Nearest-Biclusters Collaborative Filtering with
Constant Values

Panagiotis Symeonidis, Alexandros Nanopoulos, Apostolos Papadopoulos,
and Yannis Manolopoulos

Aristotle University, Department of Informatics, Thessaloniki 54124, Greece
{symeon,alex,apostol ,manolopo}@delab.csd.auth.gr

Abstract. Collaborative Filtering (CF) Systems have been studied ex-
tensively for more than a decade to confront the “information overload”
problem. Nearest-neighbor CF is based either on common user or item
similarities, to form the user’s neighborhood. The effectiveness of the
aforementioned approaches would be augmented, if we could combine
them. In this paper, we use biclustering to disclose this duality between
users and items, by grouping them in both dimensions simultaneously.
We propose a novel nearest-biclusters algorithm, which uses a new sim-
ilarity measure that achieves partial matching of users’ preferences. We
apply nearest-biclusters in combination with a biclustering algorithm —
Bimax — for constant values. Extensively performance evaluations on
two real data sets is provided, which show that the proposed method
improves the performance of the CF process substantially. We attain
more than 30% and 10% improvement in terms of precision and recall,
respectively.

1 Introduction

Information Filtering has become a necessary technology to attack the “informa-
tion overload” problem. In our everyday experience, while searching on a topic
(e.g., products, movies, etc.), we often rely on suggestions from others, more
experienced in it. In the Web, however, the plethora of available suggestions
renders it difficult to detect the trustworthy ones. The solution is to shift from
individual to collective suggestions. Collaborative Filtering (CF) applies infor-
mation retrieval and data mining techniques to provide recommendations based
on suggestions of users with similar preferences. CF is a very popular method in
recommender systems and e-commerce applications.

1.1 Motivation

Two families of CF algorithms have been proposed in the literature: (a) nearest-
neighbors (a.k.a. memory-based) algorithms, which recommend according to the
preferences of nearest neighbors; and (b) model-based algorithms, which recom-
mend by first developing a model of user ratings. Related research has reported

O. Nasraoui et al. (Eds.): WebKDD 2006, LNAT 4811, pp. 36]55] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Nearest-Biclusters Collaborative Filtering with Constant Values 37

that nearest-neighbor algorithms present good performance in terms of accu-
racy. Nevertheless, their main drawback is that they cannot handle scalability
to large volumes of data. On the other hand, model-based algorithms, once they
have build the model, present good scalability. However, they have the overhead
to build and update the model, and they cannot cover as diverse a user range
as the nearest-neighbor algorithms do [29]. Therefore, a first goal is to develop
nearest-neighbor algorithms that combine good accuracy with the advantage of
scalability that model-based algorithms present.

Regarding nearest-neighbor algorithms, there exist two main approaches: (a)
user-based (UB) CF, which forms neighborhoods based on similarity between
users; and (b) item-based (IB) CF, which forms neighborhoods based on simi-
larities between items. However, both UB and IB are one-sided approaches, in
the sense that they examine similarities either only between users or only be-
tween items, respectively. This way, they ignore the clear duality that exists
between users and items. Furthermore, UB and IB algorithms cannot detect
partial matching of preferences, because their similarity measures consider the
entire set of items or users, respectively. However, two users may share similar
preferences only for a subset of items. For instance, consider two users that share
similar preferences for science-fiction books and differentiate in all other kinds
of literature. In this case, their partial matching for science-fiction, which can
help to provide useful recommendations between them for this kind of books,
will be missed by existing approaches. Therefore, by measuring similarity with
respect to the entire set of items, we miss partial matchings between two users,
since the differences in the remaining items prevails over the subset of items
in which their preferences match. Analogous reasoning applies for the IB case.
Thus, a second goal is to develop nearest-neighbor algorithms that will be able to
consider the duality between users and items, and at the same time, to capture
partial matching of preferences.

Finally, the fact that a user usually has various different preferences, has to
be taken into account for the process of assigning him to clusters. Therefore,
such a user has to be included in more than one clusters. Notice that this can-
not be achieved by most of the traditional clustering algorithms, which place
each item/user in exactly one cluster. In conclusion, a third goal is to adopt an
approach that does not follow the aforementioned restriction and can cover the
entire range of the user’s preferences.

1.2 Contribution

To attain the first described goal, i.e., to develop scalable nearest-neighbor al-
gorithms, we propose the grouping of different users or items into a number of
clusters, based on their rating patterns. This way, similar searching is performed
efficiently, because we use consolidated information (that is, the clusters) and
not individual users or items.

38 P. Symeonidis et al.

To address the second described goal, i.e., to disclose the duality between
users and items, we propose the generation of groups of users and items at the
same time. The simultaneous clustering of users and items discovers biclusters,
which correspond to groups of users which exhibit highly correlated ratings on
groups of items. Biclusters allow the computation of similarity between a test
user and a bicluster only on the items that are included in the bicluster. Thus,
partial matching of preferences is taken into account too. Moreover, a user can be
matched with several nearest biclusters, thus to receive recommendations that
cover the range of his various preferences.

To face the third described goal, i.e., to include a user in more than one
clusters, we allow a degree of overlap between biclusters. Thus, if a user presents
different item preferences, by using overlapping biclusters, he can be included in
more clusters in order to cover all his different preferences.

