
High performance, low complexity cooperative caching
for wireless sensor networks

Nikos Dimokas • Dimitrios Katsaros •

Leandros Tassiulas • Yannis Manolopoulos

� Springer Science+Business Media, LLC 2010

Abstract During the last decade, Wireless Sensor

Networks have emerged and matured at such point that

they currently support several applications such as envi-

ronment control, intelligent buildings, target tracking in

battlefields. The vast majority of these applications require

an optimization to the communication among the sensors

so as to serve data in short latency and with minimal energy

consumption. Cooperative data caching has been proposed

as an effective and efficient technique to achieve these

goals concurrently. The essence of these protocols is the

selection of the sensor nodes which will take special roles

in running the caching and request forwarding decisions.

This article introduces two new metrics to aid in the

selection of such nodes. Based on these metrics, we pro-

pose two new cooperative caching protocols, PCICC and

scaPCICC, which are compared against the state-of-the-art

competing protocol, namely NICoCa. The proposed solu-

tions are evaluated extensively in an advanced simulation

environment and the results confirm that the proposed

caching mechanisms prevail over its competitor. The

evaluation attests also that the best policy is always

scaPCICC, achieving the shortest latency and the least

number of transmitted messages.

Keywords Wireless sensor networks � Social networks �
Cooperative caching � Cache management �
Replacement policy

1 Introduction

Wireless Sensor Networks [1, 2] (WSNs) emerged during

the last decade due to the advances in low-power hardware

and the development of appropriate software. A wireless

sensor network consists of wirelessly interconnected

devices (each being able to compute, control and com-

municate with each other) that can interact with their

environment by controlling and sensing ‘‘physical’’

parameters. WSNs have fueled a huge number of appli-

cations, such as disaster relief, environment control and

biodiversity mapping, machine surveillance, intelligent

building, precision agriculture, pervasive health applica-

tions, target tracking in battlefields, and so on.

Although there is no single realization of a WSN to

support so many diverse applications, there are some

common characteristics of these networks, that need to be

efficiently addressed in all these applications:

• Lifetime: Sensor nodes rely on a battery with limited

lifetime, and their replacement is not possible due to

physical constraints (they lie in oceans or in hostile

environments) or it is of no interest to the owner of the

sensor network.

This research was supported by the project ‘‘Control for Coordination

of Distributed Systems’’, funded by the EU.ICT program, Challenge

ICT-2007.3.7.

N. Dimokas � Y. Manolopoulos

Department of Informatics, Aristotle University of Thessaloniki,

Thessaloniki, Greece

e-mail: dimokas@delab.csd.auth.gr

Y. Manolopoulos

e-mail: manolopo@delab.csd.auth.gr

D. Katsaros (&) � L. Tassiulas

Department of Computer & Communication Engineering,

University of Thessaly, Volos, Greece

e-mail: dkatsar@inf.uth.gr

L. Tassiulas

e-mail: leandros@uth.gr

123

Wireless Netw

DOI 10.1007/s11276-010-0311-x

• Scalability: The architecture and protocols of sensor

networks must be able to scale up with (or to exploit)

any number of sensors.

• Data-centric networking: The target of a conventional

communication network is to move bits from one machine

to another, but the actual purpose of a sensor network is to

provide information and answers, not simply connections.

Therefore, each sensor needs to construct responses to

quite complex queries whose processing may involve the

cooperation with many neighboring sensors, as the

following example demonstrates.

Consider for instance a sensornet deployed in a modern

battlefield, with sensor nodes dispersed in a large area;

each sensor node is equipped with a micro-camera that can

take a photograph of a very narrow band around its posi-

tion. The sensors update the photographs they take (storing

a prespecified number of the immediate past images, so as

to be able to respond to historic queries), and share (on

demand) with each other the new photographs, in order to

built a more complete view of the region that is being

monitored. The sharing is necessary because every micro-

camera can capture a limited view of the whole region,

either due to the sensor node’s position or because of the

obstacles that exist nearby the sensor node. Therefore,

every sensor may request and receive a large number of

photographs taken by some other sensor(s) through multi-

hop communication. Afterwards, each sensor is able to

respond to queries about ‘‘high-level’’ events, e.g., enemy

presence.

In this hostile environment, it is obvious that sensor

battery recharging is not a trivial task. Also, the location of

the sensors has not been decided by some placement

algorithm (the sensors were dropped by an unmanned air-

craft), and the communication among them is strictly

multihop.

The vast majority of applications running over WSNs

require the optimization of the communication among the

sensors so as to serve the requested data in short latency

and with minimal energy consumption. The battery life-

time can be extended if the ‘amount’ of communication is

reduced, which in turn can be done by caching useful data

for each sensor either in its local store or in the near nei-

gbhborhood. Additionally, caching can be very effective in

reducing the need for network-wide transmissions, thus

reducing the interference and overcoming the variable

channel conditions. The cooperative data caching has been

proposed as an effective and efficient technique to achieve

these goals [3–5] (for more details cf. Sect. 2).

The fundamental aspect in all the proposed cooperative

caching schemes for sensor networks is the identification of

the nodes which will implement the aspects of the coop-

eration concerning the caching decisions, i.e., towards

which nodes will the data request will be forwarded? which

nodes will decide about which data will be cached in which

nodes? and so on.

1.1 Motivation and contributions

The early proposals for cooperative caching in WSNs and

mobile ad hoc networks [5, 6], did not pay particular

attention to the selection of nodes that will have special

roles in the cooperation protocol. The work [3] pointed out

the singificance of the careful selection of these nodes; it

was argued there, that these nodes should be ‘‘central’’ in

the sensornet topology. Based on this, the authors proposed

a cooperation scheme where the sensors with special role

were selected based on their ability to influence the com-

munication between pairs of other nodes, e.g., when these

sensors lie in the communication path of the pair of nodes.

This ability was quantified by calculating the Node

Importance index— NI for each sensor, which is a local-

ized version of the well-known betweenness centrality

index [7] used in social network analysis.

Nevertheless, the NI metric suffers from the following

disadvantages:

– Its computation by a sensor requires detailed knowl-

edge of the connectivity of the sensor’s one-hop

neighbors, i.e., the sensor must exchange the set of its

one-hop neighbors with every one-hop neighbor; thus

more and larger packets travel in the network.

– The calculation of NI index, although quite fast, is not

a O(1) complexity operation, which might be an issue

when the sensornet topology changes quite fast.

– The NI index might be misleading, since it is affected

a lot by the existence of isolated nodes in the borders of

the network (this issue will be explained in Sect. 5.1

with an example).

– Poor robustness, since the removal of a single node

might change significantly the ‘influence’ values of

many other neighboring nodes, and consequently the

performance of the protocol.

– When the NI index is calculated over wider neigh-

borhoods, and not simply for the two-hop neighborhood

of a sensor node, it might change singificantly, since

more connections and nodes come into play.

Motivated by the aforementioned shortcomings, this

article proposes two new metrics to evaluate the signifi-

cance of a sensor to undertake special roles in the coop-

eration, and based on these it describes the new cooperative

caching protocols respectively. In particular, the article

makes the following contributions:

– It describes a new centrality metric for sensor nodes,

the l-power community index (l� PCI), which is

Wireless Netw

123

more informative than the node degree, it is more

robust and computed faster compared to NI ; in

addition, it is not affected by any isolated nodes.

– It describes a scaled version of the l� PCI (scaPCI),

that improves the selection of the sensors with special

role. The new metric requires the same communication

cost with NI in order to be calculated, but it is more

robust than l� PCI and NI ; in addition it is not

affected by any isolated nodes;

– It develops two new cooperative caching1 protocols for

WSNs, the PCICC (PCI Cooperative Caching) and

scaPCICC; these protocols are compared against the

state-of-the-art protocol via simulation analysis.

The rest of this article is organized as follows: In Sect. 2,

we review the related work, and in Sect. 3, we describe the

problem been addressed in the current article. Section 4

describes the network model, i.e., any assumptions made in

the present work; in Sect. 5 we describe the new centrality

metrics and the components of the proposed cooperative

caching protocols. Section 6 presents the simulation envi-

ronment that was built to investigate the performance of the

proposed protocols, and also describes the experiments and

obtained results after the comparison of the protocols with

the competing state-of-the-art scheme, and finally Sect. 7

conludes the article.

2 Related work

Caching is a significant technique to improve the perfor-

mance of wired and wireless networks. Cooperative cach-

ing has attracted significant attention in the literature

concerning various types of distributed systems: the Web

[9], file servers [10], cellular networks [11], and so on.

Nevertheless, the very limited capabilities of sensor nodes

(in terms of energy, storage, and computation), the par-

ticularities of the wireless channel (variable capacity), and

the multi-hop fashion of communication, turns the solu-

tions proposed in the aforementioned environments of

limited usefulness.

In the context of wireless sensor networks and ad hoc

networks, it is beneficial to cache frequently accessed data

items not only to reduce the average query latency, but also

to save wireless bandwidth and extend the battery lifetime.

