
BlogForever Crawler: Techniques and Algorithms
to Harvest Modern Weblogs

Olivier Blanvillain
École Polytechnique Fédérale

de Lausanne (EPFL)
1015 Lausanne, Switzerland

olivier.blanvillain@epfl.ch

Nikos Kasioumis
European Organization for
Nuclear Research (CERN)

1211 Geneva 23, Switzerland
nikos.kasioumis@cern.ch

Vangelis Banos
Department of Informatics

Aristotle University of
Thessaloniki, Greece

vbanos@gmail.com

ABSTRACT
Blogs are a dynamic communication medium which has been
widely established on the web. The BlogForever project has
developed an innovative system to harvest, preserve, manage
and reuse blog content. This paper presents a key compo-
nent of the BlogForever platform, the web crawler. More
precisely, our work concentrates on techniques to automat-
ically extract content such as articles, authors, dates and
comments from blog posts. To achieve this goal, we intro-
duce a simple and robust algorithm to generate extraction
rules based on string matching using the blog’s web feed in
conjunction with blog hypertext. This approach leads to a
scalable blog data extraction process. Furthermore, we show
how we integrate a web browser into the web harvesting pro-
cess in order to support the data extraction from blogs with
JavaScript generated content.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering, Query formu-
lation, Selection process;
D.2.8 [Software Engineering]: Metrics—Complexity mea-
sures, Performance measures

General Terms
Design, Algorithms, Performance, Experimentation

Keywords
Blog crawler, web data extraction, wrapper generation

1. INTRODUCTION
Blogs disappear every day [13]. Losing data is obviously
undesirable, but even more so when this data has historic,
political or scientific value. In contrast to books, newspapers
or centralized web platforms, there is no standard method
or authority to ensure blog archiving and long-term digital
preservation. Yet, blogs are an important part of today’s
web: WordPress reports more than 1 million new posts and
1.5 million new comments each day [30]. Blogs also showed
to be an important resource during the 2011 Egyptian rev-
olution by playing an instrumental role in the organization
and implementation of protests [6]. The need to preserve
this volatile communication medium is nowadays very clear.

Among the challenges in developing a blog archiving soft-
ware application is the design of a web crawler capable of
efficiently traversing blogs to harvest their content. The
sheer size of the blogosphere combined with an unpredictable
publishing rate of new information call for a highly scalable
system, while the lack of programmatic access to the com-
plete blog content makes the use of automatic extraction
techniques necessary. The variety of available blog publish-
ing platforms offers a limited common set of properties that
a crawler can exploit, further narrowed by the ever-changing
structure of blog contents. Finally, an increasing number of
blogs heavily rely on dynamically created content to present
information, using the latest web technologies, hence invali-
dating traditional web crawling techniques.

A key characteristic of blogs which differentiates them from
regular websites is their association with web feeds [18].
Their primary use is to provide a uniform subscription mech-
anism, thereby allowing users to keep track of the latest up-
dates without the need to actually visit blogs. Concretely,
a web feed is an XML file containing links to the latest blog
posts along with their articles (abstract or full text) and as-
sociated metadata [23]. While web feeds essentially solve
the question of update monitoring, their limited size makes
it necessary to download blog pages in order to harvest pre-
vious content.

This paper presents the open-source BlogForever Crawler, a
key component of the BlogForever platform [14] responsible
for traversing blogs, extracting their content and monitor-
ing their updates. Our main objective in this work is to
design a crawler capable of extracting blog articles, authors,
publication dates and comments. Our contributions can be
summarized as follows:

• We present a new algorithm to build extraction rules
from web feeds. We then derive an optimized refor-
mulation tied to a particular string similarity metric
and show that this reformulated algorithm has a lin-
ear time complexity.

• We show how to use this algorithm for blog article
extraction and how it can be adapted to authors, pub-
lication dates and comments.

• We present the overall crawler architecture and the
specific components we implemented to efficiently tra-
verse blogs. We explain how our design allows for both
modularity and scalability.

• We show how we make use of a complete web browser
to render JavaScript powered web pages before pro-
cessing them. This step allows our crawler to effec-
tively harvest blogs built with modern technologies,
such as the increasingly popular third-party comment-
ing systems.

• We evaluate the content extraction and execution time
of our algorithm against three state-of-the-art web ar-
ticle extraction algorithms.

Although our crawler implementation is integrated with the
BlogForever platform, the presented techniques and algo-
rithms can be used in other applications related to Wrapper
Generation and Web Data Extraction.

