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Abstract. Communities’ identification in topic-focused social media users in-
teraction networks can offer improved understanding of different opinions and
interest expressed on a topic. In this paper we present a community detection ap-
proach for user interaction networks which exploits both their structural proper-
ties and intensity patterns. The proposed approach builds on existing graph clus-
tering methods that identify both communities of nodes, as well as outliers. The
importance of incorporating interactions’ intensity in the community detection al-
gorithm is initially investigated by a benchmarking process on synthetic graphs.
By applying the proposed approach on a topic-focused dataset of Twitter users’
interactions, we reveal communities with different features which are further an-
alyzed to reveal and summarize the given topic’s impact on social media users.
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1 Introduction

Events and topics emerging in the real world and social networks influence one another
mutually due to social media users activities which have radically changed information
dissemination and people’s opinions communication. In social media frameworks, such
as in microblogs, event-relevant information (in the form of news broadcasts or opin-
ion snapshots) is directly propagated to the users’ followers but it can be discovered
by other users as well (by public posts). User interaction networks capture users’ as-
sociations derived from their activities in social media such as: commenting on others’
posts, replying to comments, referencing other users, etc. Variation in users’ interaction
frequency or intensity can be captured by the assignment of different strengths to the
networks’ associations, thus resulting in weighted networks. Earlier research has indi-
cated that several types of user interaction networks (such as coauthorship networks
[15], communication networks [12], friendship networks [21]) exhibit a structure of
non random nature and organize around communities. Communities can be generally
defined as groups of users that are ”closely-knit”, in the sense that a group’s intercon-
nections are more dense compared to connections with the rest of the network.

Here we study user communities in social media users interaction networks as
formed around a given theme/topic related to a real-world event. Our focus is on re-
vealing the types of communities generated with respect to certain events by analyzing
them in the dimensions of size, topic diversity and time span. This work builds on the
idea that user interaction strengths are crucial in communities formation and that the
detection and qualitative characterization of communities can lead to a better under-
standing of the impact of real world events on society. To achieve this, both inherent
structural measures and emergent features are needed. These structural properties and



measures are here related to the well-known community detection algorithm SCAN
[22], due to its scalability and its capability to detect hubs and outliers, adapted for
weighted networks.

In summary this work’s main contributions are as next:
– adapts a weighted similarity measure which encompasses both the structural prop-

erties and the weighted connectivity patterns existing in the locality of nodes. This
measure extends structural similarity and brings closer nodes that not only share
common neighbors, but are also connected to them with matching intensities.

– deals with inherent limitations in local structural / density-based community detec-
tion algorithms which characterize SCAN driven approaches. The proposed method
reveals communities in weighted networks based on weighted structure connected
order of traversal [4] and an approximate peak detection approach inspired by [18].

– introduces a community meta-analysis approach that highlights the usefulness of
communities’ detection on user interaction networks to reveal and summarize real
world events’ impact. Our Twitter case study validates the proposed methodology.

2 Related Work

Community detection has been applied to user interaction networks such as e.g. to
the Enron e-mail exchange dataset [19] and coauthorhips networks [15], however few
works have tackled community detection in social media users’ interaction networks
[9, 12]. In social media’s context, community detection has been mainly applied to
friendship networks generated by the declared users’ affiliations [8], resulting in easily-
interpreted groups of users. Thus, interaction networks may be of more complex nature
with their derived communities’ interpretations being non-obvious since interactions
within their members may indicate that they are both aware of each other in the web
world, while also interested in common topics. Important aspects of community detec-
tion in social media are covered in [17] where the need to detect meaningful commu-
nities of nodes as well as identify hub and outlier nodes is highlighted. This require-
ment is addressed in SCAN [22], a community detection algorithm which builds on
the density-based clustering algorithm DBSCAN [6]. While DBSCAN has been widely
used for clustering spatial points based on their density distribution, SCAN operates on
graphs based on a structural similarity measure. The main limitation of DBSCAN and
SCAN is their sensitiveity to the selection of an initial similarity threshold parameter,
whose fine-tuning requires repeated algorithm executions for several parameter values.
An approach to alleviate this limitation in SCAN was given in [20] with the clustering
quality modularity criterion [14] being used to find the optimal parameter’s value.