A number of data replication schemes [12, 13] and caching

schemes [5, 14] have been proposed in order to facilitate

data access in mobile ad hoc networks (MANETs). Hara

[12, 13] proposed a number of replica allocation techniques

to increase data accessibility in MANETs. According to

overall network topology and access frequency, the

replicated data items are relocated periodically. However,

these techniques normally require a priori knowledge of the

network topology, a significant communication overhead

and energy dissipation in order to relocate data items

periodically and to preserve the consistency of data items.

In distributed systems over wireless networks based on

multihop communication, cooperative caching has been

proven a very efficient strategy to shorten the communi-

cation latency and conserve energy. Nuggehalli et al. [15]

addressed the problem of energy-conscious cache place-

ment in wireless ah hoc networks, and [16] considered the

cache placement problem of minimizing total data access

cost in ad hoc networks with multiple data items, and

presented a polynomial-time centralized approximation

algorithm to attack the problem, since it is NP-hard. Sim-

ilarly, the work in [17] adresses the problem of cache

placement in wireless sensor networks by constructing a

static multicast tree based on the Steiner tree concept.

Though all these works address static cache placement

issues, and are not strictly relevant to our problem, which

implies dynamic sensornets. The work in [18] describes

some techniques to reduce energy conservation in sensor-

net; one of them, namely data vanishing, resembles an

emulated cache in the sense that while data are moving

from the origin sensor to the sink (base station) via an

aggregation/routing tree, the duplicate data are discarded.

Still these techniques have no relation to the traditional

concept of cooperative caching that we address here.

Finally, the recent work reported in [19] addresses prob-

lems of cooperative caching in sensornets, but the proposed

protocols tightly integrate consistency policies, which fall

beyond the scope of this article (the interested reader can

read a companion paper [8]).

2.1 Cooperative data caching in WSNs

In [20], the proposed strategy uses flooding technique to

discover the nearest node that cached a copy of the

requested data item. Although flooding may reduce the

response delay, it imposes a communication overhead in

terms of large number of messages that are being broad-

casted. The authors try to reduce the overhead performing a

limited flooding to nodes within k hops from the requester

node, where k is the number of hops from the requester

node to the data center. However, the communication

overhead is still high when either the k is large or the

network density is high.

A protocol based on maintaining detailed history (source

and position of every ‘‘passing’’ datum) in nodes of a

MANET and defining cooperation zones (setting a

parameter z) has been proposed in [21], namely COOP.

Each node maintains a table where previously received

1 The issues pertaining the cache coherence aspect are discussed

in the companion paper [8].

Wireless Netw

123

requests are recorded. Initially, a node checks its table after

its local misses and before flooding a request. If matching

entries are found, the node compares its distances to these

matching caches and the original data source, and selects

the closest node to redirect the request. In case of table

miss, the requester node is using an adaptive z-hop flooding

technique. If adaptive flooding also fails, the request is sent

to data center. The proposed protocol [21] is unscalable

due to the difficulty of properly configuring the parameter

z and the cache space that is required for the requests table.

It also suffers from a big communication overhead due to

its flooding technique, especially in large and dense net-

work topologies. In a recent work [22], the authors of

COOP significantly improved upon the original scheme, by

not exceeding neighborhood radius values beyond 3. Still,

the long chain of resolution stages (about 6) jeopardizes the

worst-case performance of the protocol. The flooding

technique is also used in [14], where flooding is limited by

imposing a threshold on the route existence probability.

As a query packet is forwarded through a multi-hop com-

munication path, its route existence probability decreases.

However, defining an appropriate existence probability is

topology-dependent.

Cooperative caching strategies in hybrid mobile ad hoc

networks (i.e., with the presence of Access Points) are

described in [23]. The authors proposed a cache for Inter-

net-based MANETS (IMANET) where, by caching the

data items in the local caches of the mobile nodes and

making them available to other mobile nodes, members of

the IMANET can efficiently access the data items. Thus,

the aggregated local caches of the mobile nodes can be

considered as a large, unified cache for the IMANET. The

work reported in [6] considered cache replacement issues

for wireless ad hoc networks but in the context of a very

limited form of cooperation; a node which requests a data

searches either in its local cache or in the caches of its one-

hop neighbors (otherwise forwards the request to a ficti-

cious data center). Thus, the authors try to analyze the

impact of energy on cache replacement and propose an

energy-efficient cache replacement policy based on coor-

dinated replacement.

In ECOR [4], each mobile node forms a cooperation

zone (CZ) with mobile nodes in proximity by exchanging

messages to share their cached data items in order to

minimize bandwidth and energy cost for each data retrie-

val. When a data request arrives, the node first searches the

data in its CZ before forwarding the request to the data

center. The authors developed an analytical model in order

to determine the optimal radius of the cooperation zone

based on mobile node’s location, data popularity and node

density. According to ECOR, each node broadcasts every

modification of the cached data items to nodes that belong

to its cooperation zone. Each node maintains a cache hint

table for the cache information of all nodes in its proximity.

However, ECOR exhibits a great number of exchanged

messages and energy consumption in case of large node

density and big cooperation radius. There is also a draw-

back in terms of communication overhead in case of big

cooperation radius when a node incorrectly redirects a

request packet to a node in its proximity.

In order to further save bandwidth for each data retrie-

val, PReCinCt [24] incorporates a novel cooperative

caching scheme that caches relevant data among a set of

peers in a region. The authors define a new cache

replacement policy by considering not only each peer’s

own access frequency but also the importance of data items

to other peers in the same region. The proposed caching

strategy, Gready-Dual Least Distance (GD-LD), uses a

utility function to evaluate the importance of each data

item based on a combination of three factors: the popularity

of the item in the region, size of the item, and the region

distance between the requesting and responding peers.

Yin and Cao [5] design and evaluate three cooperative

caching schemes to efficiently support data access in MA-

NETs and reduce query delay. In CacheData, the interme-

diate nodes may cache frequently accessed data items to

serve future requests. In CachePath, the intermediate nodes

may cache the path to a nearby requester node while for-

warding the data and use the path information to redirect

future requests to the nearby caching node. CachePath

records the path when it is closer to the caching node than

the data center. A hybrid protocol HybridCache was also

proposed, which improves the performance by taking the

advantages of CacheData and CachePath schemes while

avoiding their weakness. In HybridCache, when an inter-

mediate node forwards a data item, it caches the data or the

path based on some criteria. These criteria include the data

item size, the time-to-leave of the data item and the number

of hops that a cached path can save, denoted as Hsave. This

value is the difference between the distance to the data

center and the distance to the caching node. Hsave must be

greater than a system tuning threshold. One drawback with

these methods is that caching information of a node cannot

be shared if the node does not lie on the path between the

data requester and the data source. Moreover, the threshold

values used in these heuristics must be set carefully in order

to achieve good performance. The HybridCache was proved

inferior to NICoCa, described in [3] which took special

consideration to select appropriate ‘‘central’’ nodes to carry

out and coordinate the cooperation.

The NICoCa protocol [3] is based on the definition of a

metric which quantifies for each sensor node how much

‘‘control’’ it can exert on pairs of cooperating nodes,

assuming that these nodes use shortest paths-based com-

municating protocols. This metric is based on the well-

known concept of betweenness centrality, and it is actually

Wireless Netw

123

a localized version of it. Each sensor node gets an ‘‘influ-

ence value’’, i.e., a number which represents the percentage

of shortest paths between pairs of neighboring nodes that

pass through this node. Then sensors with high ‘‘influence’’

are identified as the mediators which coordinate the cach-

ing and request forwarding decisions. The NICoCa proto-

col has a discovery and a cache replacement component to

address the respective needs.

2.2 Research in centrality metrics

The research on centrality metrics has a fourty years his-

tory [7], when centrality metrics, such as the degree,

closeness and betweenness centrality were introduced.

Later, the concept of spectral centrality—based on the

adjacency matrix spectrum—was investigated [25, 26], and

more recently, amalgamation of earlier centrality metrics

have been proposed [27, 28]. The literature on centrality

metrics is quite large to be listed here, but we have to

emphasize that new concepts are needed so as to be used in

the design of communication protocols.

3 Problem description and protocol design

requirements

In the online cooperative caching problem there are sev-

eral goals that need to be optimized, such as energy

consumption, access latency, number of copies of items to

different caches so as to avoid waste of the aggregate

cache space, and so on. These goals are often conflicting;

for instance, in order to avoid waste of the aggregate

cache space, a node is restricted from caching an item

even though it has a relative high access rate for that item

(a fact that would imply caching that item). Therefore, it

is rather unfeasible to formulate the online cooperative

caching problem using a single equation that would

encompass all these factors. Alternatively, we prefer to

express it as an optimization problem with the goal of

optimizing one of these metrics, i.e., access latency and

making a ‘best-effort’ for the rest of the factors. Thus, we

provide the following formulation for the cooperative

caching problem.