2. ALGORITHMS
This section explains in detail the algorithms we developed
to extract blog post articles as well as its variations for ex-
tracting authors, dates and comments. Our approach uses
blog specific characteristics to build extraction rules which
are applicable throughout a blog. Our focus is on minimis-
ing the algorithmic complexity while keeping our approach
simple and generic.

2.1 Motivation
Extracting metadata and content from HTML documents
is a challenging task. Standards and format recommenda-
tions have been around for quite some time, strictly speci-
fying how HTML documents should be organised [26]. For
instance the <h1></h1> tags have to contain the highest-
level heading of the page and must not appear more than
once per page [27]. More recently, specifications such as
microdata [28] define ways to embed semantic information
and metadata inside HTML documents, but these still suf-
fer from very low usage: estimated to be used in less than
0.5% of websites [22]. In fact, the majority of websites rely
on the generic and <div></div> container
elements with custom id or class attributes to organise the
structure of pages, and more than 95% of pages do not pass
HTML validation [29]. Under such circumstances, relying
on HTML structure to extract content from web pages is
not viable and other techniques need to be employed.

Having blogs as our target websites, we made the follow-
ing observations which play a central role in the extraction
process1:

1Our experiments on a large dataset of blogs showed that
failing tests were either due to a violation of one of these
observations, or to an insufficient amount of text in posts.

(a) Blogs provide web feeds: structured and standardized
views of the latest posts of a blog,

(b) Posts of the same blog share a similar HTML structure.

Web feeds usually contain about 20 blog posts [20], often
less than the total number of posts in blogs. Consequently,
in order to effectively archive the entire content of a blog, it
is necessary to download and process pages beyond the ones
referenced in the web feed.

2.2 Content extraction overview
To extract content from blog posts, we proceed by building
extraction rules from the data given in the blog’s web feed.
The idea is to use a set of training data, pairs of HTML
pages and target content, to build an extraction rule capable
of locating the target content on each HTML page.

Observation (a) allows the crawler to obtain input for the
extraction rule generation algorithm: each web feed entry
contains a link to the corresponding web page as well as the
blog post article (either abstract or full text), its title, au-
thors and publication date. We call these fields targets as
they constitute the data our crawler aims to extract. Ob-
servation (b) guarantees the existence of an appropriate ex-
traction rule, as well as its applicability to all posts of the
blog.

Algorithm 1 shows the generic procedure we use to build
extraction rules. The idea is quite simple: for each (page,
target) input, compute, out of all possible extraction rules,
the best one with respect to a certain ScoreFunction. The
rule which is most frequently the best rule is then returned.

Algorithm 1: Best Extraction Rule

input : Set pageZipTarget of (page and target) pairs

output: Best extraction rule

bestRules ←− new list

foreach (page, target) in pageZipTarget do

score ←− new map

foreach rule in AllRules(page) do

extracted ←− Apply(rule, page)

score of rule ←− ScoreFunction(extracted, target)

bestRules ←− bestRules + rule with highest score

return rule with highest occurrence in bestRules

One might notice that each best rule computation is inde-
pendent and operates on a different input pair. This implies
that Algorithm 1 is embarrassingly parallel : iterations of the
outer loop can trivially be executed on multiple threads.

Functions in Algorithm 1 are voluntarily abstract at this
point and will be explained in detail in the remaining of
this section. Subsection 2.3 defines AllRules, Apply and
the ScoreFunction we use for article extraction. In sub-
section 2.4 we analyse the time complexity of Algorithm 1
and give a linear time reformulation using dynamic program-
ming. Finally, subsection 2.5 shows how the ScoreFunction
can be adapted to extract authors, dates and comments.

2.3 Extraction rules and string similarity
In our implementation, rules are queries in the XML Path
Language (XPath). Consequently, standard libraries can
be used to parse HTML pages and apply extraction rules,
providing the Apply function used in Algorithm 1. We ex-
perimented with 3 types of XPath queries: selection over
the HTML id attribute, selection over the HTML class at-
tribute and selection using the relative path in the HTML
tree. id attributes are expected to be unique, and class

attributes have showed in our experiments to have better
consistency than relative paths over pages of a blog. For
these reasons we opt to always favour class over path, and
id over class, such that the AllRules function returns a
single rule per node.