Alternative efforts to address the problem of DBSCAN and SCAN parameter pro-
duced the so called reachability plots [1, 4], which represent the algorithms’ multiple
clustering outcomes for every possible parameters’ combination. A technique proposed
in [18] operates on reachability plots produced by DBSCAN to automatically deter-
mine significant clusters. Up to now SCAN’s applicability to weighted networks has
only been addressed in [20] where a structural similarity measure for weighted net-
works is proposed, but no explicit experimental results are offered for such networks.
Thus, all previous efforts were tested on limited (unweighted) synthetic or closed-world
networks. Closed-world networks are limited within the scope of a certain ”commu-
nity” (e.g. the Enron email network with internal company email exchanges), when on
the contrary, social media users’ interactions are of an open nature since they gener-
ate networks ”connecting” people of different disciplines and wider scope. Topic- and
event-specific networks can be derived from broader social media generated networks



by keeping as edges only interactions relevant to the given topic/event. Users, in princi-
ple, interact with different intensities, the level of which can be inferred by the interac-
tions’ frequency, duration, etc. Although weighted networks are a natural representation
of such interactions’ intensities, many community detection approaches for real world
datasets, operate on unweighted networks after preserving either all relationships, or
only those whose intensity is above a cut-off threshold. Here, we examine whether
SCAN approaches, which generally have desirable traits for application to user inter-
action networks, can successfully uncover the underlying community structure in real
world networks, or they need to be adapted to leverage the interactions’ intensity. SCAN
and the proposed adaptation for weighted networks WSCAN (i.e. WeightedSCAN) are
evaluated on a series of synthetic networks. The combination of both approaches’ ex-
perimental results with the corresponding intrinsic network properties (the global clus-
tering and weighted clustering coefficients [16]) leads to an empirical criterion for the
selection of SCAN or WSCAN for the network at hand. WSCAN’s limitation of param-
eter selection is also addressed by an automatic approach, AutoWSCAN, which detects
communities from nodes’ weighted structure connected order of traversal, inspired by
[18], and is validated in synthetic and real-world event-centric networks.

3 Proposed Methodology

To generate users’ interaction networks given an event-related topic T , we first aggre-
gate for a given period of time ∆T user activity data from selected social media applica-
tions, then extract the observed interactions Intt, and connect users who have interacted
at least once. An edge connecting nodes u and v is weighted by wu,v =

∑
t∈∆T Intt(u,w) .

To detect communities in user networks embedding interaction strengths, here we adapt
existing SCAN-based algorithms, and propose the use of WSCAN and AutoWSCAN.

3.1 Getting from SCAN to WSCAN

SCAN [22] discovers cohesive network subclusters based on parameters µ and ε, which
control the minimum community’s size and the minimum structural similarity between
two community’s nodes, respectively. Generally, a larger µ value leads to fewer and
larger communities, while a larger ε value to tighter communities and more outliers. Us-
ing structural similarity as a clustering criterion, nodes with several common neighbors
are placed in the same (µ, ε)-core community. To adapt SCAN for weighted interaction
networks we propose weighted structure reachability for (µ, ε)-cores’ detection.

Definition 1 Given a weighted undirected network (G,w), where G = {V, E} and w :
E → R, the weighted structural similarity wS S im of two nodes, u and v, is defined as:

wS S im(u, v) =

∑
k∈Γ(u)∩Γ(v) wu,k · wv,k√∑

k∈Γ(u) w2
u,k

√∑
k∈Γ(v) w2

v,k

. (1)

where Γ(v) is the neighborhood of node v: Γ(v) = {k ∈ V |(v, k) ∈ E} ∪ {v}, wu,v ∈

[0, 1)|u , v; wu,v = 1|u = v .

Definition 2 The ε-neighborhood of a given node u is the subset of its neighborhood
containing only nodes that are at least ε-similar with u:

Nε(u) = {v ∈ Γ(u)|wS S im(u, v) ≥ ε} . (2)



Definition 3 A vertex v is called a (µ, ε)-core if its ε-neighborhood contains at least µ
vertices: COREµ,ε(v)⇔ |Nε(v)| ≥ µ .