Given an ad hoc network of sensor nodes G(V, E) with

|dataID| data items D1;D2; ;DjdataIDj, where data item Dj

can be served by a sensor SNo, a sensor may act as a server

of multiple data items and has capacity of |mo| units. We

use aij to denote the access frequency with which a sensor

SNi requests the data item Dj and dil to denote the distance

(in hops) between sensors i and l. The cooperative caching

problem is an online problem, with the goal being the

selection of a set of sets M � fM1;M2; ;MjdataIDjg, where

Mj is a set of sensors that store a copy of Dj, to minimize

the total access cost:

sðG;MÞ ¼
X

i2V

XjdataIDj

j¼1

aij �minfSjg[Mj
dil ð1Þ

and fulfilling the memory capacity constraint that:

jfMjji 2 Mjgj�mi for all i 2 V :

Since earlier work [3] suggested that the smart selection

of the so-called ‘mediator’ nodes is a crucial factor in

addressing energy and latency considerations, one of the

aims of the present work is to design centrality metrics to

help us in the selection of the mediator nodes which will be

robust and easy to compute (without the need of complex

calculations or many rounds of message exchanges).

The primary performance metrics that we are interested

in optimizing are access delay and energy consumption.

4 Network model

We assume a WSN consisting of N sensors; no assumptions

are made about the network diameter and/or network

density. We consider only the following generic properties

of the WSN:

– Sensor nodes are static, the communication links are

bidirectional, and sensors communicate in a multi-hop

fashion.

– The computation and communication capabilities are

the same for all network nodes, and sensors do not need

GPS-like hardware.

– Sensors use a routing protocol (e.g., AODV) to send

requests to source nodes. Each sensor node has a cache

space of C bytes, and calculates its power community

index (PCI). The neighboring nodes with the biggest

PCI values are set as community caching nodes.

Therefore, a node can be in two states: ordinary or

community caching node (CCN).

– Similarly to [3, 5] and without loss of generality, we

assume that the ultimate provider of the data items is a

Data Center. Thus, every request can be satisfied even

if a datum has been evicted from the caches of all

sensors. The existence of the Data Center does not

affect the protocols’ performance; serves only the need

to avoid having ‘‘failed’’ requests.

5 The new cooperative caching schemes

In our earlier discussion, we emphasized the impact of the

selection of the sensors to assign to them special roles in

Wireless Netw

123

the cooperation, and, consistently with the findings in [3],

we set as our target the discovery of the sensors that are

more ‘‘central’’ in the sensornet. The quest for such nodes

has been described also in [29]. The ‘central’ nodes are

able to control the communication among others: for

instance, (a) in routing protocols for sensornets, such nodes

can be selected to forward the packets because, due to their

position, they will succeed in reducing the routing latency,

(b) in disconnection-tolerant mobile sensor networks, such

nodes can be selected as data mules to carry messages,

until they find the chance to pass these messages to sensors

which are closer to the packets’ final destination, and so no.

Therefore the significance of such central sensors varies

depending on the application and the protocol, and thus we

use the word ‘influence’ to depict the ability of the central

nodes to affect (usually for optimization purposes) the

communication among other sensors. As another example,

assume that we need to elect a ‘leader’ in a network to send

notifications to or to receive alarms from all other nodes of

the network within small delay. For such purposes we

would select a node whose hop distance to all other net-

work nodes is the smallest. Such an indication is offered by

the closeness centrality metric.

On the other hand, the notion of centrality is susceptible

to many interpretations; the NI index proposed one such

interpretation, with the disadvantages recorded in Subsect.

1.1 Here, we follow a different route and define a new

centrality index as an amalgam between the NI index and

the sensor node degree. The next subsection provides its

definition, whereas Subsect. 5.2 describes an enhanced

version of the centrality index. Finally, Subsect. 5.3

describes the components of the cooperative caching

protocol.

5.1 The power community index

We model our WSN as a graph G(V, E), where V is the set

of sensor nodes SN1, SN2,…, and E � V � V is the set of

radio connections between the nodes. The existence of a

link (u, v) [E also means that (v, u) [E, and that sensor

nodes u and v are within the transmission range of each

other, in which case u and v are also called one-hop

neighbors of each other. The degree Di of a sensor node

SNi is the number of direct connections (links) of SNi to

other sensors. The sensor network is assumed to be in a

connected state.

In some cases, the sensor degree has been used as a

measure of centrality. Looking at Fig. 1, we see that the

nodes 3, 4, 7, 6 are equally central with respect to their

degree; they all have a degree equal to 4. In addition, if we

compute the betweenness centrality for each sensor in the

whole graph, then node 7 is the most ‘‘central’’, followed

by nodes 3,4 and then comes node 6. This is somehow

counter-intuitive, since node 6 has all network nodes at its

vicinity (at a distance two-hops away). Starting from this

observation, we propose a new centrality metric, called

the l-Power Community Index (l� PCI), defined as

follows:

Definition 1 The l-Power Community Index of a sensor

v is equal to k, such that there are up to l 9 k sensors in

the l-hop neighborhood of v with degree greater than or

equal to k, and the rest of the sensors with in that neigh-

borhood have a degree less than or equal to k.

Note that while calculating the degree of sensors which

reside within the region defined by the l-hop neighborhood

of sensor v, it is possible that to this degree can contribute

connections (links) to sensors outside of this region. Such

cases are not precluded by the above definition, and as a

matter of fact should not be precluded, since the definition

tries to discover the sensors that can exert the maximum

‘‘influence’’ to other sensors.

It is clear that sensor nodes which have more connec-

tions (larger degree) are more likely to be ‘‘powerful’’,

since they can directly affect more sensor nodes. But, their

power depends also on the degrees of their one-hop

neighbors. Large values for the l� PCI index of a sensor

v indicate that this sensor v can reach others on relatively

short paths (just like the NI index), or that the sensor v lies

on a dense area of the sensor network (just like the indi-

cation provided by the sensors degree).

Since our target is WSNs applications, we are interested

in a localized version of this metric; setting l = 1, we

have the plain Power Community Index (PCI), defined as:

Definition 2 The Power Community Index of a sensor v,

PCI(v), is equal to k such that there are no more than k one-

hop neighbors of v with degree k or more, and the rest of

the one-hop neighbors of v have a degree k or less.

With this definition in mind, we see in Fig. 1 that

PCI(7) = PCI(4) = 2, whereas PCI(6) = PCI(3) = 3.

Calculation of the PCI indexes for a larger graph is shown

in Fig. 2.

5(0)

4(8)

7(13)
6(7)

8(0)

9(0)

1(0)

2(0)

3(10)

Fig. 1 The NI indexes (the numbers in parentheses) for a small

sample graph

Wireless Netw

123

Apparently, when computing the l� PCI indexes for

each sensor, we obtain a very informative picture of which

sensors reside in significant positions of the network.

However, due to energy and bandwidth constraints

imposed by a WSN, our efforts focus on the localized

distributed computation of l� PCI , i.e., the PCI . It is

very easy to confirm that, even when we calculate the PCI
of the sensors, the picture about the relative significance of

the sensors remains very accurate. Thus, we consider only

the PCI index of a sensor, in order to maximize the

communication and energy savings.

The definition of PCI offers some great advantages,

because the sensors, in order to compute their PCI , need to

exchange only only their degrees, and not detailed con-

nectivity. Recall that the NI index [3] is based on the

discovery of the number of shortest paths that are passing

through each sensor. In order to calculate the NI index,

each sensor needs the one-hop neighborhood of each and

every one-hop neighbor; thus the calculation of the NI
includes three steps: (a) initially, each node broadcasts its

ID; (b) then, each sensor broadcasts the IDs of its one-hop

neighbors; and, (c) each node calculates the shortest paths

for its local network and decides about the important

nodes. However, the calculation of PCI requires that at the

second step each sensor broadcasts only an integer number

(i.e., its degree), and at the third step no need for sophis-

ticated computations are need. Thus, the calculation of

PCI imposes less communication and computational cost.

5.2 The scaled power community index

It is obvious that a sensor node is powerful and can

influence many other sensor nodes when the degrees of

their one-hop neighbors are large. In this case, large values

for the PCI of a sensor node v indicate that this sensor

node v can reach others on relatively short paths, or that the

sensor node v lies on a dense area of the sensor network.

Although the PCI is a very useful metric with low com-

putational and communication cost, it cannot always depict

the significance of a node. The PCI of a sensor node v is

calculated based on the degrees of sensors that are one-hop

neighbors. However, the degree of a sensor may comprise

connections (links) to sensors that are also one-hop

neighbors of v. It is clear that PCI calculation can be

affected by connections that are established among one-

hop neighbors of a sensor node v. In this case, sensor node

v does not influence many other sensor nodes, since the

majority of sensor nodes are inside the communication

range.

Looking at Fig. 3, we see that sensor node A has the

same PCI value for both topologies, since nodes

B, C, D, E, have the same degree; nodes B, C have degree

equal to 4, while node D has degree equal to 5 and node

E has degree equal to 6. Thus, the PCI value of node A is

equal to 4 for both topologies. This is somehow inaccurate,

since node A has at its vicinity (at a distance two-hops

away) 7 nodes in the left topology and 16 nodes in the right

topology. This result demonstrates that PCI cannot always

capture the importance of a node, and this happens when

cliques exist.

A clique of a graph is a subgraph such that all nodes of

this subgraph are connected to each other. The existence of

cliques in a graph is quantified by the clustering coefficient.

The clustering coefficient [30], provides local information

and is calculated as:

CðvÞ ¼ 2� Lv

dv � ðdv � 1Þ : ð2Þ

where dv is the degree of node v and Lv is the number of

links among the dv neighbors of node v. The clustering

coefficient of the whole network is the average of all Cv’s.