Function AllRules(page)

rules ←− new set

foreach node in page do

if node as id attribute then

rules ←− rules + {"//*[@id=‘node.id’]"}
else if node as class attribute then

rules ←− rules + {"//*[@class=‘node.class’]"}
else rules ←− rules + {RelativePathTo(node)}

return rules

Unsurprisingly, the choice of ScoreFunction greatly influ-
ences the running time and precision of the extraction pro-
cess. When targeting articles, extraction rule scores are
computed with a string similarity function comparing the
extracted strings with the target strings. We chose the
Sørensen–Dice coefficient similarity [4], which is, to the best
of our knowledge, the only string similarity algorithm fulfill-
ing the following criteria:

1. Has low sensitivity to word ordering,

2. Has low sensitivity to length variations,

3. Runs in linear time.

Properties 1 and 2 are essential when dealing with cases
where the blog’s web feed only contains an abstract or a
subset of the entire post article. Table 1 gives examples to il-
lustrate how these two properties hold for the Sørensen–Dice
coefficient similarity but do not for edit distance based sim-
ilarities such as the Levenshtein [17] similarity.

string1 string2 Dice Leven.

"Scheme Scala" "Scala Scheme" 90% 50%

"Rachid" "Richard" 18% 61%

"Rachid" "Amy, Rachid and

all their friends"

29% 31%

Table 1: Examples of string similarities

The Sørensen–Dice coefficient similarity algorithm operates
by first building sets of pairs of adjacent characters, also
knows as bigrams, and then applying the quotient of simi-
larity formula:

Function Similarity(string1, string2)

bigrams1 ←− Bigrams(string1)

bigrams2 ←− Bigrams(string2)

return 2 |bigrams1 ∩ bigrams2| / (|bigrams1|+|bigrams2|)

Function Bigrams(string)

return set of pairs of adjacent characters in string

2.4 Time complexity and linear reformulation
With the functions AllRules, Apply and Similarity (as
ScoreFunction) being defined, the definition of Algorithm 1
for article extraction is now complete. We can therefore
proceed with a time complexity analysis.

First, let’s assume that we have at our disposal a linear time
HTML parser that constructs an appropriate data structure,
indexing HTML nodes on their id and class attributes, ef-
fectively making Apply ∈ O(1). As stated before, the outer
loop splits the input into independent computations and
each call to AllRules returns (in linear time) at most as
many rules as the number of nodes in its page argument.
Therefore, the body of the inner loop will be executed O(n)
times. Because each extraction rule can return any subtree
of the queried page, each call to Similarity takes O(n),
leading to an overall quadratic running time.

We now present Algorithm 2, a linear time reformulation of
Algorithm 1 for article extraction using dynamic program-
ming.

Algorithm 2: Linear Time Best Content Extraction Rule

input : Set pageZipTarget of (Html and Text) pairs

output: Best extraction rule

bestRules ←− new list

foreach (page, target) in pageZipTarget do

score ←− new map

bigrams ←− new map

bigrams of target ←− Bigrams(target)

foreach node in page with post-order traversal do

bigrams of node ←−
Bigrams(node.text) ∪ bigrams of all node.childs

score of node ←−
2 |(bigrams of node) ∩ (bigrams of target)|
|bigrams of node|+ |bigrams of target|

bestRules ←− bestRules + Rule(node with best score)

return rule with highest occurrence in bestRules

While very intuitive, the original idea of first generating ex-
traction rules and then picking these best rules prevents us
from effectively reusing previously computed bigrams (set of
pairs of adjacent characters). For instance, when evaluating
the extraction rule for the HTML root node, Algorithm 1
will obtain the complete string of the page and pass it to
the Similarity function. At this point, the information on
where the string could be split into substrings with already
computed bigrams is not accessible, and the bigrams of the

page have to be computed by linearly traversing the entire
string. To overcome this limitation and implement memo-
ization over the bigrams computations, Algorithm 2 uses a
post-order traversal of the HTML tree and computes node
bigrams from their children bigrams. This way, we avoid se-
rializing HTML subtrees for each bigrams computation and
have the guarantee that each character of the HTML page
will be read at most once during the bigrams computation.

With bigrams computed in this dynamic programming man-
ner, the overall time to compute all Bigrams(node.text) is
linear. To conclude the proof that Algorithm 2 runs in linear
time we show that all other computations of the inner loop
can be done in constant amortized time. As the number of
edges in a tree is one less than the number of nodes, the
amortized number of bigrams unions per inner loop itera-
tion tends to one. Each quotient of similarity computation
requires one bigrams intersection and three bigrams length
computations. Over a finite alphabet (we used printable
ASCII), bigrams sizes have bounded size and each of these
operations takes constant time.

2.5 Variations for authors, dates, comments
Using string similarity as the only score measurement leads
to poor performance on author and date extraction, and
is not suitable for comment extraction. This subsection
presents variations of the ScoreFunction which addresses
issues of these other types of content.