The contributions of this paper are summarized as follows:

— To disclose the duality between users and items and to capture the range of
the user’s preferences, we introduce for the first time, to our knowledge, the
application of an exact biclustering algorithm to the CF area.

— We propose a novel nearest-biclusters algorithm, which uses a new similarity
measure that achieves partial matching of users’ preferences.

— Our extensive experimental results illustrate the effectiveness and efficiency
of the proposed algorithm over existing approaches.

The rest of this paper is organized as follows. Section 2] summarizes the related
work, whereas Section [3] contains the analysis of the CF issues. The proposed
approach is described in Section 4l Experimental results are given in Section [B
Finally, Section [6l concludes this paper.

2 Related Work

In 1992, the Tapestry system [6] introduced Collaborative Filtering (CF). In
1994, the GroupLens system [21] implemented a CF algorithm based on common
users preferences. Nowadays, it is known as user-based CF algorithm, because it
employs users’ similarities for the formation of the neighborhood of nearest users.
Since then, many improvements of user-based algorithm have been suggested,
e.g., [QII823].

In 2001, another CF algorithm was proposed. It is based on the items’ similar-
ities for a neighborhood generation [24IT3|[3]. Now, it is denoted as item-based or
item-item CF algorithm, because it employs items’ similarities for the formation
of the neighborhood of nearest users.

The concept of biclustering has been used in [I7] to perform grouping in a
matrix by using both rows and columns. However, biclustering has been used

Nearest-Biclusters Collaborative Filtering with Constant Values 39

previously in [7] under the name direct clustering. Recently, biclustering (also
known as co-clustering, two-sided clustering, two-way clustering) has been ex-
ploited by many researchers in diverse scientific fields, towards the discovery of
useful knowledge [2I4U5IT4IT9]. One of these fields is bioinformatics, and more
specifically, microarray data analysis. The results of each microarray experiment
are represented as a data matrix, with different samples as rows and different
genes as columns. Among the proposed biclustering algorithms we highlight the
following: (i) Cheng and Churchs algorithm [2] which is based on a mean squared
residue score, (ii) the Iterative Signature Algorithm (ISA) which searches for
submatrices representing fix points [12], (iii) the Order-Preserving Submatrix
Algorithm (OPSM), which tries to identify large submatrices for which the in-
duced linear order of the columns is identical for all rows [I],(iv) the Samba
Algorithm, which is a graph theoretic approach in combination with a statisti-
cal model [27126], and (v) the Bimax algorithm, an exact biclustering algorithm
based on a divide-and-conquer strategy, that is capable of finding all maximal
bicliques in a corresponding graph-based matrix representation [20)].

In the CF area, there is no related work that has applied a specific biclustering
algorithm to provide recommendations. Madeira and Oliveira [I5] have reported
in their survey, the existence of works that have used two-sided clustering in the
CF field. In these models [28/11], there is a hidden variable for each user and
item, respectively, that represents the cluster of that user or item. For each user-
item pair, there is a variable that denotes their relation. The existence of the
relation depends on the cluster of the person, and the cluster of item, hence
the notion of two-sided clustering. These are latent class models using statistical
estimation of the model parameters and clustering is performed separately for
users and items. In contrast, our approach is based on the application of specific
biclustering algorithmsﬂ that perform simultaneous clustering of users and items.

3 Examined Issues

In this section, we provide details for the issues we examine about CF algorithms.
Table [[l summarizes the symbols that are used in the sequel.

Scalability: Scalability is important, because in real-world applications the
number of users/items is very large. As the number of users/items grows, CF
algorithms face performance problems. Therefore, CF algorithms should be
evaluated in terms of their responding time in providing recommendations.

Similarity measure: The most extensively used similarity measures are based
on correlation and cosine-similarity [9J24]. Specifically, user-based CF algo-
rithms mainly use Pearson’s Correlation (Equation 1), whereas for item-based

! For implementation issues, we use the Bimax biclustering algorithm, however any
other algorithm can be used equally well, as our approach is independent of the
specific biclustering algorithm that is used.

40 P. Symeonidis et al.

Table 1. Symbols and definitions

Symbol Definition

k

number of nearest neighbors or biclusters

size of recommendation list

threshold for positive ratings

domain of all items

domain of all users

some users

some items

set of items rated by user u

set of users rated item ¢

the rating of user u on item i

mean rating value for user u

mean rating value for item ¢

minimum allowed number of users in a bicluster
minimum allowed number of items in a bicluster
set of all biclusters

a bicluster

set of items of bicluster b

set of users of bicluster b

CF algorithms, the Adjusted Cosine Measure is preferred (Equation 2) [T6124].
The Adjusted Cosine Measure is a variation of the simple cosine formula, that
normalizes bias from subjective ratings of different users. As default options,
for user-based CF we use the Pearson Correlation, whereas for item-based we
use the Adjusted Cosine Similarity, because they presented the best behavior

overall.
Z (Tu,i - Tu)(rv,i - Tv)
sim(u,v) = vies S =1,N1,. (1)
Z (ru,i - Tu)Q Z (Tv,i - T’U)Q
VieS ViesS
Z (Tu,i - Tu)(ru,j - Tu)
sim(i, j) = Yuel T=U;NU;. (2)
Z (Tui — ru)’ Z (ru; — r)?
YueU; YueU;

Neighborhood size: The number, k, of nearest neighbors used for the neigh-
borhood formation is important, because it can affect substantially the sys-
tem’s accuracy. In most related works [8I22], k£ has been examined in the
range of values between 10 and 100. The optimum % depends on the data
characteristics (e.g., sparsity). Therefore, CF algorithms should be evaluated
against varying k, in order to tune it.