Additional nodes are attached to (µ, ε)-cores based on structural connectivity. A node
u is structure-reachable from a core node v if u can be reached from v through a chain
of nodes each belonging to the ε-neighborhood of the previous one. Nodes u and v are
structure-connected if they are reachable from the same core node k. A community is
then defined as a set of structure-connected nodes that is maximal in terms of structure
reachability. Nodes not assigned to any communities, are characterized as either outliers
or hubs depending on whether they are linked to a single or multiple communities,
respectively. For the calculation of wSSim it is important to ensure that all weights are
< 1, since a weight of 1 is used as each node’s self-similarity in the definition of wSSim.
To achieve this, we scale all interactions’ weights before community detection.

3.2 AutoWSCAN

Our experiments with WSCAN showed its high sensitivity to parameter ε. Finding an
ε value that leads to a balanced community structure regarding outliers’ number, coher-
ence, and communities’ separation is, though, tedious. A heuristic approach is proposed
in [22] for selecting the ε value based on the ”knee-point hypothesis” for the µ-nearest
neighbor similarity plot. Thus, our application of this approach to real-world networks
with both the ”unweighted” and weighted structural similarity, did not reveal clear knee-
points at such plots. We rather adopt the structure connected order of traversal which
represents all structure-connected community sets detected in a network for all possible
ε values [4]. To this end, nodes are re-ordered by structure-connected order of traversal
based on weighted core reachability and weighted reachability similarity, defined next.
Definition 4 Given a network (G,w), the weighted core reachability wCS im of node u
is defined as:

wCS im(u) =

{
wS S im(u, µNN(u)), i f |Γ(u)| ≥ µ

UNDEFINED, else , (3)

where µNN(u) is the µ-nearest neighbor of node u.

Definition 5 Given a network (G,w), the weighted reachability similarity wRS im of
node v from node u is defined as:

wRS im(v, u) =

{
max (wCS im(u),wS S im(u, v)) , i f |Γ(u)| ≥ µ

UNDEFINED, else . (4)

Weighted core reachability is calculated for each node, standing for the minimum ε
value that would allow this node to become a core (Alg. 1). Then, each possible core
node u (|Γ(u)| ≥ µ ) is ”visited”, a process that involves finding the node’s neighbors,
calculating their weighted reachability similarity from the current core, and inserting
them at a priority queue based on the wRS im value (or reordering the queue if they have
already been inserted). At each iteration, the node with the highest wRS im value from
any previously visited node is extracted from the queue to ensure that regions of higher
weighted structural similarity are spanned before surrounding areas of lower similarity
[4]. The node visiting order represents the weighted structure connected order of traver-
sal. For a connected network, the algorithm will never return to its first loop, thus, since
thematic social media users’ interaction networks are often disconnected, this is proba-
ble. Our approach is to generate partial nodes’ sequences based on structure-connected
order of traversal for each disconnected component and detect communities in them.
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Fig. 1: Weighted reachability plot for Benchmark 2 with µw = 0.1

The weighted structure-connected order of traversal can be depicted via a reacha-
bility plot, which illustrates, in the corresponding order, the maximum weighted reacha-
bility value of each node from its previously visited nodes (referred to as maxWRS im).
Such a reachability plot is depicted in Fig. 1, where we can observe areas in which the
maxWRS im values steadily rise and then fall at a local minimum to rise again after a
while. Such ”hills” represent different communities, whereas areas of low maxWRS im
values are outliers. Such communities can be revealed by ’slicing’ the plot horizontally
at a selected global similarity threshold, and isolating the regions that lay above it.

Definition 6 Given a sequence of nodes {n1, n2..., n|V |} ordered based on weighted structure-
connected order of traversal, a community is defined with respect to εthres as a subse-
quence of nodes {na−1, na, ..., nb}where 1 < a−1 < b ≤ |V |, iff ∀i ∈ [a, b],maxWRS im(ni) ≥
εthres and [a,b] is maximal.

Since in real world networks communities are usually of different cohesion and
strength, a global εthres will fail to identify communities of different similarity-range
scales. Thus, to detect communities at different (local) ε values, we apply AutoWS-
CAN, an algorithm inspired by [18]. AutoWSCAN (Alg. 2) detects communities as
contiguous areas between two local minima, satisfying some desired properties that re-
flect the way a person would identify communities by observing a reachability plot.
AutoWSCAN gets a weighted reachability plot and first identifies local minima points,
ensuring that they have the lowest value in a subregion centered on them and spanning
2 · µ points. Then, it puts them in a priority queue by increasing value, and iteratively
removes the first point from the queue and uses it to split the input sequence of nodes in
two subregions. A split point is considered valid only if the generated subregions differ
noticeably in their maxWRS im values compared to the split’s value. Thus, we check
that the maximum value in each region is ”significantly” larger than the split point’s
maxWRS im (with use of a minRatio ' 0.7). AutoWSCAN is recursively called for
each subregion whose size is larger than µ (active), and the same process is applied for
the subregion based on the minima points within its span. If there are no more (valid)
minima points or both subregions are inactive, then the current region is a community.