The case of authors is problematic because authors’ names
often appear in multiple places of a page, which results in
several rules with maximum Similarity score. The heuris-
tic we use to get around this issue consists of adding a
new component in the ScoreFunction for author extraction
rules: the tree distance between the evaluated node and the
post content node. This new component takes advantage
of the positioning of a post’s authors node which often is a
direct child or shares its parent with the post content node.

Dates are affected by the same duplication issue, as well
as the issue of inconsistencies of format between web feeds
and web pages. Our solution for date extraction extends
the ScoreFunction for authors by comparing the extracted
string to multiple targets, each being a different string rep-
resentation of the original date obtained from the web feed.
For instance, if the feed indicates that a post was pub-
lished at "Thu, 01 Jan 1970 00:00:00", our algorithm will
search for a rule that returns one of "Thursday January 1,

1970", "1970-01-01", "43 years ago" and so on. So far
we do not support dates in multiple languages, but adding
new target formats based on languages detection would be
a simple extension of our date extraction algorithm.

Comments are usually available in separate web feeds, one
per blog post. Similarly to blog feeds, comment feeds have
a limited number of entries, and when the number of com-
ments on a blog post exceeds this limit, comments have to
be extracted from web pages. To do so, we use the following
ScoreFunction:

• Rules returning fewer HTML nodes than the number of
comments on the feed are filtered out with a zero score,

• The scores of the remaining rules are computed with
the value of the maximum weighted matching in the
complete bipartite graph G = (U, V,E), where U is
the set of HTML nodes returned by the rule, V is the
set of target comment fields from the web feed (such
as comment authors) and E(u, v) has weight equal to
Similarity(u, v).

Our crawler executes this algorithm on each post with an
overflow on its comment feed, thus supporting blogs with
multiple commenting engines. The comment content is ex-
tracted first, allowing us to narrow down the initial filtering
by fixing a target number of comments.

Regarding time complexity, computing the tree distance of
each node of a graph to a single reference node can be done
in linear time, and multiplying the number of targets by
a constant factor does not affect the asymptotic computa-
tional complexity. Computing scores of comment extraction
rules requires a more expensive algorithm. However, this is
compensated by the fact that the proportion of candidates
left, after filtering out rules not returning enough results, is
very low in practice. Analogous reformulations to the one
done with Algorithm 2 can be straightforwardly applied on
each ScoreFunction in order to minimize the time spent in
Similarity.

3. ARCHITECTURE
This section provides an overview of the crawler system ar-
chitecture and the different techniques we used. The overall
software architecture is presented and discussed, introducing
the Scrapy framework and the enrichments we implemented
for our specific usage. Then, we show how we integrated a
headless web browser into the harvesting process to support
blogs that use JavaScript to display page content. Finally,
we talk about the design choices we made in view of a large
scale deployment.

3.1 Overview
Our crawler is built on top of Scrapy2, an open-source frame-
work for web crawling. Scrapy provides an elegant and mod-
ular architecture illustrated in Figure 1. Several components
can be plugged into the Scrapy core infrastructure: Spiders,
Item Pipeline, Downloader Middlewares and Spider Middle-
wares; each allowing us to implement a different type of
functionality.

Our use case has two types of spiders: NewCrawl and Up-
dateCrawl, which implement the logic to respectively crawl
a new blog and get updates from a previously crawled blog.
After being downloaded and identified as blog posts (details
in subsection 3.2), pages are packed into Items and sent
through the following pipeline of operations:

1. Render JavaScript

2. Extract content

3. Extract comments

4. Download multimedia files

5. Propagate resulting records to the back-end

2http://scrapy.org/

Figure 1: Overview of the crawler architecture.
(Credit: Pablo Hoffman, Daniel Graña, Scrapy)

This pipeline design provides great modularity. For exam-
ple, disabling JavaScript rendering or plugging in an alter-
native back-end can be done by editing a single line of code.

3.2 Enriching Scrapy
In order to identify web pages as blog posts, our implemen-
tation enriches Scrapy with two components to narrow the
extraction process down to the subsets of pages which are
blog posts: blog post identification and download priority
heuristic.

Given a URL entry point to a website, the default Scrapy
behaviour traverses all the pages of the same domain in a
last-in-first-out manner. The blog post identification func-
tion is able to identify whether an URL points to a blog post
or not. Internally, for each blog, this function uses a regular
expression constructed from the blog post URLs found in the
web feed. This simple approach requires that blogs use the
same URL pattern for all their posts (or false negatives will
occur) which has to be distinct for pages that are not posts
(or false positives will occur). In practice, this assumption
holds for all blog platforms we encountered and seems to be
a common practice among web developers.