It is obvious, that small values of C(v) indicates that one-

hop neighbors of node v have a few connections among

them.

V(2)

K(5)

M(6)

N(6)

A(3)

B(3)

C(3)

D(4)

E(4)

F(3)

G(3) H(3)

I(3) J(4)

O(5) P(5)

Q(2)

R(5)

S(5)

L(6)

T(2)

U(1)

W(2)

Fig. 2 Calculation of PCI
for a sample graph. Each node is

characterized by a pair of

IDðPCIÞ

Wireless Netw

123

Starting from the above observation that PCI cannot

always indicate the importance of a sensor node and taking

into account the clustering coefficient technique, we pro-

pose a new centrality metric, called the scaled Power

Community Index (scaPCI), defined as follows:

Definition 3 The scaPCI(v) of a vertex v is equal to:

scaPCIðvÞ ¼ PCIðvÞ
CðvÞ : ð3Þ

The scaPCI is less complex to calculate than NI and it

offers more advantages compared to PCI , since its

implementation is simple and the computational cost low.

Although the PCI has a lower communication cost, the

detailed connectivity that is being broadcasted by each

sensor in scaPCI results in a more accurate selection of

nodes that will have special roles in the cooperation

protocol. The scaPCI calculation include three steps (like

NI): (a) initially, each node broadcasts its ID; (b) then, each

sensor broadcasts the IDs of its one-hop neighbors; and, (c)

each node v calculates the scaPCI(v). However, the scaPCI

like PCI performs better than NI, since NI is affected a lot

by the existence of isolated nodes in the borders of the

network. Calculation of the scaPCI indexes for a large

graph is shown in Fig. 4.

5.3 The scaPCICC and PCICC protocols

Apparently, the centrality metrics introduce earlier could

have been incorporated into existing cooperative caching

protocols, e.g., [3] which make use of mediator-type nodes

to coordinate the caching decisions. But, their robustness

and ease of calculation (both in terms of computation time

and it terms of the number of message exhanges) allow for

the desing of protocols which can be slightly more complex

e.g., in the replacement decisions or in the coordination of

neighborhoods by message exhanges, so as to further

improve the performance of the protocols. Thus, it is worth

striving for ‘better’ protocols, instead of ‘pluging’ these

metrics into earlier works. In any case though, these

metrics are of independent interest and we feel that they

can be used for message carrying in delay-tolerant net-

works, in vehicular networks.

In the rest of this subsection we describe the details of

the proposed cooperative caching schemes; i.e., the meta-

data kept at each sensor, the algorithm for the selection of

the sensors which will coordinate the caching decisions, the

forwarding of data requests, the cache replacement policy

and the cache admission strategy. The two protocols follow

the same principles except that PCICC calculates the PCI
metric and scaPCICC calculates the scaPCI metric. In the

following of this subsection we will present the whole

operation of the scaPCICC protocol and explain only the

different operations of PCICC.

At the very first step, it is supposed that each sensor is

aware of the number and identity of its one-hop neighbors;

this is achieved with the exchange of ‘‘HELLO’’ messages.

Then, each node of the sensor network broadcasts its one-

hop neighbors to its neighborhood. Thus, each node can

obtain the list of its one-hop neighbors and the one-hop

neighbors that each neighboring node has. The only dif-

ference between the scaPCICC and the PCICC protocol is

that each node of the sensor network executing PCICC

protocol broadcasts only its degree to its neighborhood.

The information that is being broadcasted is only two

numbers; the sensor identifier and its degree. Therefore,

each node can obtain the list of its one-hop neighbors and

the degree that each neighboring node has. We assume that

we are able to determine an assignment of time slots to the

sensor nodes such that no interference occurs, i.e., no two

nodes transmit in the same time slot. Such a scheme can be

found using the D2-coloring algorithm from [31].

When each sensor has gathered the ‘‘connectivity’’

information for its neighborhood, it then calculates and

broadcasts its scaPCI. According to PCICC every sensor

node calculates and broadcasts its PCI . This is because

each node needs the scaled Power Community Indexes

(Power Community Indexes for PCICC, respectively) of

neighboring nodes in order to characterize some of its

neighbors as community caching nodes (CCNs). This

H

A

B

C

D

E

F

G

J

D F

A

B

C

E

G
H

I

K

L

M

N

O
P

Q

Fig. 3 An example of

misbehavior of PCI . In both

cases PCI of node A has the

same value, while in the right
figure the number of nodes that

it can influence are significant

more, than those in left figure

Wireless Netw

123

means that a node is a CCN for a specific set of nodes and

not for any node in the network. This in turn means that in

the worst case, every node could be a CCN for some other

node; fortunately due to the properties of the centrality

metrics this can not happen, because ‘central’ nodes are

seen as such by the majority of their neighboring nodes.

A sensor node v specifies its CCNs as the minimum set of

its one-hop sensors, with the larger scaPCI values, which

‘‘cover’’ the two-hop neighborhood of node v. In other

words, the sensor v constructs a minimum dominating set

for its two-hop neighborhood (using the scaPCI value for

making selections); the CCNs are the sensors which

belong to this dominating set and are notified by the node

itself. Apparently, there is no need for the node to know

the ‘‘importance’’ of its neighbors with respect to the

whole network; instead the node needs to know their

importance in its neighborhood.

It is supposed that each sensor is aware of its remaining

energy and of the free cache space; Additionally, each

sensor node stores the following data/metadata:

– The dataID, the actual data item, and its access rate.

– The latency to obtain an data item (using exponential

smoothing).

– The size Sizei of datum i.

– A TTL interval (Time-To-Live) for each datum.

– For each cached item, the timestamps of the K most

recent accesses to that item (usually, K ¼ 2 or 3).

– Each cached item is characterized either as O

(i.e., own) or H (i.e., hosted). If an H-item is requested

by the caching node, then its state switches to O.

– Each O cached item is also identified as community (it

derived from the two-hop neighborhood) and network

(it derived outside the two-hop neighborhood).

scaPCICC uses a cache discovery algorithm (described

in the next two paragraphs and exemplified in Fig. 6) to

find the node who has cached the requested datum.

When a sensor node issues a request for a data item, it

searches its local cache. If the item is found there (a local

cache hit), then the K most recent access timestamps are

updated. Otherwise (a local cache miss), the request is

broadcasted and received by the CCNs. If none of them

responds (a ‘‘community’’ cache miss), then the request is

routed to the Data Center. Although, this store-process-

forward mechanism may impose an enormous worst-case

performance, this approach will work better when the

cooperation and the replacement policy are effective, since

it will drastically reduce a surge of messages travelling in

the network that are practically unnecessary in the case

when the requested item is already stored in the neigh-

borhood of the requesting node.

When a a CCN that is not in the requestor’s neighbor-

hood intercepts a request, it searches its local cache. If it

deduces (CCNs maintain local indexes) that the request can

be satisfied by a neighboring node (a remote cache hit),

then stops the request’s route toward the Data Center, and

forwards the request to this neighboring node. If more than

one nodes can satisfy the request, then the node with the

largest residual energy is selected. If the request can not be

satisfied by this CCN, then it forwards the request toward

the Data Center. Figure 5 shows the behaviour of scaP-

CICC protocol for a node’s request. In summary, for every

request issued by a sensor, one of the following four cases

may take place:

1. Local hit (LH): The requested data item is cached by

the node which issued the request. If this data item is

valid (the TTL has not expired) then no further action

is taken.

2. ‘‘Community’’ hit (CH): The requested data item is

cached by a node in the two-hop neighborhood of the

node which issued the request. In this case, the CCN(s)

return to the requesting node the ‘‘location’’ of the

node which stores the data item.

E(8.59)

Q(2)

W(2)
V(2)

B(3)

D(6)

F(10)

G(4.5) H(9)

I(9)

K(10.5)

A(3.59)

J(5.72)

L(8.84)

M(8.84)

N(8.84)

P(6.81)

R(8.07)

S(5.55)

T(12)

O(6.81)

U(1)C(3.59)

Fig. 4 Calculation of scaPCI
for a sample graph. Each node is

characterized by a pair of

ID(scaPCI)

Wireless Netw

123

3. Remote hit (RH): The requested datum is cached by

some node, and this node has at least one CCN

residing along the path from the requesting node to the

Data Center.

4. Global hit (GH): The requested data item is obtained

from the Data Center.

When a node receives the data item that has requested

for, then it caches it and broadcasts a small index packet

containing the dataID and the associated TTL, its remain-

ing energy and its free cache space. The CCNs which are

also one-hop neighbors of this node store this broadcasted

information. Every CCN stores the remaining energy and

the free cache space for each one of its one-hop neighbors,

and for each dataID that it has heard through the broad-

casting operation, the TTL of this datum and the nodes that

have cached this datum.

Figure 6 illustrates an example of the cache discovery

phase. Here, the sensor node G is assumed to contain in its

local cache the data item di that sensor node Q has

requested. Additionally, the sensor nodes E, F and H are

CCNs of G, while sensor node O is a CCN of Q. Initially,

node Q sends the request to its CCN. The CCN performed a

community search and in case of community cache miss a

failure message is returned to requester node and node

Q sends the request to the Data Center (node A). When an

intermediate node receives a request packet, it searches in

local cache and in community cache table. If the data item

is not found, the request is forwarded through the path to

the Data Center. Finally, node F receives the request and

the requested data item is discovered in community cache

table. The request is redirected to caching node G, and a

reply message is sent back to the requester node.