3.3 Benchmarking Framework

Our initial hypothesis that WSCAN and AutoWSCAN are more suited for real world
user interaction networks compared to SCAN needs to be experimentally validated.
Since, to our knowledge, there exist no real world weighted networks with ground truth



Algorithm 1: WeightedSCOT
Input: G = (V, E,w), µ
Output: A sequence of nodes in structure-connected order of traversal.

foreach node v ∈ V do
if v not visited then

Cl=AutoS CAN (orderedList)
Communities.append (cl)
orderedList =null

enqueueNeighbors (v)
if v is core then

while visitQueue in not empty do
currNode = visitQueue.getNode ()
visitNodes.add (curNode)
enqueueNeighbors (curNode)

Function enqueueNeighbors (v)
v.visited = true
orderedList.append (v)
cs = computeWCoreS im (v)
if v is core then

foreach vN in v.neighbors do
if visitedNodes not contains vN then

ss = getWS tructuralS im (v, vN)
newWRSim = min (cs, ss)
if vN.wReachSim is null then

vN.wReachSim = newWRSim
visitQueue.update (vN, newWRS im)

elif newWRSim > vN.wReachSim then
vN.wReachSim = newWRSim
visitQueue.setPriority (vN, newWRS im)

EndFunction

communities, we utilize synthetic networks with planted partitioning of nodes in com-
munities for the algorithm’s evaluation. In specific, we use the well-known LFR bench-
mark graphs [10] since they support weights and possess some important real world
networks’ features (node degree and community size heterogeneous distributions). Our
benchmarking involves the application of WSCAN and SCAN on a series of LFR
graphs generated with different parameters for several linearly increasing values of the
parameter ε, while maintaining the same value for parameter µ. The accuracy of each
run is evaluated by the well known Normalized Mutual Information (NMI) score [5],
which quantifies the closeness between the identified communities and the ground-truth
communities in a scale of 0 to 1 (1 denotes identical assignment of nodes to commu-
nities). For each graph we record the best NMI score achieved and the corresponding ε
value. To assess the performance of AutoWSCAN, we apply it on the same graphs, and
also compare it with a modified implementation for unweighted graphs, AutoSCAN.
The latter follows exactly the same process as AutoWCAN with the exception that is
uses the classic (unweighted) measures of core reachability and reachability similarity.

SCAN-based approaches might characterize some nodes as outliers or hubs and not
assign them to a community, as opposed to the LFR graphs which consider that each
node belongs to at least one community. Since we are not aware of any weighted bench-
mark network with known community structure embedding also outliers and hubs, we
adopt the LFR benchmark graphs and follow a workaround to extract NMI scores. Thus,
upon the algorithms’ execution, we assign i) outliers to the community with which they



Algorithm 2: AutoWSCAN
Input: partialWReachabilityPlot: maxWRS im
Output: Clusters

find localMinima
order localMinima from min to max
pNode.setRange (reachVal (start) , reachVal (end))
return f indClusters (pNode, localMinima)

Function findClusters (treeNode,localMinima)
if localMinima is empty then

ifsizeO f (treeNode) > µ then
treeNode is a cluster
return

lMin = localMinima.pop[
le f tNode, rightNode

]
= split (treeNode, lMin)

remove all points before/after lMin that have
the same wReach value
if sizeO f (le f tNode) > µ then leftNode: active
if sizeO f (rightNode) > µ then rightNode: active
if le f tNode & rightNode inactive

then treeNode is a cluster
foreach activeNode do

find its maximum wReachmax value
if (lMin/wReachmax) > minRatio then

ignore split point
f indClusters (treeNode, localMinima)

actMinima = localMinima in activeNode’s range
findClusters(activeNode, actMinima)

EndFunction

have at least one connection, and ii) hubs to the community towards which they are most
strongly connected based on the (weighted) structural similarity or (weighted) reacha-
bility score for (W)SCAN and Auto(W)SCAN, respectively. This evaluation approach,
although not optimal, reflects as accurately as possible how closely the given algorithm
approximates ground-truth communities.