Nearest-Biclusters Collaborative Filtering with Constant Values 41

Positive rating threshold: Recommendation for a test user is performed by
generating the top-IV list of items that appear most frequently in his formed
neighborhood (this method is denoted as Most-Frequent item-recommen-
dation). Nevertheless, it is evident that recommendations should be “pos-
itive”, as it is not success to recommend an item that will be rated with,
e.g., 1 in 1-5 scale [25]. Thus, “negatively” rated items should not contribute
to the increase of accuracy. We use a rating-threshold, P, to recommended
items whose rating is not less than this value. If we do not use a P, value,
then the results become misleading.

Training/Test data size: There is a clear dependence between the training
set’s size and the accuracy of CF algorithms [24]. Through our experimen-
tal study we verified this conclusion. Though most related research uses a
size around 80%, there exist works that use significantly smaller sizes [16].
Therefore, CF algorithms should be evaluated against varying training data
sizes.

Recommendation list’s size: The size, N, of the recommendation list cor-
responds to a tradeoff: With increasing N, the absolute number of relevant
items (i.e., recall) is expected to increase, but their ratio to the total size of
the recommendation list (i.e., precision) is expected to decrease. (Recall and
precision metrics are detailed in the following.) In related work [I3124], N
usually takes values between 10 and 50.

Evaluation Metrics: Several metrics have been used for the evaluation of CF
algorithms, for instance the Mean Absolute Error (MAE) or the Receiving
Operating Characteristic (ROC) curve [9[10]. MAE represents the absolute
differences between the real and the predicted values and is an extensively
used metric. From our experimental study (Section) we understood that
MAE is able to characterize the accuracy of prediction, but is not indica-
tive for the accuracy of recommendation. Since in real-world recommender
systems the experience of users mainly depends on the accuracy of recom-
mendation, MAE may not be the preferred measure. For this reason we focus
on widely accepted metrics from information retrieval.

For a test user that receives a top-N recommendation list, let R denote the
number of relevant recommended items (the items of the top-N list that are
rated higher than P, by the test user). We define the following:

— Precision is the ratio of R to IN.
— Recall is the ratio of R to the total number of relevant items for the test
user (all items rated higher than P, by him).

Notice that with the previous definitions, when an item in the top-N list is
not rated at all by the test user, we consider it as irrelevant and it counts
negatively to precision (as we divide by N) [16]. In the following we also use
F1, because it combines both the previous metrics:

F1 = 2 - recall - precision/(recall + precision).

42 P. Symeonidis et al.
4 Nearest Bicluster Approach

4.1 Outline of the Proposed Approach
Our approach consists of three stages.

— Stage 1: the data preprocessing/discretization step.
— Stage 2: the biclustering process.
— Stage 3: the nearest-biclusters algorithm.

The proposed approach, initially, applies a data preprocessing/discretization
step. The motivation is to preserve only the positive ratings. Consequently, we
proceed to the biclustering process, where we create simultaneously groups con-
sisting of users and items. Finally, we implement the k nearest-biclusters algo-
rithm. We calculate similarity between each test user and the generated bicluster.
Thus, we create the test users’ neighborhood, consisted of the k nearest biclus-
ters. Then, we provide for each test user a Top-N recommendation list based on
the most frequent items in his neighborhood.

To ease the discussion, we will use the running example illustrated in Figure[T],
where [_7 are items and U; _g are users. As shown, the example data set is divided
into training and test set. The null cells (no rating) are presented with dash.

Iy Iz I3 14 Is Is Iz

Uup5 -2 -1- -
U2 - 4143 -
Us 4 -2 -2 -5
Uy - 314 -52
Us - 24251 -
Us 5 1 1 - -3
U - 25 - 4

Us 1 4 54 3 -

(a)

L I I3 Iy I5 Ie I
U5 - 4-1-2
(b)

Fig. 1. Running example: (a) training Set; (b) test Set

4.2 The Data Preprocessing/Discretization Step

Data preprocessing is applied to make data more suitable for data mining. Ac-
cording to the positive rating threshold, we have introduced in Section[3] recom-
mendations should be “positive”, as it is not success to recommend an item that

Nearest-Biclusters Collaborative Filtering with Constant Values 43

&
W~
1
|
|
1
ot

=
1
1
IS
1
[

- -3
Ur - - 5 - 4 - -
Us - 4 - 543 -

&
ot

Fig. 2. Training Set with rating values > P-

Iy 1o I3 14 Is Is I7

U;1000000O0
U20010110
Us1 000001
Uy, 0101010
Us 0010100
Us1 000001
U0010100
Us 0101110

Fig. 3. Binary discretization of the Training Set

will be rated with, e.g., 1 in 1-5 scale. Thus, “negatively” rated items should not
contribute to the increase of accuracy. This is the reason that we are interested
only in the positive ratings, as shown in Figure [2

Furthermore, as biclustering groups items and users simultaneously, it allows
to identify sets of users sharing common preferences across subsets of items. In
our approach, the main goal is to find the largest possible subsets of users that
have rated positively (above P; rating threshold) items. Therefore, the problem
can be discretized to binary values by setting as discretization threshold the P;
rating threshold. The binarized data are shown in Figure

Notice that binarization of data is optional and can be omitted, in case we
use a biclustering algorithm which discovers biclusters with coherent values on
both users and items. In our case, as shown in the next subsection, we use Bimax
algorithm which finds clusters with constant values and the binarization step is
required. In a future work, we will examine more types of biclustering algorithms,
which will omit the preprocessing step.