5.3.1 The cache replacement component

The scaPCICC protocol utilizes an effective and efficient

replacement policy in order to manage the cache space

properly. A cache replacement policy is required when a

SN attempts to cache a data item, but the cache is full.

In replacement operation, one or more data items are

evicted out of the local cache (to provide sufficient space)

and the new one is cached.

When a node caches the datum, it broadcasts a small

index packet containing the dataID and the associated TTL,

its remaining energy and its free cache space. The CCNs

which are also 1-hop neighbors of this node, store this

broadcasted information. Every CCN node stores the

remaining energy and the free cache space for each one of

its 1-hop neighbors, and for each dataID that it has heard

Local Hit

Node

Local cache
search

Community
search

Data
Center

Remote
search

Retrieve data
from the

neighbors

Redirect Req
to the

cache node

Req

Local miss

Community miss

HitCommunity

HitRemote

Remote miss

Rep

Rep

Global Hit

Replacement
policy

Fig. 5 The scaPCICC protocol

F

P

M

R
U

T

V
W

O

N

S

KH

EC

B

D

community search

request

Q(RN)

G(CN)

A(DC)

L

I J

Fig. 6 A request packet from

node Q is forwarded to the

caching node G

Wireless Netw

123

through the broadcasting operation, the TTL of this datum

and the nodes that have cached this datum. The scaPCICC

protocol employs the following policy:

A. Initially each sensor node first evicts the data item that

it has cached on behalf of some other node. Each

cached item is characterized either as O (i.e., own) or

H (i.e., hosted). In case of a local hit, then its state

switches to O. If the available cache space is still

smaller than the required, execute B.

B. Each O cached item is also identified as community (it

originated from the two-hop neighborhood) and net-

work (it originated outside the two-hop neighbor-

hood)—CCNs provide this information. A sensor node

evicts a number of community data items executing C,

until sufficient space is provided. If the available

cache space is still smaller than the required, execute

C for the network cached data items.

C. We have developed a cost-based cache replacement

function, where data items with the greatest costs are

those that are removed from the cache. For each

cached object i the following function is calculated:

costðiÞ ¼ Lati�Sizei

TTLi�ARi
. When a SN gets a reply message,

it calculates the incurred latency (Lat). The smaller the

latency of a data item is, the more likely to remain to

cache. The access rate (AR) indicates the frequency

that a cached item is being requested, while time-to-

live (TTL) value determines the validity of a cached

data item. A data item remains in cache when AR and

TTL are big. Finally, the bigger the size of a data item

is, the more likely to be removed from the cache.

D. Inform the CCNs about the candidate victims. If the

data item is also cached by another node in the

community, then CCNs transmit a delete message and

the data item is evicted out of the local cache.

Otherwise, each CCN sends a message that contains

the node that has the largest residual energy and

enough space to cache the data item. In this case, the

node purges the data item and send it to the node with

the largest residual energy. Finally, the CCNs update

their cached metadata about the new state.

E. The node which caches this purged data item, informs

the CCNs with the usual broadcasting procedure.

5.3.2 Cache admission control

When a sensor node receives the requested data, a cache

admission control is triggered in order to determine whe-

ther it should be cached or not. Caching a data item might

not be the appropriate solution since it can lead to lower

probability of cache hits [32]. In this paper, the cache

admission control policy allows a sensor node to cache

every requested data item while there is enough available

cache space. However, when the local cache is full, the

policy favours caching of data items that are not cached in

the two-hop neighborhood. This is because, the data items

that lie in the community can be fetched in a relatively

small interval of time, in contrast with those items that are

many hops away.

Initially, each node may cache every requested data item

including those derived from two-hop neighborhood. The

data items that originated from outside the two-hop

neighborhood are identified with bit 0, while those derived

from two-hop neighborhood with bit 1. Thus, the cached

data items are divided as community (those with bit 1) and

network (those with bit 0). When the local cache is full and

a new requested data item arrived, the cache admission

control policy checks first if the response derived from the

two-hop neighborhood. In this case, sensor node checks if

any community data items are already cached and evicts a

number of them until enough free space is provided.

Finally, the requested data item is cached. However, if

there aren’t any community data items, the requested data

item is not cached. The requested items that did not orig-

inate from the two-hop neighborhood are always cached.

If the local cache is full then cache replacement policy is

triggered.

6 Performance evaluation

We evaluated the performance of the scaPCICC and

PCICC protocols through simulation experiments; we

conducted several experiments with various parameters,

and compared the performance of scaPCICC and PCICC

to the state-of-the-art cooperative caching policy for

WMSNs, namely NICoCa [3].2

6.1 Simulation model

All protocols have been implemented and evaluated with

the J-Sim wireless network simulator [33]. In our simula-

tions, the AODV [34] routing protocol is deployed to route

the data traffic in the wireless sensor network. Although

other routing schemes, like GPSR [35], are more appro-

priate for sensor networks, for reasons of fair comparison

with the competitor we employ this routing protocol;

though we conducted the experiments using GPSR as well

to confirm that the relative performance of the algorithms

remains the same, and, for the interest of space, we include

only a couple of representative graphs. We use IEEE

802.11 as the MAC protocol and the free space model as

2 In [3], the NICoCa protocol was compared against the Hybrid

caching scheme [5], for many data/request distributions and many

network topologies, and NICoCa proved superior in all cases.

Wireless Netw

123

the radio propagation model. The wireless bandwidth is 2

Mbps. The radio characteristics used in our simulations are

summarized in Table 1. To test the validity of the experi-

ments in more radio-starving environments, we also con-

ducted experiments using the IEEE 802.15.4 as the MAC

protocol.

The protocols have been tested for a variety of sensor

network topologies, to simulate sensor networks with

varying values of node degree, from 4 to 10. Thus, we are

able to simulate both sparse and dense sensor deployments.

The denser the topology is, the larger the number of cliques

is; though our simulator can not control precisely the

number of generated cliques. We experiment with various

sizes of the sensornet; we present here the results for two

cases, namely when the number of sensors is 100 and 500.

The distribution of the sizes of the data items is uniform

between 1 and 10 KB. In order to filter out the statistical

error and remove any bias from our results, we run each

examined protocol for each network/data configuration at

least 100 times.

The generated network topology consists of many

square grid units where one or more nodes are placed. The

number of square grid units depends on the number of

nodes and the node degree. The topologies are generated as

follows: the location of each of the n sensor nodes is uni-

formly distributed between the point (x = 0, y = 0) and

the point (x = 500, y = 500). The average degree d is

computed by sorting all n 9 (n - 1)/2 edges in the net-

work by their length, in increasing order. The grid unit size

corresponding to the value of d is equal to
ffiffiffi
2
p

times the

length of the edge at position n 9 d/2 in the sorted

sequence. Two sensor nodes are neighbors if they placed in

the same grid or in adjacent grids. The simulation area is

assumed of size 500 9 500 m and is divided into equal

sized square grid units. Beginning with the lower grid unit,

the units are named as 1; 2;, in a column-wise fashion.

The client query model is similar to what have been

used in previous studies [3, 5]. Each sensor node generates

read-only queries. After a query is sent out, if the sensor

node does not receive the data item, it waits for an interval

(tw) before sending a new query. The access pattern of

sensor nodes follow the well-known Zipfian distribution

with parameter h (for h = 0.0, we get a uniform access

pattern; for values of h around 1, the access pattern is

highly skewed). All sensors across the sensornet ‘obey’ the

same h, but they ‘show preference’ to different sets of data

items. The sensors residing in the same grid (25 grids with

size 100 9 100) m have more or less the same access

pattern, i.e., they obey the same h and they show preference

for the same set of data items. The preferences across

different grids are different. Thus, we model a locality in

the data requests. We conducted experiments with varying

h values between 0.0 and 1.0. Here, we present the results

for two representative cases, i.e., h = 0.0 and h = 0.8.

Similar to [3, 5], two Data Centers are placed at opposite

corners of the simulation area. Data Center 1 is placed at

point (x = 0, y = 0) and Data Center 2 is placed at point

(x = 500, y = 500). There are N/2 data items in each data

center. Data items with even ids are stored at Data Center 1

and data items with odd ids are stored at Data Center 2. We

assumed that data items are not updated. The system

parameters are listed in Table 2.

6.2 Performance metrics

The measured quantities include the average query latency,

the message overhead (as a direct metric of energy con-

sumption) and the number of hits (local, remote and global)

as a measure of the effectiveness of the cooperation. The

query latency is the time elapsed between the time when

the query is sent and the time when the data is transmitted

back to the requester; the average query latency is the

query latency averaged over all the queries. A commonly

used message overhead metric is the total number of

messages injected into the network by the query process.