After obtaining the NMI scores for all approaches, we seek to reason their compara-
tive performance by examining the benchmark graphs’ structural properties. To this end,
we employ two metrics: the global clustering coefficient and weighted clustering coef-
ficient. The global clustering coefficient, CC, expresses the density of triplets of nodes
in a network, where a triplet comprises three nodes connected by two (open triplet) or
three edges (closed triplet). It is defined as 3 times the number of closed triplets (for
each pair of the triangle’s edges) over the total number of triplets at the network, and
its value ranges from 1 for a fully connected network to 0 for random networks with
sufficiently large size. A similar idea is followed by the global weighted clustering co-
efficient, wCC, in weighted networks [16]. By assigning a value to each triplet, wCC
is defined as the sum of all closed triplets’ values over the sum of all triplets’ values.
Four methods have been proposed for the calculation of a triplet’s value: the arithmetic
mean, geometric mean, maximum, and minimum of the weights of the correspond-
ing two edges. Of all four approaches, we select to use the geometric mean since it is
considered the most appropriate for alleviating sensitivity to extreme weights. The def-
inition of wCC implies that for a random distribution of weights in the network, wCC
equals to CC. Here, for each network we calculate the ratio of wCC to CC and observe
the performance of the algorithms when this ratio is greater or lower than 1.



4 Experiments and Results

The proposed approaches, WSCAN and AutoWSCAN, are compared with their un-
weighted counterparts, SCAN and AutoSCAN, in terms of their performance on the
LFR benchmark framework. Our aim is to determine the validity of the proposed meth-
ods and their suitability for graphs that exhibit real world features. Since disregarding
the variability of the intensity of interactions in real world networks is a common ap-
proach, here we try to identify how it affects performance and in which situations it
can be safely followed. We also apply AutoWSCAN to a user interaction network from
Twitter, focused on a real world event-related topic, and identify features of the detected
communities that can be leveraged to gain insights regarding the event’s impact.

4.1 Synthetic Networks

To evaluate the algorithms’ performance, we apply them on four weighted LFR graphs,
whose complexity is governed by the topological mixing (µt) and the network’s weighted
mixing (µw) parameters [10]. Since µt is the ratio of the number of a node’s external
neighbors to the node’s total degree, its increasing values indicate mixed and difficult
to separate communities. µw has a similar effect, since it is the ratio of the sum of the
weights of the edges between a node and its neighbors in different communities to the
sum of the all nodes’ incident edges. Table 1 outlines the parameter combination for
each generated benchmark graph. Benchmarks 1 and 3 refer to graphs with smaller
communities (10-50 nodes per community) compared to Benchmarks 2 and 4 (20-100
nodes nodes per community). Also, graphs of Benchmarks 1 and 2 (with µt = 0.5) have
a more apparent community structure compared to Benchmarks 3 and 4 (with µt = 0.8).
Since we are interested in how weights affect the community detection results, we per-
form runs of SCAN, AutoSCAN, WSCAN and AutoWSCAN for varying values of µw.
Fig. 2 depicts NMI scores for all runs on the four benchmark graphs (with µ = 4).

Table 1: Synthetic Benchmark Graph Specification
n k kmax minc maxc µt

Benchmark 1 5000 20 50 10 50 0.5
Benchmark 2 5000 20 50 20 100 0.5
Benchmark 3 5000 20 50 10 50 0.8
Benchmark 4 5000 20 50 20 100 0.8