4.3 The Biclustering Process

The biclustering process on a data matrix involves the determination of a set of
clusters taking into account both rows and columns. Each bicluster is defined on

44 P. Symeonidis et al.

14 IZ 16 15 13 I] 17
Us{0 0 0 0 011 Tu
Us |0 0 0 0 01 1
Us|0 0 011 110 0
U;10 0 011 110 0
U; |0 011 141 110 0
Us [T 00 0
Usfbl 1 110 0 0 0
U;, 00 00 0 1 0

Fig. 4. Applying biclustering to the Training Set

a subset of rows and a subset of columns. Moreover, two biclusters may overlap,
which means that several rows or columns of the matrix may participate in
multiple biclusters. Another important characteristic of biclusters is that each
bicluster should be maximal, i.e., it should not be fully contained in another
determined bicluster.

For the biclustering step, there are two main bicluster classes that have been
proposed: (a) biclusters with constant values and (b) biclusters with coherent
values. The first category looks for subsets of rows and subsets of columns with
constant values, while the second is interested in biclusters with coherent values.
For the biclustering step, we have adopted a simple constant biclustering algo-
rithm denoted as Bimax [20], which is executed off-line. It is an exact biclustering
algorithm based on a divide-and-conquer strategy that is capable of finding all
maximal biclusters in a corresponding graph-based matrix representation.

For the Bimax algorithm, a bicluster b(Uy, Ij,) corresponds to a subset of users
Uy, C U that jointly present positively rating behavior across a subset of items
I, € Z. In other words, the pair (Uy, Ip,) defines a submatrix for which all elements
equal to 1.

The main goal of the Bimax algorithm is to find all biclusters that are
inclusion-maximal, i.e, that are not entirely contained in any other bicluster.
The required input to Bimax is the minimum number of users and the minimum
number of items per bicluster. It is obvious that the Bimax algorithm finds a
large number of overlapping biclusters. To avoid this we can perform a secondary
filtering procedure to reduce this number to the desired overlapping degree.

In Figure H we have applied the Bimax algorithm to the running exam-
ple. Four biclusters are found (depicted with dashed rectangles), with minimum
number of users equal to 2 (i.e., |Up| > 2) and the minimum number of items
equal to 2 (i.e., [Ip| > 2). These bilcusters are summarized as follows:

bi: Uy, = {Us,Us}, I, = {I1,I7}
ba: Uy, = {Us,Ur,Us}, I, = {Is, I3}
bs: Uy, = {Us,Us}, Ty = {6, 15}
ba: Uy, = {Us,Us}, Ioy = {Is,12, 16}

Nearest-Biclusters Collaborative Filtering with Constant Values 45

We have to notice that there is overlap between biclusters. Specifically, be-
tween biclusters 2 and 3 in item I5. Also, we have overlapping between biclusters
3 and 4 in item Is. We can allow this overlapping (it reaches 16,6%) or we can
forbid it. If we forbid it, then we will abolish the existence of the third bicluster
because it is smaller than the other two. In order not to miss important bi-
clusters, we allow overlapping. However, overlapping introduces a trade-off: (a)
with few biclusters the effectiveness reduces, as several biclusters may be missed;
(b) with a high number of biclusters efficiency reduces; as we have to examine
many possible matchings. In our experimental results we show the tuning of the
allowed overlapping factor.

4.4 The Nearest Bicluster Algorithm

In order to provide recommendations, we have to find the biclusters containing
users with preferences that have strong partial similarity with the test user. This
stage is executed on-line and consists of two basic operations:

— The formation of the test user’s neighborhood, i.e., to find the k nearest
biclusters.
— The generation of the top-N recommendation list.

Array k-NearestBiclusters(nB, 1B[nB][nI], Ul[nI])
begin
//int nl number of items
//int nB number of biclusters
//int ¢I, nel common items/items not in common
//Array IB[nB][nI] stores items per bicluster (binary)
//Array Ul[nI] stores the user ratings
//Array SIM[nB] stores user-biclusters similarities
for b=1 to nB

cI=0; ncI=0; SIM[b] = 0;

for i=1 to nl
if (IB[b][¢] = 1) and (UI[7] > P1)
cl =cl + 1
if (IB[b][i] = 1) and (UI[i] < PT)
ncl=ncl+1;
SIM[b] = ¢/ (eI + ncl);

sort(SIM); //descending order

return (SIM[0..k-1]);
end

Fig. 5. The algorithm for the formation of a test user’s biclusters neighborhood

46 P. Symeonidis et al.

To find the k nearest biclusters, we measure the similarity of the test user and
each of the biclusters. The central difference with the past work is that we are
interested in the similarity of test user and a bicluster only on the items that are
included in the bicluster and not on all items that he has rated. As described, this
allows for the detection of partial similarities. The similarity between the test
user and each bicluster is calculated by dividing the items they have in common
to the sum of items they have in common and not in common. In Equation [3]
we calculate the similarity between a user u and bicluster b as follows:

. _ |1 () L]
sim(u,b) = (V1] + 1Ty — 1| (3)

It is obvious that similarity values range between [0,1]. The algorithm for the
formation of the similarity matrix between a test user and the biclusters is shown
in Figure

Array TOPN(nI, nnB, topN, UB[nB], SIM[k])
begin
//int nl number of test users/items
//int topN number of items in recommendation list
//int nnB number of nearest biclusters
//Array IB[nB][nI] stores items per bicluster(binary)
//Array WF[nI] stores items’ Weighted Frequency
//Array SIM[nB] stores users-biclusters similarities
//Array UB[nB] stores the number of users per bicluster
//Array TOPN[topN] stores the recommendation list
for j=1 to nl
WEF[j].value = 0;
WEF[j].position = j;

for b=1 to nnB

for j=1 to nl
//if an item belongs to the bicluster
if (IB[SIM][b].position][j] > 0)
WEj].value += UB[b] * SIM[b];

sort(WF); //descending order of WF values
for i=1 to topN
if (WF[i].value > 0)

TOPN[i]= WEF[i].position;
end

Fig. 6. Generation of top-N recommendation list

Nearest-Biclusters Collaborative Filtering with Constant Values 47

In the next phase, we proceed to the generation of the top-N recommendation
list. For this purpose, we have to find the appearance frequency of each item and
recommend the N most frequent. In Equation] we define as Weighted Frequency
(WF) of an item ¢ in a bicluster b, the product between |Uy| and the similarity
sim(u, b). This way we weight the contribution of each bicluster with its size in
addition to its similarity with the test user:

WF(i,b) = sim(u, b) = |Up| (4)

Finally, we apply the Most Frequent Item Recommendation (proposing those
items that appear most frequently in the test user’s formed neighborhood). Thus,
we add the item weighted frequencies, we sort them, and propose the top-N items
in the constructed list, which is customized to each test user preferences. The
algorithm for the top-N generation list, is shown in Figure

In our running example, assume that we keep all four biclusters (allow over-
lapping) and we are interested in 2 nearest biclusters (k = 2). As it is shown,
Uy has rated positively only two items (I7,13). So, his similarity with each of
the biclusters is (0.5, 0.5, 0, 0), respectively. Thus, test user’s nearest neighbors
come from the first two biclusters, and the recommended items for him will be
items I7 and 15.

5 Experimental Configuration

In the sequel, we study the performance of the described nearest bicluster ap-
proach, against existing CF algorithms, by means of a thorough experimental
evaluation. Henceforth, the proposed algorithm is denoted as Nearest Biclusters,
the user-based algorithm as UB and the item-based algorithm as IB. Factors that
are treated as parameters, are the following: the neighborhood size (k, default
value 20), the size of the recommendation list (IV, default value 20), and the size
of training set and the test data set (default value 75% and 25%, respectively).
The metrics we use are precision, recall, and Fy.

We performed experiments with several real data sets that have been used
as benchmark in prior work. In particular, we examined two MovieLens data
sets: (i) the first one with 100,000 ratings assigned by 943 users on 1,682 movies,
denoted 100K data set (this is the default data set) and (ii) the second one with
about 1 million ratings for 3,592 movies by 6,040 users, denoted 1M data set.
The range of ratings is between 1(bad)-5(excellent) of the numerical scale, the
P, threshold is set to 3 and the value of an unrated item is considered equal to
zero. Moreover, we consider the division between not hidden and hidden data.
For each transaction of a test user we keep the 75% as hidden data (the data we
want to predict) and use the rest 25% as not hidden data (the data for modeling
new users).

48 P. Symeonidis et al.

5.1 Results for Tuning Nearest Biclusters

As already discussed in Section 3] the only input of the Bimax algorithm is the
minimum allowed number of users in a bicluster, n, and the minimum allowed
number of items in a bicluster, m. In order to discover the best biclusters (in
terms of effectiveness and efficiency), it is important to fine-tune these two input
variables. So, we examine the performance of F; metric vs. different values for
n and m.

Figure [fh illustrates F; for varying n (in this measurement we set m = 10).
As n is the minimum allowed number of users in a bicluster, Figure [T also
depicts (through the numbers over the bars) the average numbers of users in
a bicluster, which as expected increase with increasing n. As shown, the best
performance is attained for n = 4. In the following, we keep this as the default
value. Nevertheless, notice that performance is, in general, robust against varying
n. In particular, for n < 6 the resulting Fi is high. In contrast, for higher n,
Fy decreases. The reason is that with higher n we result with an inadequate
number of biclusters to provide qualitative recommendations. The conclusion is
that, small values for n are preferred, a fact that eases the tuning process.

Similarly, we examined Fj for varying m. The results for F; are depicted in
Figure[lb (n = 4). As previously, in the same figure we also illustrate the result-
ing average numbers of items in a bilcuster. The best performance is attained
for m = 10 (henceforth kept as default value), whereas F; decreases for higher
or lower m values. The reason is as follows: for very small values of m, there are
not enough items in each bicluster to capture the similarity of users’ preferences
(i.e., matching is easily attained), thus the quality of recommendation decreases;
on the other hand, for very large values of m, the number of discovered biclusters
is not adequate to provide recommendations.