The message overhead includes all the query and response

messages for locating and retrieving data. Since the number

of messages due to the routing scheme is the same for all

schemes under study, thus we ignore the overhead for

routing messages. It is evident that a small number of

global hits implies less network congestion, and thus fewer

collisions and packet drops. Moreover, a large number of

remote hits proves the effectiveness of cooperation in

Table 1 Radio characteristics

Operation Energy dissipated

Transmitter/receiver electronics Eelec = 50 nJ/bit

Transmit amplifier if dtoBS� d0 efs = 10 pJ/bit/m2

Transmit amplifier if dtoBS [d0 emp = 0.00134 pJ/bit/m4

Data aggregation EDA = 5 nJ/bit/signal

Table 2 Simulation parameters

Parameter Default value Range

Data items (N) 1,000

Smin (KB) 1

Smax (KB) 10

Nodes (n) 500 100–500

Requests per node 250 (total) 200–300

Bandwidth (Mbps) 2

Waiting interval (tw) 10 s

Cache size (KB) 800 200–1,200

Zipfian skewness (h) 0.8 0.0–1.0

Wireless Netw

123

reducing the number of global hits. A large number of local

hits does not imply an effective cooperative caching policy,

unless it is accompanied by small number of global hits,

since the cost of global hits overshadows the benefits of

local hits.

6.3 Evaluation

We performed a large number of experiments varying the

size of the sensornet (in terms of the number of its sensor

nodes), varying the access profile of the sensor nodes, and

the cache size relative to the aggregate size of all data

items. In particular, we performed experiments for cache

size equal to 1%, to 5–10% of the aggregated size of all

distinct data, for access pattern with h starting from 0.0

(uniform access pattern) to 1.0 (highly skewed access

pattern), and for average sensor node degree equal to 4

(sparse sensornet) and 10 (dense sensornet). Each data item

size is equal to a few kilobytes (KB). For each different

setting we measured the number of hits (local, remote,

global), the latency and the message overhead. The latency

is measured in seconds. Figures 7, 8, 9, 10, 11, and 12

show the performance comparison of the protocols for a

sensornet with 100 nodes, while Figs. 13, 14, 15, 16, 17,

and 18 for a sensornet with 500 nodes.

The Figs. 11, 12, 17 and 18 depict the efficiency of

scaPCICC and PCICC over NICoCa in terms of hits.

These graphs should be interpreted as follows: the line

corresponding to Global Hits, represents the (percentage)

reduction in global hits achieved by scaPCICC and

PCICC with respect to the global hits achieved by NIC-

oCa; the line corresponding to Remote Hits, represents the

(percentage) increase in remote hits achieved by scaP-

CICC and PCICC with respect to the remote hits achieved

by NICoCa; the line corresponding to Local Hits, repre-

sents the (percentage) decrease in local hits achieved by

scaPCICC and PCICC with respect to the local hits

achieved by NICoCa.

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
PCICC

scaPCICC

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
PCICC

scaPCICC

Fig. 7 Impact of sensor cache size on latency (h = 0.0 and h = 0.8) in a sparse WSN (d = 4) with 100 sensors

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
PCICC

scaPCICC

0.06

0.08

0.1

0.12

0.14

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
PCICC

scaPCICC

Fig. 8 Impact of sensor cache size on latency (h = 0.0 and h = 0.8) in a dense WSN (d = 10) with 100 sensors

Wireless Netw

123

As expected, all cooperative caching schemes exhibit

better performance for all metrics with increasing cache

size; therefore caching is indeed a useful technique,

irrespectively of the network topology. The second generic

observation is that the proposed scaPCICC and PCICC

protocols are superior to its competitor for all data/network

100000

120000

140000

160000

180000

200000

220000

200 400 600 800 1000 1200

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Cache Size (KB)

NICoCa
PCICC

scaPCICC

80000

85000

90000

95000

100000

105000

110000

115000

120000

125000

130000

200 400 600 800 1000 1200

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Cache Size (KB)

NICoCa
PCICC

scaPCICC

Fig. 9 Impact of sensor cache size on number of messages (h = 0.0 and h = 0.8) in a sparse WSN (d = 4) with 100 sensors

30000

35000

40000

45000

50000

55000

60000

200 400 600 800 1000 1200

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Cache Size (KB)

NICoCa
PCICC

scaPCICC

20000

25000

30000

35000

40000

45000

50000

200 400 600 800 1000 1200

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Cache Size (KB)

NICoCa
PCICC

scaPCICC

Fig. 10 Impact of sensor cache size on number of messages (h = 0.0 and h = 0.8) in a dense WSN (d = 10) with 100 sensors

4

6

8

10

12

14

16

18

20

22

200 400 600 800 1000 1200

%
 H

its
 G

ai
ns

 o
f

PC
IC

C
 a

nd
 s

ca
PC

IC
C

Cache Size (KB)

PCICC - GH
scaPCICC - GH

PCICC - RH
scaPCICC - RH

PCICC - LH
scaPCICC - LH

2

4

6

8

10

12

14

200 400 600 800 1000 1200

%
 H

its
 G

ai
ns

 o
f

PC
IC

C
 a

nd
 s

ca
PC

IC
C

Cache Size (KB)

PCICC - GH
scaPCICC - GH

PCICC - RH
scaPCICC - RH

PCICC - LH
scaPCICC - LH

Fig. 11 Impact of sensor cache size on hits (h = 0.0 and h = 0.8) in a sparse WSN (d = 4) with 100 sensors

Wireless Netw

123

configurations. As the cache space in each sensor increases

toward an infinite cache, that could ideally accommodate

all items, the actual performance gap (latency and travel-

ling messages) between the protocols diminishes.

The performance of the protocols with respect to the

average latency incurred for varying cache sizes for both

sparse and dense sensor network deployments are depicted

in Figs. 7, 8, 13 and 14. The dominant observation is that

5

10

15

20

25

200 400 600 800 1000 1200

%
 H

its
 G

ai
ns

 o
f

PC
IC

C
 a

nd
 s

ca
PC

IC
C

Cache Size (KB)

PCICC - GH
scaPCICC - GH

PCICC - RH
scaPCICC - RH

PCICC - LH
scaPCICC - LH

2

4

6

8

10

12

200 400 600 800 1000 1200

%
 H

its
 G

ai
ns

 o
f

PC
IC

C
 a

nd
 s

ca
PC

IC
C

Cache Size (KB)

PCICC - GH
scaPCICC - GH

PCICC - RH
scaPCICC - RH

PCICC - LH
scaPCICC - LH

Fig. 12 Impact of sensor cache size on hits (h = 0.0 and h = 0.8) in a dense WSN (d = 10) with 100 sensors

0.3

0.35

0.4

0.45

0.5

0.55

0.6

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
PCICC

scaPCICC

0.25

0.3

0.35

0.4

0.45

0.5

0.55

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
PCICC

scaPCICC

Fig. 13 Impact of sensor cache size on latency (h = 0.0 and h = 0.8) in a sparse WSN (d = 4) with 500 sensors

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
PCICC

scaPCICC

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
PCICC

scaPCICC

Fig. 14 Impact of sensor cache size on latency (h = 0.0 and h = 0.8) in a dense WSN (d = 10) with 500 sensors

Wireless Netw

123

caching is more beneficial for sparse networks, since it can

balance the (relatively) longer paths to the data that

increase the latency. The latency incurred by scaPCICC is

10–18% smaller than that of NICoCa. Due to the central

points that community cache nodes are located, the query

requests are served faster than that of NICoCa.

500000

550000

600000

650000

700000

750000

200 400 600 800 1000 1200

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Cache Size (KB)

NICoCa
PCICC

scaPCICC

350000

400000

450000

500000

550000

200 400 600 800 1000 1200

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Cache Size (KB)

NICoCa
PCICC

scaPCICC

Fig. 15 Impact of sensor cache size on number of messages (h = 0.0 and h = 0.8) in a sparse WSN (d = 4) with 500 sensors

260000

280000

300000

320000

340000

360000

200 400 600 800 1000 1200

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Cache Size (KB)

NICoCa
PCICC

scaPCICC

160000

180000

200000

220000

240000

200 400 600 800 1000 1200

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Cache Size (KB)

NICoCa
PCICC

scaPCICC

Fig. 16 Impact of sensor cache size on number of messages (h = 0.0 and h = 0.8) in a dense WSN (d = 10) with 500 sensors

4

6

8

10

12

14

16

18

20

22

200 400 600 800 1000 1200

%
 H

its
 G

ai
ns

 o
f

PC
IC

C
 a

nd
 s

ca
PC

IC
C

Cache Size (KB)

PCICC - GH
scaPCICC - GH

PCICC - RH
scaPCICC - RH

PCICC - LH
scaPCICC - LH

4

5

6

7

8

9

10

11

12

13

200 400 600 800 1000 1200

%
 H

its
 G

ai
ns

 o
f

PC
IC

C
 a

nd
 s

ca
PC

IC
C

Cache Size (KB)

PCICC - GH
scaPCICC - GH

PCICC - RH
scaPCICC - RH

PCICC - LH
scaPCICC - LH

Fig. 17 Impact of sensor cache size on hits (h = 0.0 and h = 0.8) in a sparse WSN (d = 4) with 500 sensors

Wireless Netw

123

We also evaluated the performance of the algorithms

with respect to the number of transmitted messages for

varying cache sizes for both sparse and dense sensor net-

work deployments. The results are depicted in Figs. 9, 10,

15 and 16. The relative results follow the same trends that

we observed in the previous experiment; there is a close

connection between the number of messages and latency,

since the more the number of messages transmitted, the

more intense the competition for the broadcast channels is,

and thus many more collisions occur, which collectively

aggravate the average latency. When a sensor node

broadcasts a large number of messages, the energy dissi-

pation increases. Thus, the message overhead metric

exhibits also the energy consumption, since the fewer

messages result in smaller energy consumption.