As expected, the performance of (Auto)SCAN is invariable with respect to µt for all
benchmarks, since its operation is not affected by changes at the edges’ weights. The
performance of (Auto)WSCAN is satisfactory for the NMI score, since its starts to de-
cay at µw ≈ 0.5. Lower NMI values are expected for high µw values, since, then, the
algorithms characterize more nodes as outliers/hubs and assign them to communities
based on the workaround described in Sect. 3.3. For Benchmarks 1 and 2 the weighted
algorithms perform better than (Auto)SCAN for 0.1 ≤ µt ≤ 0.4, while the correspond-
ing set of graphs exhibit wCC/CC > 1 (as depicted in Fig. 3). For µt ≥ 0.5 unweighted
graphs maintain a good performance for Benchmark 1, whereas they perform poorly for
all graphs of Benchmark 2 (with bigger communities and CC < 0.1). On the contrary,
larger community sizes do not significantly affect (Auto)WSCAN’s performance, since
NMI scores for Benchmarks 1 and 2, as well as for Benchmarks 3 and 4 are similar.
NMI scores from Benchmarks 3 and 4 indicate that the weighted algorithms perform
better for µt = 0.8, rather than for µt = 0.5 (Benchmarks 1 and 2). This may seem
contradictory, however, as explained in [10], when µt < µw inter-communities edges
carry on average more weight, rather than when µt > µw. This is inconsistent with most
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community detection algorithms’ hypothesis that intra-community nodes are connected
with highly-weighted edges. For all graphs of Benchmarks 3 and 4 the unweighted al-
gorithms fail to detect the community structure. An important observation is that for all
these graphs wCC/CC > 1 (except for when µt = 0.8, where wCC/CC = 1). Our re-
sults indicate that the decision of whether to apply (Auto)SCAN or (Auto)WSCAN on a
given network could be based on the ratio of wCC to CC, selecting the first when it is <
1, or the second otherwise. In all cases, the automatic algorithms follow closely the best
performance of their unweighted counterparts. This is a significant outcome consider-
ing the temporal cost induced by the search of the (ε) parameter space in (W)SCAN.
In our experiments, while the selected value for SCAN is ∼0.2 for all graphs, in WS-
CAN it increases for rising value of µw with no common pattern over all graphs. The
selected epsilon value for all runs where WSCAN performs satisfactorily (NMI > 0.5)
ranges from 0.04 to 0.28, it thus appears difficult to estimate it in advance. AutoWSCAN
emerges as a good alternative to WSCAN, since it is independent of this parameter and
performs similarly to WSCAN under the parameter setting leading to the best results.



4.2 Real-World Networks

Our target case-study is to apply community detection in real-world user interaction
networks and identify emergent community structure’s features for the characterization
of real world events based on their impact. For experimentation we have generated a
network based on Twitter user interactions, (i.e. mentions, replies, retweets), extracted
from data collected via the Twitter Streaming API with topic-related keywords. Our se-
lected topic refers to the official Eurogroup meetings (of Eurozone’s finance ministers),
which have attracted major interest due to the recent financial crisis and the Eurogroup’s
role in important decision taking. Our EUROGROUP dataset (covering 8 meetings from
13/06/12 to 30/11/12) acts as an exemplary case study of a series of events held at dif-
ferent time instances, having the same participants with a common generic context (i.e.
the Eurozone’s monetary issues), but different focus (depending on the agenda). The
dataset spans 227 days and comprises: 29529 tweets, 10305 interactions and 3015 dif-
ferent users. Regarding the interactions’ type, retweets span more than 50% of the total
interactions, thus they affect considerably the networks’ shape (star-like forms). Statisti-
cal features such as tweet frequencies, depicted in Fig. 4(a), can be used to obtain some
initial insights for an event’s popularity in Twitter (e.g. more intense activity towards
late November). Here, we are mostly interested in the users’ clustering around such
periods claiming that communities’ emergent features reveal finer aspects of events.
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shows a distribution of the communities in a scale of users’ interest based on their members’ activity on the events’ dates

Before we apply community detection, we normalize all weights and calculate wCC
and CC for the user interaction network, resulting at a ratio of wCC/CC = 1.22. wCC
is, thus, larger than CC implying that the intensities of user interactions are not random
in this network, but play indeed an important role in communities’ formation. There-
fore, based on the observations of Section 4.1 we opt to apply AutoWSCAN for the
detection of communities. AutoWSCAN reveals 67 communities which we further an-
alyze on three feature axes: size, topic diversity, and time span. Size simply refers to the
number of users that are members of a given community, and is indicative of the com-
munity’s popularity. By analyzing the tweets corresponding to intra-community user
interactions, we can infer more refined topics that interest each community’s members.
This analysis involves extracting the text of all inter-community tweets containing in-
teractions between its members, and applying LDA [3] to detect topics within them.