In Section we mentioned that Bimax finds all biclusters that are not
entirely contained in any other bicluster. It is obvious that this characteristic
generates overlapping biclusters. The number of overlapping biclusters can be

*avg. #Users in a bicluster *avg. #Items in a bicluster

0.4 0.4+
0.38 1 577 0.38 4 142"
a6 1 10.32"
0.36 1 6.4 0.36 8.64" 15.3’
0.34 o5 0.34
0.32 1 0.32
o 0.3 o 1615
0.28 + 10,63 o
0.26 0.26 -
0.24 0.24 4
0.22 1 0.22
0.2 ‘ ‘ ‘ ‘ ‘ 0.2 : : : :
2 1 6 s 10 6 8 10 12 14

n

(a) (b)

Fig. 7. F1 vs. tuning number of (a) users, (b) items

Nearest-Biclusters Collaborative Filtering with Constant Values 49

*number of biclusters

0.4 - 85723"

0.38 - 1214 185" 42009"
0.36

0.34 512"
& 0.32
0.3
0.28
0.26 4 11°

0.24 -
0.22 ﬂ
0.2 T T
0% 25% 35% 50% 75% 100%
overlapping

Fig. 8. F1 vs. overlapping percentage between the biclusters

enormously large. To avoid this, we can perform a secondary filtering proce-
dure to reduce the number of biclusters with respect to the desired overlapping
degree. In Figure[8l we can see F vs. varying overlapping degree (given as a per-
centage of common items/users between the biclusters). The figure also depicts
(numbers over the bars) the resulting number of biclusters for each overlap-
ping degree. With decreasing overlapping degree, F} decreases too. On the other
hand, by keeping a high level of overlap between the biclusters, we harm effi-
ciency —in terms of execution time- of the Nearest Biclusters algorithm (for its
on-line part). As shown, by permitting 100% of overlapping, the number of gen-
erated biclusters is 85,723. It is obvious that this number impacts the efficiency
of the recommendation process. The best combination of effectiveness and effi-
ciency can be attained by having an overlapping equal to 35% (results to 1,214
biclusters), where the resulting Fy is 0.36 (very close to the 100% overlapping
result).

For the 1M data set, we follow the same tuning procedure and we resulted to
the following values which have the best results in our experiments in terms of
F1 measure : n=3, m=6, overlapping = 10%, which results to 2126 biclusters.

5.2 Comparative Results for Effectiveness

We now move on to the comparison of Nearest Bicluster algorithm with the
UB and IB. The results for precision and recall vs. k are displayed in Figure [Oh
and b, respectively. As shown, the UB performs worst than IB for small values
of k. The performance of the two algorithms converges to the same value as k
increases. The reason is that with a high k&, the resulting neighborhoods for both
UB and IB are similar, since they include almost all items. Thus, the top-IV
recommendation lists are about the same, as they are formed just by the most
frequent items. In particular, both UB and IB reach an optimum performance
for a specific k. In the examined range of k values, the performance of UB and 1B
increases with increasing k and outside this range (not displayed), it stabilizes
and never exceeds 40% precision and 15% recall.

50 P. Symeonidis et al.

[-#-UB - IB -Nearest Biclusters| [-m-UB - IB 0-Nearest Biclusters]
80 - 30 4

70 A 0/0—0\0\0——0‘0\0__0__0 25 O/Ow
60 -

50 | 20 +
40 D/D—D—D—D—D—D—D—D——‘D 15 D/D—D—D—D—D—D—D—D——‘D
30

P

10 4 5

precision
Recall

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
k
(a) (b)

Fig.9. Comparison between UB , IB and Bicluster CF in terms of (a) precision (b)
recall

‘iUB 0 IB <©-Nearest Biclusters‘

0.13 -
0.12 4
0.11 - %
0.1 -
20001 W
0.08 -
0.07 A
0.06 -
0.05

10 20 30 40 50 60 70 80 90 100
k

Fig. 10. Comparison between UB, IB, and Nearest Biclusters algorithm in terms of F1
measure for the 1M data set

Nearest Biclusters significantly outperforms UB and IB. The difference in
precision is larger than 30%, whereas with respect to recall, it exceeds 10% (we
refer to the optimum values resulting from the tuning of k). The reason is that
Nearest Biclusters takes into account partial matching of preferences between
users and the possibility of overlapping between their interests. In contrast, UB
and IB are based on individual users and items, respectively, and do not consider
the aforementioned characteristics.

For the 1M data set, the results for F1 measure vs. k are displayed in Figure [Tl
As shown, Nearest Biclusters outperforms UB and IB. The difference is analogous
to the 100K data set. The reason again is that Nearest Biclusters takes into
account partial matching of the users’ preferences.

5.3 Comparative Results for Efficiency

Regarding efficiency, we measured the wall-clock time for the on-line parts of
UB, IB and Nearest Biclusters algorithms. The on-line parts concern the time it
takes to create a recommendation list, given what is known about a user. Notice

Nearest-Biclusters Collaborative Filtering with Constant Values 51

‘ W UB {1 IB —Nearest Biclusters ‘

100 -
90 |
80 -|
70
60 -
50
40 |
30

=] M
10 |

0 ; ‘

10 20 30 40 50 60 70 80 90 100
k

Milliseconds

Fig.11. Comparison between UB , IB and Nearest Biclusters in terms of execution
time

that there is an off-line part for the IB and Nearest Biclusters, which demands
additional computational time, needed to build the items’ similarity matrix and
find the biclusters, respectively. However, these computations are executed off-
line. Thus, we do not count them in the recommendation time. Our experiments
were performed on a 3 GHz Pentium IV with 1 GB of memory running the
Windows XP operating system. The results vs. k are presented in Figure [Tl
In particular, we present the average time in milliseconds that takes to provide
recommendations to a test user.