Finally, it is interesting to note that the scaPCICC

protocol achieves an average of 13% fewer global hits than

NICoCa, and around 10% more remote hits. The results are

depicted in Figs. 11, 12, 17 and 18. The reduction in global

hits and simultaneous increase in remote hits proves that

scaPCICC achieves a more successful cooperation, and

this is directly attributed to the selection of CCNs. There-

fore, the proposed centrality metric is indeed useful and it

is able to better capture the ‘‘significant’’ nodes in the

sensornet. In terms of local hits, both protocols (scaPCICC

and PCICC) have similar performance, but the different

admission policy adopted by the proposed protocols results

in fewer local hits and larger number of remote cache hits.

We argued from the beginning of this paper that the

selection of the sensors that will coordinate the caching

decisions is of critical importance. To provide one more

evidence for this, we performed the following experiment.

For a fixed cache size (i.e., 800 KB), we gradually

removed (a percentage of) the sensors with high centrality

(those with high NI for the NICoCa protocol, those with

high PCI for the scaPCICC protocol and so on) and we

measured the incurred latency. The results are depicted in

Fig. 19. As expected the latency increases when more and

5

10

15

20

200 400 600 800 1000 1200

%
 H

its
 G

ai
ns

 o
f

PC
IC

C
 a

nd
 s

ca
PC

IC
C

Cache Size (KB)

PCICC - GH
scaPCICC - GH

PCICC - RH
scaPCICC - RH

PCICC - LH
scaPCICC - LH

4

5

6

7

8

9

10

11

12

200 400 600 800 1000 1200

%
 H

its
 G

ai
ns

 o
f

PC
IC

C
 a

nd
 s

ca
PC

IC
C

Cache Size (KB)

PCICC - GH
scaPCICC - GH

PCICC - RH
scaPCICC - RH

PCICC - LH
scaPCICC - LH

Fig. 18 Impact of sensor cache size on hits (h = 0.0 and h = 0.8) in a dense WSN (d = 10) with 500 sensors

 0.30

0.32

0.34

0.36

0.38

0.40

0.42

 1 2 3 4 5 6

A
vg

 L
at

en
cy

 (
se

c)

percentage of failing nodes (first those with high centrality)

NICoCa
PCICC

scaPCICC

 0.16

0.18

0.20

0.22

0.24

0.26

0.28

 1 2 3 4 5 6

A
vg

 L
at

en
cy

 (
se

c)

percentage of failing nodes (first those with high centrality)

NICoCa
PCICC

scaPCICC

Fig. 19 Impact of failing sensors with high centrality on latency (h = 0.8) in a sparse (d = 4) and in a dense WSN (d = 10) with 500 sensors

and cache of 800KB

Wireless Netw

123

more sensors with high centrality value ‘‘deplete’’ their

energy and are not part of the network. This increase is

more steep for the sparse networks, since significantly

fewer sensors have considerably large centrality values; on

the other hand, in dense sensornets the impact of the node

removal is less important.

Even though all the aforementioned results concern the

AODV routing protocol with an IEEE 802.11 MAC layer,

the relative performance results still holds in different

protocol/layer configurations. To test this argument we

performed a few more experiments: In the first experiment

we experimented with the AODV routing protocol with an

IEEE 802.15.4 as the MAC layer, and in a couple of

experiments we investigated the GPSR protocol with an

IEEE 802.11 MAC layer.

We investigated the impact of cache size on the latency

incurred for the competing protocols, but, with the IEEE

802.15.4 as the MAC layer. The results are illustrated in

Fig. 20 (it is the analogous of Figs. 13(b), 14(b)). Although

there exist differences in the absolute values of the mea-

sured quantities because this MAC supports much lower

bit-rates, the relative performance of the protocols and the

generic trends remain unchanged. Therefore, there is no

need to comment in detail the performance of the algo-

rithms, because the observations made earlier still hold for

this MAC layer.

The investigation of the impact of the cache size on the

incurred latency when using the GPSR routing protocol in

a sensornet with 500 nodes is depicted in Fig. 21. There

is no noticeable difference in the performance of the

0.65

0.7

0.75

0.8

0.85

0.9

0.95

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
PCICC

scaPCICC

0.29

0.32

0.35

0.38

0.41

0.44

0.47

0.50

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
PCICC

scaPCICC

Fig. 20 Impact of sensor cache size on latency (h = 0.8) in a sparse (d = 4) and in a dense (d = 10) WSN with 500 sensors and 802.15.4 MAC

protocol

0.25

0.3

0.35

0.4

0.45

0.5

0.55

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
PCICC

scaPCICC

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
PCICC

scaPCICC

Fig. 21 Impact of sensor cache size on latency (h = 0.8) in a sparse (d = 4) and in a dense (d = 10) WSN with 500 sensors using the GPSR

protocol

Wireless Netw

123

cooperative caching algorithms (contrast Figs. 13(b),

14(b)), which is expected since the cooperation scheme is

the major factor that affects the performance, and not the

routing scheme; a similar observation was also made in a

companion paper [8] which concerned cooperative cache

consistency.

In general, the performance of each protocol improves

in dense sensornets, since we constrain more sensor nodes

to be dispersed in the same geographical region, thus cre-

ating more replicas of the same data and providing more

alternative paths to the data. This better performance is

reflected to the access latency, hit ratio and message

overhead.

In summary, for all network topologies scaPCICC

achieves more remote hits and less global hits than PCICC

and NICoCa. This performance gap is slightly better in

favor of scaPCICC as we move from dense to sparse

WSNs. Finally, all protocols achieve significant perfor-

mance gains for skewed access pattern (h = 0.8). This is

because the number of neighboring nodes that request the

same data items is increased. Therefore, the cooperative

caching protocols perform better.

7 Conclusions

The proliferation of applications based on wireless sensor

networks depends mainly on the ability of the underlying

protocols to scale to large number of sensors, to conserve

energy and provide answers with short latency. Coopera-

tive data caching has been proposed as an effective and

efficient technique to achieve these goals concurrently.

The essence of these protocols is the selection of the sensor

nodes which will take special roles in running the caching

and request forwarding decisions. The article introduced

two new centrality metrics to aid in the selection of such

nodes, and proposed two new cooperative caching proto-

cols (PCICC and scaPCICC), which, based on simulation

analysis, proved superior to the state-of-the-art competing

protocol, achieving average gains in energy consuption and

latency around 20%.

Acknowledgments The authors wish to thank the anonymous

reviewers for their valuable comments and suggestions.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E.

(2002). A survey on sensor networks. IEEE Communications
magazine, 40(8), 102–114.

2. Karl, H., & Willig, A. (2006). Protocols and architectures for
wireless sensor networks. New York: Wiley.

3. Dimokas, N., Katsaros, D., & Manolopoulos, Y. (2008). Coop-

erative caching in wireless multimedia sensor networks. ACM
Mobile Networks and Applications, 13(3–4), 337–356.

4. Shen, H., Das, S. K., Kumar, M., & Wang, Z. (2004). Cooperative

caching with optimal radius in hybrid wireless networks.

In Proceedings of the international IFIP-TC6 networking con-
ference (NETWORKING), Lecture notes on computer science

(Vol. 3042, pp. 841–853).

5. Yin, L., & Cao, G. (2006). Supporting cooperative caching in ad

hoc networks. IEEE Transactions on Mobile Computing, 5(1),

77–89.

6. Li, W., Chan, E., & Chen, D. (2007). Energy-efficient cache

replacement policies for cooperative caching in mobile ad hoc

network. In Proceedings of the IEEE WCNC (pp 3349–3354).

7. Freeman, L. C. (1977). A set of measures of centrality based on

betweenness. Sociometry, 40(1), 35–41.

8. Dimokas, N., Katsaros, D., & Manolopoulos, Y. (2010). Cache

consistency in wireless multimedia sensor networks. Ad Hoc
Networks, 8(2), 214–240.

9. Fan, L., Cao, P., Almeida J. M., & Broder, A. Z. (2000). Sum-

mary cache: A scalable wide-area Web cache sharing protocol.

IEEE/ACM Transactions on Networking, 8(3), 281–293.

10. Annapureddy, S., Freedman, M. J., & Mazières, D. (2005). Shark:

Scaling file servers via cooperative caching. In Proceedings of
USENIX NSDI (pp. 129–142)

11. Hara, T. (2002). Cooperative caching by mobile clients in push-

based information systems. In Proceedings of ACM CIKM
(pp. 186–193).

12. Hara, T. (2003). Replica allocation methods in ad hoc networks

with data update. ACM Mobile Networks and Applications, 8(4),

343–354.

13. Hara, T., & Madria, S. K. (2006). Data replication for improving

data accessibility in ad hoc networks. IEEE Transactions on
Mobile Computing, 5(11), 1515–1532.