In order to efficiently deal with blogs that have a large num-
ber of pages which are not posts, the blog post identification
mechanism is not sufficient. Indeed, after all pages identi-
fied as blog posts are processed, the crawler needs to down-
load all other pages to search for additional blog posts. To
replace the naive random walk, depth first search or breadth
first search web site traversals, we use a priority queue where
priorities for new URLs are determined by a machine learn-
ing system. This mechanism has shown to be mandatory for
blogs hosted on a single domain alongside large number of
other types of web pages, such as those in forums or wikis.

The idea is to give high priority to URLs which are believed
to point to pages with links to blog posts. These predic-
tions are done using an active Distance-Weighted k-Nearest-
Neighbour classifier [5]. Let L(u) be the number of links to
blog posts contained in a page with URL u. Whenever a
page is downloaded, its URL u and L(u) are given to the
machine learning system as training data. When the crawler

encounters a new URL v, it will ask the machine learning
system for an estimation of L(v), and use this value as the
download priority of v. L(v) is estimated by calculating a
weighted average of the values of the k URLs most similar
to v.

3.3 JavaScript rendering
JavaScript is a widely used language for client-side script-
ing. While some applications simply use it for aesthetics,
an increasing number of websites use JavaScript to down-
load and display content. In such cases, traditional HTML
based crawlers do not see web pages as they are presented
to a human visitor by a web browser, and might therefore
be obsolete for data extraction.

In our experiments whilst crawling the blogosphere, we en-
countered several blogs where crawled data was incomplete
because of the lack of JavaScript interpretation. The most
frequent cases were blogs using the Disqus3 and LiveFyre 4

comment hosting services. For webmasters, these tools are
very handy because the entire commenting infrastructure
is externalized and their setup essentially comes down to
including a JavaScript snippet in each target page. Both
of these services heavily rely on JavaScript to download
and display the comments, even providing functionalities
such as real-time updates for edits and newly written com-
ments. Less commonly, some blogs are fully rendered using
JavaScript. When loading such websites, the web browser
will not receive the page content as an HTML document,
but will instead have to execute JavaScript code to down-
load and display the page content. The Blogger platform
provides the Dynamic Views as a default template, which
uses this mechanism [10].

To support blogs with JavaScript-generated content, we em-
bed a full web browser into the crawler. After considering
multiple options, we opted for PhantomJS5, a headless web
browser with great performance and scripting capabilities.
The JavaScript rendering is the very first step of web page
processing. Therefore, extracting blog post articles, com-
ments or multimedia files works equally well on blogs with
JavaScript-generated content and on traditional HTML-only
blogs.

When the number of comments on a page exceeds a cer-
tain threshold, both Disqus and LiveFyre will only load the
most recent ones and the stream of comments will end with
a Show More Comments button. As part of the page loading
process, we instruct PhantomJS to repeatedly click on these
buttons until all comments are loaded. Paths to Disqus and
LiveFyre Show More buttons are manually obtained. They
constitute the only non-generic elements of our extraction
stack which require human intervention to maintain and ex-
tend to other commenting platforms.

3.4 Scalability
When aiming to work with a large amount of input, it is
crucial to build every layer of a system with scalability in
mind [25]. The BlogForever Crawler, and in particular the

3http://disqus.com/websites
4http://web.livefyre.com
5http://phantomjs.org

two core procedures NewCrawl and UpdateCrawl, are de-
signed to be usable as part of an event-driven, scalable and
fault-resilient distributed system.

Heading in this direction, we made the key design choice to
have both NewCrawl and UpdateCrawl as stateless compo-
nents. From a high-level point of view, these two compo-
nents are purely functional :

NewCrawl : URL→ P(RECORD)

UpdateCrawl : URL×DATE→ P(RECORD)

where URL, DATE and RECORD are respectively the set
of all URLs, dates and records, and P designates the power
set operator. By delegating all shared mutable state to the
back-end system, web crawler instances can be added, re-
moved and used interchangeably.

4. EVALUATION
Our evaluation is articulated in two parts. First, we com-
pare the article extraction procedure presented in section 2
with three open-source projects capable of extracting arti-
cles and titles from web pages. The comparison will show
that our blog-targeted solution has better performance both
in terms of success rate and running time. Second, a dis-
cussion is held regarding the different solutions available to
archive data beyond what is available in the HTML source
code. Extraction of authors, dates and comments is not part
of this evaluation because of the lack of publicly available
competing projects and reference data sets.

In our experiments we used Debian GNU/Linux 7.2, Python
2.7 and an Intel Core i7-3770 3.4 GHz processor. Timing
measurements were made on a single dedicated core with
garbage collection disabled. The Git repository for this pa-
per6 contains the necessary scripts and instructions to repro-
duce all the evaluation experiments presented in this section.
The crawler source code is available under the MIT license
from the project’s websites7.

