-scheduled
pipelined join operator. IEEE Data Eng. Bull.,
23(2):27–33, 2000.

[35] S. Viglas, J. Naughton, and J. Burger. Maximizing the
output rate of multi-way join queries over streaming
information sources. In VLDB, pages 285–296, 2003.

[36] S. V. Vrbsky and J. W.-S. Liu. Approximate - a query
processor that produces monotonically improving
approximate answers. IEEE Trans. Knowl. Data Eng.,
5(6):1056–1068, 1993.

[37] M. Wang, N. H. Chan, S. Papadimitriou, C. Faloutsos, and
T. M. Madhyastha. Data mining meets performance
evaluation: Fast algorithms for modeling bursty traffic. In
ICDE, pages 507–516, 2002.

[38] Y. Zhu and D. Shasha. Statstream: Statistical monitoring
of thousands of data streams in real time. In VLDB, pages
358–369, 2002.