As shown, IB needs less time to provide recommendations than UB. Notice
that the required time for IB to provide recommendation for a test user is almost
stable, whereas the time for UB increases with increasing k. The reason is that
UB finds, firstly, user neighbors in the neighborhood matrix and then counts
presences of items in the user-item matrix. In contrast, with IB, the whole task
is completed in the item-neighborhood matrix, which is generated off-line. Thus,
in terms of execution time, IB is superior to UB.

In all cases, however, Nearest Biclusters needs even less time than IB to pro-
vide recommendations. This is due to the fact that the biclusters are also created
off-line and, secondly, the number of biclusters in our experiment (1,214) is less
than the number (1,682) of items’ of the similarity matrix in the IB case. As
it is already presented in Section Bl by decreasing the percentages of overlap
between biclusters, accuracy decreases too. On the other hand, by keeping a
high level of overlap between biclusters, we harm the efficiency. Thus, to com-
bine effectiveness and efficiency, a prerequisite is a fine-tuning of the overlapping
biclusters.

5.4 Examination of Additional Factors

In this section we examine the impact of additional factors. In our measurements
we again consider UB, IB, and Nearest Biclusters algorithms.

52 P. Symeonidis et al.

[®UB F IB ©-Nearest Biclusters

[UB F IB ©-Nearest Biclusters|

90 4
80 -

70 | 30 |
60 - 25 J
50 4
40 204
30 4 15 1
20 4 104
10 4 .\.\IHH
5 - ./././qu

10 20 30 40 50 0

N 10 20 30 40 50
N

354

Precision
Recall

(a) (b)
Fig. 12. Comparison vs. N: (a) precision, (b) recall

Recommendation list’s size: We examine the impact of N. The results of
our experiments are depicted in Figure As expected, with increasing N, re-
call increases and precision decreases. Notice that the best performance of UB
and IB corresponds to the worst performance of Nearest Biclusters. The relative
differences between the algorithms are coherent with those in our previous mea-
surements. We have to mentioned that in real applications, N should be kept
low, because it is impractical for a user to see all recommendations when their
number is large.

Training/Test data size: Now we test the impact of the size of the training
set, which is expressed as percentage of the total data set size. The results for Fy
are given in Figure[[3l As expected, when the training set is small, performance
downgrades for all algorithms. Therefore, we should be careful enough when we
evaluate CF algorithms so as to use an adequately large training sets. Similar
to the previous measurements, in all cases Nearest Biclusters is better than
IB and UB. The performance of both UB and IB reaches a peak around 75%,

| % UB I IB <-Nearest Biclusters|

0.4+
0.35 -
0.3+
0.25 -

0.15 -
0.1+
0.05 -

15 30 45 60 75 90
training set size (perc.)

Fig. 13. Comparison vs. training set size

Nearest-Biclusters Collaborative Filtering with Constant Values 53

after which it reduces. It is outstanding that Nearest Biclusters trained with the
15% of the data set, attains much better F; than UB and IB when they are
trained with 75%. Also, we see that after a threshold of the training set size, the
increase in accuracy for algorithms is less steep. However, the effect of overfitting
is less significant compared to general classification problems. In contrast, low
training set sizes negatively impact accuracy. Therefore, the fair evaluation of
CF algorithms should be based on adequately large training sets.

6 Conclusions

We proposed the application of an exact biclustering algorithm in the CF area,
to disclose the duality between users and items and to capture the range of the
user’s preferences. In addition, we propose a novel nearest-biclusters algorithm,
which uses a new similarity measure that achieves partial matching of users’
preferences and allows overlapping interests between users.

We performed experimental comparison of the nearest biclusters algorithm
against well known CF algorithms, like user-based or item-based methods. Our
extensive experimental results illustrate the effectiveness and efficiency of the
proposed algorithm over the existing approaches.

We highlight the following conclusions from our examination:

— Our approach shows significant improvements over existing CF algorithms,
in terms of effectiveness, because it exploits the duality of users and items
through biclustering and partial matching of users’ preferences. In particular,
we attain more than 30% improvement and recall more than 10% in terms
of precision and recall, respectively.

— Our approach shows improvements over existing CF algorithms, in terms of
efficiency. The Nearest Biclusters algorithm needs even less time than item
based approach to provide recommendations.

— In our experiments we have seen that only a 15% of the training set is
adequate to provide accurate results.

— We introduced a similarity measure for the biclusters’ neighborhood forma-
tion and proposed the Weighted Frequency for the generation of the top-N
recommendation list of items.