4.1 Extraction success rates
To evaluate article and title extraction from blog posts we
compare our approach to three open source projects: Read-
ability8, Boilerpipe [15] and Goose9, which are implemented
in JavaScript, Java and Scala respectively. These projects
are more generic than our blog-specific approach in the sense
that they are able to identify and extract data directly from
HTML source code, and do not make use of web feeds or
structural similarities between pages of the same blog (ob-
servations (a) and (b)). Table 2 shows the extraction success
rates for article and title on a test sample of 2300 blog posts
from 230 blogs obtained from the Spinn3r dataset [3].

On our test dataset, Algorithm 1 outperformed the com-
petition by 4.9% on article extraction and 10.1% on title
extraction. It is important to stress that Readability, Boil-
erpipe and Goose rely on generic techniques such as word
density, paragraph clustering and heuristics on HTML tag-
ging conventions, which are designed to work for any type

6https://github.com/OlivierBlanvillain/bfc-paper
7https://github.com/BlogForever/crawler
8https://github.com/gfxmonk/python-readability
9https://github.com/GravityLabs/goose

Target Our approach Readability Boilerpipe Goose

Article 93.0% 88.1% 79.3% 79.2%

Title 95.0% 74.0% N/A 84.9%

Table 2: Extraction success rates

of web page. On the contrary, our algorithm is only suit-
able for pages with associated web feeds, as these provide
the reference data used to build extraction rules. Therefore,
results shown in Table 2 should not be interpreted as a gen-
eral quality evaluation of the different projects, but simply
as evidence that our approach is more suitable when working
with blogs.

4.2 Article extraction running times
In addition to the quality of the extracted data we also eval-
uated the running time of the extraction procedure. The
main point of interest is the ability of the extraction proce-
dure to scale as the number of posts in the processed blog
increases. This corresponds to the evaluation of a NewCrawl
task, which is in charge of harvesting all published content
on a blog.

Figure 2 shows the cumulated time spent for each article
extraction procedure (this excludes common tasks such as
downloading pages and storing results) as a function of the
number of blog posts processed. We used the Quantum Di-
aries10 blog for this experiment.

Data presented in this graph was obtained by taking the
arithmetic mean over 10 measurements. These results are
believed to be significant given that standard deviations are
of the order of 2 milliseconds.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

C
u
m
u
la
te
d
ru
n
n
in
g
ti
m
e
(s
ec
.)

Processed blog posts

Figure 2: Running time of articles extraction.

Our approach
Readability
Boilerpipe

Goose

As illustrated in Figure 2, our approach spends the major-
ity of its total running time between the initialisation and
the processing of the first blog post. This initial increase
of about 0.4 seconds corresponds to cost of executing Algo-
rithm 2 to compute extraction rule for articles. As already
mentioned, this consists of computing the best extraction
rule of each page referenced by the web feed and picking the

10http://www.quantumdiaries.org

most appropriate one. Once we have this extraction rule,
processing subsequent blog posts only requires parsing and
applying the rule, which takes about 3 milliseconds and are
barely visible on the scale of Figure 2. The other evalu-
ated solutions do not function this way: each blog post is
processed as new and independent input, leading to approx-
imately linear running times.

The vertical dashed line at 15 processed blog posts repre-
sents a suitable point of comparison of processing time per
blog post. Indeed, as the web feed of our test blog contains
15 blog posts, the extraction rule computation performed by
our approach includes the cost of entirely processing these
15 entries. That being said, comparing raw performance of
algorithms implemented in different programming languages
is not very informative given the high variation of running
times observed across programming languages [12].

5. RELATED WORK
Our crawler combines ideas from previous work on general
web crawlers and wrapper generation algorithms. The word
wrapper is commonly used to designate procedures to ex-
tract structured data from unstructured documents. We
did not use this word in the present paper in favour of the
term extraction rule, which better reflects our implementa-
tion and is decoupled from the XPath engine that concretely
performs the extraction.