14. Sailhan, F., & Issarny, V. (2002). Energy-aware Web caching for

mobile terminals. In Proceedings of the IEEE international con-
ference on distributed computing systems workshops (ICDCSW)
(pp. 820–825).

15. Nuggehalli, P., Srinivasan, V., & Chiasserini, C. F. (2003).

Energy-efficient caching strategies in ad hoc wireless networks.

In Proceedings of ACM MobiHoc (pp. 25–34).

16. Tang, B., Gupta, H., & Das, S. R. (2008). Benefit-based data

caching in ad hoc networks. IEEE Transactions on Mobile
Computing, 7(3), 289–304.

17. Prabh, K. S., & Abdelzaher, T. F. (2005). Energy-conserving data

cache placement in sensor networks. ACM Transactions On
Sensor Networks, 1(2), 178–203.

18. Rahman, M. A., & Hussain, S. (2007). Effective caching in

wireless sensor networks. In Proceedings of the international
IEEE conference on advanced information networking and
applications workshops (AINAW) (Vol. 1, pp. 43–47).

19. Sharma, T. P., Joshi, R. C., & Misra, M. (2009). Cooperative

caching for homogeneous wireless sensor networks. International
Journal of Communication Networks and Distributed Systems,
2(4), 424–451.

20. Law, W., Kumar, M., & Venkatesh, S. (2002). A cooperative

cache architecture in supporting caching multimedia objects in

MANETs. In Proceedings of the international workshop on
wireless mobile multimedia.

21. Du, Y., & Gupta, K. S. (2005). COOP: A cooperative caching
service in MANETs. In Proceedings of ICAS-ICNS (pp. 58–63).

22. Du, Y., Gupta, K. S., & Varsamopoulos, G. (2009). Improving

on-demand data access efficiency in MANETs with cooperative

caching. Ad Hoc Networks, 7(3), 579–598.

Wireless Netw

123

23. Lim, S., Lee, W. C., Cao, G., & Das, C. R. (2006). A novel

caching scheme for improving internet-based mobile ad hoc

networks performance. Ad Hoc Networks, 4(2), 225–239.

24. Shen, H., Joseph, M. S., Kumar, M., & Das, S. K. (2005). PRe-

CinCt: A scheme for cooperative caching in mobile peer-to-peer

systems. In Proceedings of the international parallel and dis-
tributed processing symposium (IPDPS).

25. Brin, S., Page, L., Motwani, R., & Winograd, T. (1999). Page-
Rank citation ranking: Bringing order to the Web. Tech. Rep.

1999-66, Computer Science Department, Stanford University.

26. Bonacich, P., & Lloyd, P. (2001). Eigenvector-like measures of cen-

trality for asymmetric relations. Social Networks, 23(3), 191–201.

27. Hwang, W., Kim, T., Ramanathan, M., & Zhang, A. (2008).

Bridging centrality: Graph mining from element level to group

level. In Proceedings ACM SIGKDD (pp. 336–344).

28. Nanda, S., & David Kotz, D. (2008). Localized bridging cen-
trality for distributed network analysis. Tech. Rep. 2008-612,

Computer Science Department, Dartmouth College.

29. Erramilli, V., Crovella, M., Chaintreau, A., & Diot, C. (2008).

Delegation forwarding. In Proceedings of ACM MobiHoc
(pp. 251–259).

30. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of

‘small-world’ networks. Nature, 393, 440–442.

31. Gandhi, R., & Parthasarathy, S. (2004). Fast distributed well
connected dominating sets for ad hoc networks. Tech. Rep.

CS-TR-4559, Computer Science Department, University of

Maryland at College Park.

32. Cao, G., Yin, L., & Das, S. (2004). Cooperative cache based data

access framework for ad hoc networks. IEEE Computer, 37(2),

32–39.

33. Sobeih, A., Hou, J. C., Kung, L. C., Li, N., Zhang, H., Chen, W.

P., Tyan, H. Y., & Lim, H. (2006). J-Sim: A simulation and

emulation environment for wireless sensor networks. IEEE
Wireless Communications magazine, 13(4), 104–119.

34. Perkins, C. E., & Royer, E. (1999). Ad hoc on-demand distance

vector routing. In Proceedings of the IEEE workshop on mobile
computing systems and applications (pp. 90–100).

35. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter

stateless routing for wireless networks. In Proceedings of the
ACM/IEEE international conference on mobile computing and
networking (MobiCom) (pp. 243–254).

Author Biographies

Nikos Dimokas was born in

Giannitsa, Greece in 1978. He

received B.Sc. and M.Sc. in

Computer Science from Uni-

versity of Crete, Greece, in 2001

and 2004, respectively. Between

May 2004 and December 2005

he worked as a research and

development engineer in the

Institute of Computer Science at

Foundation of Research and

Technology Hellas (FORTH).

Currently, he is a Ph.D. candi-

date at the Department of

Informatics of Aristotle Uni-

versity of Thessaloniki,Greece. His research interests include wireless

sensor networks and vehicular ad hoc networks.

Dimitrios Katsaros was born

in Thetidio (Farsala), Greece in

1974. He received a B.Sc. in

Computer Science from Aris-

totle University of Thessaloniki,

Greece (1997) and a Ph.D. from

the same department on May

2004. He spent a year (July

1997–June 1998) as a visiting

researcher at the Department of

Pure and Applied Mathematics at

the University of L’Aquila, Italy.

Currently, he is a lecturer with

the Department of Computer and

Communication Engineering of

University of Thessaly (Volos, Greece). He is editor of the book

‘‘Wireless Information Highways’’ (2005), co-guest editor of a special

issue of IEEE Internet Computing on ’Cloud Computing’ (September

2009), and translator for the greek language of the books ’Google’s

PageRank and Beyond: The Science of Search Engine Rankings’ and

‘‘Introduction to Information Retrieval’’. His research interests are in

the area of distributed systems, including the Web and Internet, mobile

and pervasive computing, mobile/vehicular ad hoc networks, wireless

sensor networks.

Leandros Tassiulas (S089,
M091, SM/06, F/07) was born in

1965, in Katerini, Greece.

He obtained the Diploma in

Electrical Engineering from the

Aristotelian University of Thes-

saloniki, Thessaloniki, Greece in

1987, and the M.S. and Ph.D.

degrees in Electrical Engineer-

ing from the University of

Maryland, College Park in 1989

and 1991 respectively. He is

Professor in the Department of

Computer and Telecommunica-

tions Engineering, University of

Thessaly, Greece and Research Professor in the Department of Elec-

trical and Computer England the Institute for Systems Research, Uni-

versity of Maryland College Park since 2001. He has held positions as

Assistant Professor at Polytechnic University New York (1991–1995),

Assistant and Associate Professor University of Maryland College

Park (1995–2001) and Professor University of Ioannina Greece

(1999–2001). His research interests are in the field of computer and

communication networks with emphasis on fundamental mathematical

models of communication networks, architectures and protocols of

wireless systems, sensor networks, high-speed internet and satellite

communications. He lead several research projects in the above areas

funded by the National Science Foundation, Office of Naval Research,

Airforce Office of Scientific Research, Army Research Laboratory,

Army Research Office in USA while currently he leads a number of

projects funded by the European Commission, Information Society

Technologies program. He spent time with IBM T.J.Watson research

laboratory as a visiting researcher and he consults regularly with

industry. He published in excess of 180 papers and holds one patent.

Dr. Tassiulas received a National Science Foundation (NSF) Research

Initiation Award in 1992, an NSF CAREER Award in 1995, an Office of

Naval Research, Young Investigator Award in 1997, a Bodosaki

Foundation award in 1999 and the INFOCOM ‘94 best paper award.

He is a fellow of IEEE.

Wireless Netw

123

Yannis Manolopoulos was

born in Thessaloniki, Greece in

1957. He received a B.Eng.

(1981) in Electrical Eng. and a

Ph.D. degree (1986) in Com-

puter Eng., both from the Aris-

totle University of Thessaloniki.

Currently, he is Professor at the

Department of Informatics of

the same university. He has

been with the Department of

Computer Science of the Uni-

versity of Toronto, the Depart-

ment of Computer Science of

the University of Maryland at

College Park and the University of Cyprus. He has published over 200

papers in journals and conference proceedings. He is co-author of the

books ‘‘Advanced Database Indexing’’, ‘‘Advanced Signature Index-

ing for Multimedia and Web Applications’’ by Kluwer and of the

books ‘‘R-Trees: Theory and Applications’’, ‘‘Nearest Neighbor

Search: a Database Perspective’’ by Springer. He has co-organized

several conferences (among others ADBIS2002, SSTD2003,

SSDBM2004, ICEIS2006, ADBIS2006, EANN2007). His research

interests include Databases, Data mining, Web Information Systems,

Sensor Networks and Informetrics.

Wireless Netw

123

	High performance, low complexity cooperative caching for wireless sensor networks
	Abstract
	Introduction
	Motivation and contributions

	Related work
	Cooperative data caching in WSNs
	Research in centrality metrics

	Problem description and protocol design requirements
	Network model
	The new cooperative caching schemes
	The power community index
	The scaled power community index
	The scaPCICC and PCICC protocols
	The cache replacement component
	Cache admission control

	Performance evaluation
	Simulation model
	Performance metrics
	Evaluation

	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