Summarizing the aforementioned conclusions, we see that, the proposed Near-
est Biclusters algorithm through a simple, yet effective, biclustering algorithms
(Bimax) and the partial matching of users’ preferences, achieves better results
in terms of effectiveness and efficiency than traditional CF algorithms. For this
reason, in our future work we will compare biclusters with constant values with
other categories of biclusters (i.e biclusters with coherent values). The first cate-
gory looks for subsets of rows and subsets of columns with constant values, while
the second is interested in biclusters with coherent values. Moreover, we will also

54

P. Symeonidis et al.

examine different similarity measures between a user and a bicluster based on
the items that are included in the bicluster or based on features characteristics
of those items.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene ex-

pression data: The order-preserving submatrix problem. Journal of Computational
Biology 10(3/4), 373-384 (2003)

. Cheng, Y., Church, G.: Biclustering of expression data. In: Proceedings of the

ISMB Conference, pp. 93-103 (2000)

. Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM

Transactions on Information Systems 22(1), 143-177 (2004)

. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph

partitioning. In: Proceedings of the ACM SIGKDD Conference (2001)

. Dhillon, I.S., Mallela, D.S., Modha, S.: Information theoretic co-clustering. In:

Proceedings of the ACM SIGKDD Conference (2003)

. Goldberg, D., Nichols, D., Brian, M., Terry, D.: Using collaborative filtering to

weave an information tapestry. ACM Communications 35(12), 61-70 (1992)

. Hartigan, J.A.: Direct clustering of a data matrix. Journal of the American Statis-

tical Association 67(337), 123-129 (1972)

. Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An algorithmic framework for

performing collaborative filtering. In: Proceedings of the ACM SIGIR Conference,
pp. 230-237 (1999)

. Herlocker, J., Konstan, J., Riedl, J.: An empirical analysis of design choices in

neighborhood-based collaborative filtering algorithms. Information Retrieval 5(4),
287-310 (2002)

Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative filter-
ing recommender systems. ACM Transactions on Information Systems 22(1), 5-53
(2004)

Hofmann, T., Puzicha, J.: Latent class models for collaborative filtering. In: Pro-
ceedings of the IJCAI Conference (1999)

Thmels, J., Bergmann, S., Barkai, N.: Defining transcription modules using large-
scale gene expression data. Bioinformatics 20(13), 1993-2003 (2004)

Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: Pro-
ceedings of the ACM CIKM Conference, pp. 247-254 (2001)

Long, B., Zhang(Mark), Z., Yu, P.S.: Co-clustering by block value decomposition.
In: KDD 2005. Proceeding of the eleventh ACM SIGKDD international conference
on Knowledge discovery in data mining, pp. 635-640. ACM Press, New York (2005)
Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: a
survey. ACM Transactions on Computational Biology and Bioinformatics 1, 24-45
(2004)

McLauglin, R., Herlocher, J.: A collaborative filtering algorithm and evaluation
metric that accurately model the user experience. In: Proceedings of the ACM
SIGIR Conference, pp. 329-336 (2004)

Mirkin, B.: Mathematical classification and clustering. Kluwer Academic Publish-
ers, Dordrecht (1996)

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Nearest-Biclusters Collaborative Filtering with Constant Values 55

Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Improving the effectiveness of col-
laborative filtering on anonymous web usage data. In: Proceedings of the Workshop
Intelligent Techniques for Web Personalization, pp. 53-60 (2001)

Murali, T., Kasif, S.: Extracting conserved gene expression motifs from gene ex-
pression data. In: Proceedings of the Pacific Symposim on Biocompomputing Con-
ference, vol. 8, pp. 77-88 (2003)

Prelic, A., et al.: A systematic comparison and evaluation of biclustering methods
for gene expression data. Technical Report (2005)

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open
architecture for collaborative filtering on netnews. In: Proceedings of the Computer
Supported Collaborative Work Conference, pp. 175-186 (1994)

Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algo-
rithms for e-commerce. In: Proceedings of the ACM Electronic Commerce Confer-
ence, pp. 158-167 (2000)

Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality re-
duction in recommender system-a case study. In: ACM WebKDD Workshop (2000)
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the WWW Conference, pp. 285—
295 (2001)

Symeonidis, P., Nanopoulos, A., Papadopoulos, A., Manolopoulos, Y.: Collabora-
tive filtering process in a whole new light. In: Proc. IDEAS conf., pp. 29-36 (2006)
Tanay, A., Sharan, R., Kupiec, M., Shamir, R.: Revealing modularity and organiza-
tion in the yeast molecular network by integrated analysis of highly heterogeneous
genomewide data. In: Proceedings of the National Academy of Science conference,
pp. 2981-2986 (2004)

Tanay, A., Sharan, R., Shamir, R.: Discovering statistically signifnicant biclusters
in gene expression data. In: Proceedings of the ISMB conference (2002)

Ungar, L., Foster, D.: A formal statistical approach to collaborative filtering. In:
Proceedings of the CONALD Conference (1998)

Xue, G., Lin, C., Yang, Q., et al.: Scalable collaborative filtering using cluster-based
smoothing. In: Proceedings of the ACM SIGIR Conference, pp. 114-121 (2005)

	Nearest-Biclusters Collaborative Filtering with Constant Values
	Introduction
	Motivation
	Contribution

	Related Work
	Examined Issues
	Nearest Bicluster Approach
	Outline of the Proposed Approach
	The Data Preprocessing/Discretization Step
	The Biclustering Process
	The Nearest Bicluster Algorithm

	Experimental Configuration
	Results for Tuning Nearest Biclusters
	Comparative Results for Effectiveness
	Comparative Results for Efficiency
	Examination of Additional Factors

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