Since LDA requires specifying the number of topics to be detected, we empirically set
this parameter to 100. Each document in LDA is a mixture of various topics with dif-
ferent probabilities. Here, due to the small length of tweets’ text, a tweet is most likely
to belong to a single topic, thus we assign it to the most probable (topic). Then, each
community is characterized by the set of different topics expressed within its relevant
tweets, and is associated with the feature of topic diversity which refers here to the size
of its topic set. Finally, each community’s time span is simply derived by taking the
length of temporal duration covered by its corresponding tweets (at a day granularity).

10
1

10
2

10
3

10
−1

10
0

size value

C
C

D
F

(s
iz

e
)

 

size

loglog fit

slope = − 0.56

(α = − 1.56)

(a)

10
0

10
1

0

0.2

0.4

0.6

0.8

1

topic diversity value

C
C

D
F

(t
o

p
ic

 d
iv

e
rs

it
y
)

 

topic diversity

logx fit

slope = − 0.46

(b)

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time span value

C
C

D
F

(t
im

e
 s

p
a

n
)

 

time span

logx fit

slope = − 0.45

(c)

0 10 20 30 40 50 60 70 80

0

200

400

600

800

1000

1200

1400

1600

1800

topic diversity

s
iz

e

corr = 0.75

(d)

0 10 20 30 40 50 60

0

200

400

600

800

1000

1200

1400

1600

1800

time span

s
iz

e

 

 

corr = 0.76

(e)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

time span
to

p
ic

 d
iv

e
rs

it
y

 

 

corr = 0.98

(f)

Fig. 5: Estimated distributions of the detected communities’ size, topic diversity, and time span are depicted in (a), (b), and
(c), respectively. Scatter plots for pairs of features are depicted in (d) for size and topic diversity, (e) for time span and size,
and (f) for time span and topic diversity.

Figs. 5(a), (b), (c) depict an estimated distribution of communities’ size, topic di-
versity, and time span, using their Complementary Cumulative Distribution Functions
(CCDF), which represents for feature fi the probability P( fi > x). Size’s CCDF exhibits
a slow, power law decay with exponent 0.56, and a p-value of 0.78, indicating good fit.
Thus, it can be derived that communities’ size also follows a power law distribution
with an exponent of α = 1 + 0.56 = 1.56 [13]. Similar results for community size have
been documented in [2]. Careful observation of Fig. 5(a) reveals a knee at ∼538, beyond
which CCDF decays faster. This indicates that there are fewer communities of very
large size in the dataset compared to these dictated by the power law distribution that
fits communities of less that 538 members. Topic diversity and time span do not exhibit
a power law distribution, but they have a logarithmic relationship, since their CCDFs
can be both fitted best by a exponentially decaying line with slope ∼0.45 in a lin-log
plot. Fig. 5(b) reveals that 94% and 50% of the communities cover more that 2 and 3
topics, respectively, while the intra-community topics’ number is best fitted by the ex-
ponential distribution after ftopic = 3. Fig. 5(c) shows that only 46% of the communities
span more than 2 days, indicating that roughly half of the communities are short-lived.

Figs. 5(d), (e), and (f) depict the scatter plots generated for the features of size
& topic diversity, size & time span, and time span & topic diversity, respectively. By
plotting the least-squares line, we get a strong correlation of ∼0.75 for both the size-
topic diversity and size-time span feature pairs, as well as a very strong correlation of
0.98 for topic diversity and time span. These results indicate that larger communities
cover, in general, more topics which was up to a point expected, but they are also active



for a longer duration of time. This might be explained by the assumption that interest
in small communities is focused on specific topics which correspond to a limited time
period, whereas larger communities interact more frequently since they are interested
in multiple relevant events. From both Figs. 5(d) and (e) we can observe that there is
an outlier point at the largest community ( fsize = 1670), which does not exhibit the
expected magnitude in topic diversity and time span. This behavior could be attributed
to the effect of retweets that may cause a significant increase in a community’s size, but
are focused on a single topic and are usually relevant to a single time-limited event.