Web crawling has been a well-studied topic over the past
decade. One direction which we believe to be of crucial im-
portance is the one of large scale distributed crawlers. Mer-
cator [11], UbiCrawler [2] and the crawler discussed in [24]
are examples of a successful distributed crawler and the pa-
pers describing them provide useful information regarding
the challenges encountered when working on a distributed
architecture. One of the core issues when scaling out seems
to be in sharing the list of URLs that have already been
visited and those that need to be visited next. While [11]
and [24] rely on a central node to hold this information,
[2] uses a fully distributed architecture where URLs are di-
vided among nodes using consistent hashing. Both of these
approaches require the crawlers to implement complex mech-
anisms to achieve fault tolerance. The BlogForever Crawler
circumvents this problem by delegating all shared mutable
state to the back-end system. In addition, since we process
web pages on the fly and directly emit the extracted content
to the back-end, there is no need for persistent storage on
the crawler side. This removes one layer of complexity when
compared to general crawlers which need to use a distributed
file system ([24] uses NFS, [1] uses HDFS) or implement an
aggregation mechanism in order to further exploit the col-
lected data. Our design is similar to the distributed active
object pattern presented in [16], which is further simplified
by the fact that the state of the crawler instances is not kept
between crawls.

A common approach in web content extraction is to manu-
ally build wrappers for the targeted websites. This approach
has been proposed in the crawler discussed in [7] which auto-
matically assigns web sites to predefined categories and gets
the appropriate wrapper from a static knowledge base. The
limiting factor in this type of approach is the substantial
amount of manual work needed to write and maintain the

wrappers, which is not compatible with the increasing size
and diversity of the web. Several projects try to simplify this
process and provide various degrees of automation. This is
the case of the Stalker algorithm [19] which generates wrap-
pers based on user-labelled training examples. Some com-
mercial solutions such as the Lixto project [9] simplify the
task of building wrappers by offering a complete integrated
development environment where the training data set is ob-
tained via a graphical user interface.

Automated solutions use other techniques to identify and
extract information directly from the structure and content
of the web page. The Boilerpipe project [15] (mentioned
in our evaluation) uses text density analysis to extract the
main article of a web page. The approach presented in [21] is
based on a tree structure analysis of pages with similar tem-
plates, such as news web sites or blogs. Automatic solutions
have also been designed specifically for blogs. Similarly to
our approach, Oita and Senellart [20] describe a procedure
to automatically build wrappers by matching web feed ar-
ticles with HTML pages. This work was further extended
by Gkotsis, Stepanyan, Cristea and Joy [8] with a focus on
extracting content anterior to the one indexed in web feeds.
[8] also reports to have successfully extracted blog post ti-
tles, publication dates and authors, but their approach is
less generic than the one for the extraction of articles. Fi-
nally, neither [20] nor [8] provide complexity analysis which
we believe to be essential before putting an algorithm in
production.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented the internals of the BlogFor-
ever Crawler. Its central article extraction procedure based
on extraction rules generation was introduced along with
theoretical and empirical evidence validating the approach.
A simple adaptation of this procedure that allows to ex-
tract different types of content, including authors, dates and
comments was then presented. In order to support rapidly
evolving web technologies such as JavaScript-generated con-
tent, the crawler uses a web browser to render pages before
processing them. We also discussed the overall software ar-
chitecture, highlighting the design choices made to achieve
both modularity and scalability. Finally, we evaluated our
content extraction algorithm against three state-of-the-art
web article extraction algorithms.

Future work could investigate hybrid extraction algorithms
to try and achieve near 100% success rates. Indeed, we have
observed11 that the primary causes of failure of our approach
were the insufficient quality of web feeds or the high struc-
tural variations of blog pages. This suggests that combining
our approach with others techniques such as word density
or spacial reasoning could lead to better performance given
that these techniques are insensible to the above issues.

Another possible research direction would be the deploy-
ment of the BlogForever Crawler on a large scale distributed
system. This is particularly relevant in the domain of web
crawling given that intensive network operations can be a
serious bottleneck. Crawlers greatly benefit from the use of

11An in-depth analysis of causes of failure was not included
in this paper given the high amount of manual work required
to identify causes of failure on problematic pages.

multiple Internet access points which makes them natural
candidates for distributed computing. We intend to explore
these opportunities in our future work.

7. ACKNOWLEDGMENTS
Acknowledgments to our colleagues and friends from CERN,
J. Cowton, M. Hobbs and A. Oviedo, for their careful read-
ing and helpful comments that improved the quality of this
paper. We are also very grateful to G. Gkotsis from the
University of Warwick for generously sharing his research
material, time, and ideas with us.

8. REFERENCES
[1] P. Berger, P. Hennig, J. Bross, and C. Meinel.

Mapping the Blogosphere–Towards a universal and
scalable Blog-Crawler. In Third International
Conference on Social Computing, pages 672–677, 2011.

[2] P. Boldi, B. Codenotti, M. Santini, and S. Vigna.
UbiCrawler: a scalable fully distributed web crawler.
2003.

[3] K. Burton, N. Kasch, and I. Soboroff. The ICWSM
2011 spinn3r dataset. In Fifth Annual Conference on
Weblogs and Social Media, 2011.

[4] L. R. Dice. Measures of the amount of ecologic
association between species. Ecology, 26(3):297, July
1945.

[5] S. A. Dudani. The Distance-Weighted
k-Nearest-Neighbor rule. IEEE Transactions on
Systems, Man and Cybernetics, SMC-6(4):325–327,
1976.

[6] N. Eltantawy and J. B. Wiest. Social media in the
egyptian revolution: Reconsidering resource
mobilization theory (1-3), 2012.

[7] M. Faheem. Intelligent crawling of web applications
for web archiving. In Proceedings of the 21st
international conference companion on World Wide
Web, pages 127–132, 2012.

[8] G. Gkotsis, K. Stepanyan, A. I. Cristea, and M. Joy.
Self-supervised automated wrapper generation for
weblog data extraction. In Proceedings of the 29th
British National Conference on Big Data, BNCOD’13,
pages 292–302, Berlin, Heidelberg, 2013.

[9] G. Gottlob, C. Koch, R. Baumgartner, M. Herzog,
and S. Flesca. The lixto data extraction project: Back
and forth between theory and practice. In Proceedings
of the Twenty-third Symposium on Principles of
Database Systems, pages 1–12, 2004.

[10] A. Harasymiv. Blogger dynamic views.
http://buzz.blogger.com/2011/09/dynamic-views-

seven-new-ways-to-share.htm. Last visited 20 Jan
2014.

[11] A. Heydon and M. Najork. Mercator: A scalable,
extensible web crawler. Word Wide Web, 1999.

[12] R. Hundt. Loop recognition in C++/Java/Go/Scala.
In Proceedings of Scala Days, 2011.

[13] K. Johnson. Are blogs here to stay?: An examination

of the longevity and currency of a static list of library
and information science weblogs. Serials review,
34(3):199–204, 2008.

[14] N. Kasioumis, V. Banos, and H. Kalb. Towards
building a blog preservation platform. World Wide
Web, pages 1–27, 2013.

[15] C. Kohlschütter, P. Fankhauser, and W. Nejdl.
Boilerplate detection using shallow text features. In
Proceedings of the Third ACM International
Conference on Web Search and Data Mining, WSDM
’10, page 441–450, New York, NY, USA, 2010.

[16] R. G. Lavender and D. C. Schmidt. Active object – an
object behavioral pattern for concurrent
programming. 1996.

[17] V. Levenshtein. Binary codes capable of correcting
deletions, insertions and reversals. Soviet Physics
Doklady., 10(8):707–710, Feb. 1966.

[18] C. Lindahl and E. Blount. Weblogs: simplifying web
publishing. Computer, 36(11):114–116, 2003.

[19] I. Muslea, S. Minton, and C. A. Knoblock.
Hierarchical wrapper induction for semistructured
information sources. Journal of Autonomous Agents
and Multi-Agent Systems, 4:93–114, 2001.

[20] M. Oita and P. Senellart. Archiving data objects using
web feeds. Sept. 2010.

[21] D. C. Reis, P. B. Golgher, A. S. Silva, and A. F.
Laender. Automatic web news extraction using tree
edit distance. In Proceedings of the 13th International
Conference on World Wide Web, WWW ’04, pages
502–511, New York, NY, USA, 2004.

[22] A. Rogers and G. Brewer. Microdata usage statistics.
http://trends.builtwith.com/docinfo/Microdata.
Last visited 20 Jan 2014.

[23] RSS Advisory Board. Rss 2.0 specification. 2007.

[24] V. Shkapenyuk and T. Suel. Design and
implementation of a high-performance distributed web
crawler. In 18th International Conference on Data
Engineering, 2002. Proceedings, pages 357–368, 2002.

[25] Various authors. The reactive manifesto.
http://reactivemanifesto.org. Last visited 20 Jan
2014.

[26] Various authors, W3C. W3C standards.
http://w3.org/standards. Last visited 20 Jan 2014.

[27] Various authors, WC3. Use h1 for top level heading.
http://www-mit.w3.org/QA/Tips/Use_h1_for_Title.
Last visited 20 Jan 2014.

[28] WHATWG. Microdata - HTML5 draft standard.
http://whatwg.org/specs/web-apps/current-

work/multipage/microdata.html. Last visited 20 Jan
2014.

[29] B. Wilson. Metadata analysis and mining application.
http://dev.opera.com/articles/view/mama. Last
visited 20 Jan 2014.

[30] WordPress. Posting activity.
http://wordpress.com/stats/posting. Last visited
20 Jan 2014.