To understand each Eurogroup meeting’s impact, we associate them with the dis-
covered communities and their features. We assume that each community expresses
interest in an event, thus it is active on it, given that interactions between its mem-
bers are observed on the current/previous/next day of the event. The number of active
communities identified for each meeting are depicted in Fig. 4(a). To qualitatively char-
acterize active communities, we further classify them as small (< 50 members), medium
(50 ≤ members < 200), and large ( ≥ 200 members), and present their distribution for
each event in the same figure. Since in total 6 large communities have been detected,
we can observe that they are all active in 5 out of 8 events, which are also the events
with the most tweets on the day they took place. This observation is inline with our
previous analysis which indicated that larger communities generally cover more topics.
Examination of the most popular events with respect to the tweets’ number (20/11 and
26/11 in Brussels), reveals that although the latter one has attracted the most tweets, the
earlier has more medium active communities. The meeting of 20/11 corresponds to the
failure of European leaders to reach an understanding of how to restructure Greece’s
aid package, thus delaying the next aid tranche, whereas this of 26/11 to the IMF’s
and eurozone’s e40 billion debt-reduction agreement for Greece1. Although appar-
ently more buzz was generated on the day of the later event, it seems that the previous,
a long critical meeting building up tension and failing to reach a result, has attracted the
interest of more large and medium communities combined. The later event, on the con-
trary, has been of interest to more small communities, probably focused on its decision.
By comparing the summer meetings of 21/6 and 9/7, we can observe that although the
first has attracted less tweets than the second, it is related to more active communities.
June meeting’s target was to discuss the latest developments in the eurozone, mainly
in Greece, Spain, Portugal and Ireland, whereas July’s meeting aimed at discussing
EU/IMF’s rescue programs for Spain, Greece and Cyprus2. More topics seem to be in-
volved in the first event which may, up to a point, explain interest’s dispersion in more
communities. Some communities active on June’s meeting might also be interested in
a related topic: the announcement of the successful formation of a new government in
Greece (which happened after a critical long election period associated with the ques-
tion of Greece’s continued eurozone membership), which took place one day before the
event. Communities are also characterized in terms of their interest in the ”Eurogroup”
topic based on the number of meetings on which they are active. We assess interest ex-
pressed within a community in the following scale: constant, intense, specific, random,
based on whether the community is active on 6-8, 3-5, 1-3, or 0 meetings, respectively.
Most communities appear to have specific interest on few meetings, thus, a considerable
percentage of them are indeed focused on the topic (with intense or constant interest).
To identify the most popular topics within tweets, we resort to the following approach.
We form 3 orderings of topics by ranking each topic based on: A) the number of tweets

1 http://blogs.cfainstitute.org/investor/2011/11/21/european-sovereign-debt-crisis-overview-
analysis-and-timeline-of-major-events/

2 http://www.consilium.europa.eu/
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topics, while topics in red/blue correspond to the English/Greek language. Greek topics have been translated in English. (Best
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that express it over all communities, B) the number of communities that are related to
at least one tweet that expresses it, C) the number of communities that are strongly-
related to it. For ordering C, we assign each community to a single topic, i.e. the one
expressed in most of its members’ interactions, and then we rank each topic by the
number of communities assigned to it. A set of 12 unique topics is generated by taking
the top-5 from each ordering. We define 3 topic features: General Intensity (GI), Inter-
Community Popularity (ICP), and Inter-Community Intensity (ICI), which characterize
topics that rank high (here, in the top-5) in ordering A, B, and C, respectively. In our set,
there exist: 3 GI topics (which have the most intense user interest overall), 3 ICP topics
(which reach out to the most communities), and 3 ICI topics (which play a major role in
the most communities). There also exist 3 topics that combine two features, GI & ICP
(attracting intense general interest while also being diffused in several communities),
GI & ICI (attracting intense interest while also being major in several communities),
and ICP & ICI (spanning several dedicated communities). Summaries of all 12 top-
ics are depicted in Fig. 6, where the central hexagons correspond the GI, ICP, and ICI
features, whereas the hexagons adjacent to two central ones represent the correspond-
ing intersection. Topics are also divided based on their terms’ language in English and
Greek, since they are the ones represented in the set. It can be easily observed that all
topics that combine two features (thus are more significant), are in English, indicating
their significant impact on more users and communities. The most important illustrated
topics along with their borderlines highlight users interest permutations.

5 Conclusions

In this work we propose a community detection approach for topic-focused interaction
networks of social media users, which leverages both the structural properties of the
network and the interactions’ intensity. We investigate the role of weights in community



detection approaches based on structural similarity and the possibility to combine them
with automatic parameter selection. Our approach’s correctness is validated on a series
of synthetic networks. Moreover, its application on a real world network combined with
a community meta-analysis process enables us to better understand the dual relationship
between real world events / topics, and community formation.
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