794 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 6. JUNE 1989

Expressions for Completely and Partly Unsuccesstul
Batched Search of Sequential and
Tree-Structured Files

YANNIS MANOLOPOULOS anp J. (YANNIS) G. KOLLIAS

Abstract—A number of previous studies derived expressions for
batched searching of sequential and tree-structured files on the as-
sumption that all the keys in the batch exist in the file, i.e., all the
searches are successful. New formulas for batched searching of se-
quential and tree-structured files are derived, but the assumption made
now is that either all or part of the keys in the batch do not exist in the
file, i.e., the batched search is completely or partly unsuccessful.

Index Terms—Access strategy, batched searching, performance
evaluation, physical database design, sequential and tree-structured
files, successful and unsuccessful search.

I. INTRODUCTION

HIS paper considers a file residing in a secondary

storage device, which is physically partitioned into
fixed size blocks (e.g., disks). A query based on a pri-
mary key value (e.g., social security number) is satisfied
by one record (i.e., successful search) or the requested
record does not exist in the file (i.e., unsuccessful search).
The studies in [1], [2] present a number of file organiza-
tion schemes (e.g., sequential, random, tree-structured,
etc.) and estimate the cost of both successful and unsuc-
cessful searches using these schemes. These costs are ex-
pressed by the required number of block accesses to sat-
isfy the query. A query based on secondary key values
(e.g., date of birth, sex, etc.) is satisfied by accessing a
number of records located normally in more than one
block of secondary memory. The blocks containing the
records of interest are usually established by employing
secondary indexing techniques [1], [2].

Let us assume that we have to satisfy k& queries based
on either primary or secondary key values. Shneiderman
and Goodman [3] argued that the response time of satis-
fying the queries may be reduced if we consider them as
a batch instead of satisfying them individually on a first-
come-first-served basis. A number of studies considering
batching appeared in the literature. Mainly, they report
estimations on the number of blocks of secondary storage

Manuscript received August 31, 1987; revised September 30, 1988.

Y. Manolopoulos is with the Department of Electrical Engineering, Di-
vision of Electronics and Computer Engineering, Aristotelian University
of Thessaloniki, 54006 Thessaloniki, Greece.

J. G. Kollias is with the Department of Electrical Engineering, Division
of Computer Science, National Technical University of Athens, 15773 Zo-
grafou, Athens, Greece.

IEEE Log Number 8927390.

that have to be transferred in main memory for various
environments. The assumptions made by all previous
studies is that the records are retrieved under a replace-
ment or a nonreplacement model. The replacement
(nonreplacement) model assumes that the probability of
locating a record in a specific block is not (is) reduced
when a block has already been accessed.

Studies based on the replacement model assumption de-
rived expressions for the expected value of block accesses
required to satisfy a request for k keys using sequential
[4] or random files [4]-[6]. Under the assumption of the
nonreplacement model, expressions have also been de-
rived for sequential [3], [4], [7]-[9], random [4], [10]-
[13] and tree-structured files [3], [8], [14]. Table I lists
the above mentioned studies according to the file organi-
zation and the model concerned.

In this paper we focus on batched searching of sequen-
tial and tree-structured files and, therefore, we start dis-
cussing the relative studies in more detail. In [3] approx-
imate formulas are derived evaluating the gain due to
batched searching of sequential files and of j-ary search
trees. In [7] another approximate solution was given for
the cost of batched searching in sequential file structures.
Recently, [8] derived exact and approximate formulas for
the cost of batched searching in both the sequential and
tree-structured environments. The same problem for tree-
structured files was also examined in [14], where an ac-
curate formula for the gain was derived. We note that sim-
ilar exact formulas were derived estimating the cost of
batched searching in an array [15] and in a main memory
database [16], as well as the cost of seeking in a disk
system [17]-[19].

A common characteristic of all the previous studies is
that they assume that all the records of the batch exist in
the file, i.e., that the search is successful. In this paper
the last assumption is dropped and the performance of
completely or partly unsuccessful batched searching is ex-
amined. We say that a batched search is completely un-
successful or partly unsuccessful when all the keys or
some keys of the batch do not exist in the file respectively.
Before proceeding further, we note that erroneous input
and missing records from the file (possibly because file
updates are performed off-line) are among the reasons
which may cause completely and partly unsuccessful

0098-5589/89/0600-0794$01.00 © 1989 IEEE

MANOLOPOULOS AND KOLLIAS: BATCHED SEARCH OF SEQUENTIAL AND TREE-STRUCTURED FILES 795

TABLE 1
REFERENCES TO PREVIOUS STUDIES
MODEL
Replacement Non~
Replacement

S

T sequential [41 (3,4,7-91
F R
I u
L C random [4-63 £4,10-131
E T

U

R tree-structured (3,8,141

E

batched searches. As it was mentioned above, the case of
an unsuccessful search is always considered when evalu-
ating the performance of single queries to a file [1], {2].

In the next two sections, expressions are derived for
completely and partly unsuccessful batched search of se-
quential files and j-ary trees. Initially, we consider the
extreme case where no record in the file matches any of
the keys in the batch. The study proceeds to the partly
unsuccessful batched search where some keys of the batch
exist in the file and some do not exist. The last section
presents some numerical examples and draws the conclu-
sions.

II. SEQUENTIAL FILE

As derived in [8], the cost of successful batched search,
in terms of the expected value of block accesses, is:

COSTy,. = (n + 1)k/(k + 1) (1)

where n is the number of the file records (occupying one
block each) and k is the size of the batch.

Suppose that a sequential file consists of n unsorted rec-
ords, occupying one block each, and the batch consists of
k records, either sorted or unsorted. If at least one of the
records in the batch does not exist in the file, then exactly
n block accesses have to be made.

Consider now the case that both the file records and the
batch records are sorted in the same order. In this case,
an unsuccessful search is detected whenever the value of
the key record is greater than the key value of the batch
record. After the detection of an unsuccessful search, the
searching resumes from the last examined file record. The
following subcases must be examined.

A. Completely Unsuccessful Batched Search Under a
Nonreplacement Model

In between the n file records n + 1 subintervals are
created. For the moment, we assume that the k records
retrieved obey a nonreplacement model, which means that
any two batched records belong to different subintervals.
This case may arise when the k records are distinct. Using
an analysis similar to that of [16], we derive that the cost
of the completely batched unsuccessful search under the
nonreplacement model, in terms of the expected value of

block accesses, is as follows:

1

COSTuns. nrep = m

-[éiC(i— 1,k =1)+ nC(n, k — l)jl

i=k

This expression is explained as follows. The cost of this
completely unsuccessful batched search is equal to the cost
of searching for the last record of the batch. Since the
nonreplacement model is assumed, this last record may
not lie before the kth subinterval. The probabilities tnat
this record may lie in the kth up to the (n + 1)th subin-
terval are assumed to be equal. The sum in the parenthesis
gives the cost (in block accesses) of the unsuccessful
searches in each of the first n subintervals, times the num-
ber of ways the rest (k — 1) records of the batch may lie
in the rest (i — 1) subintervals. In an analogous manner,
the second term of the parenthesis gives the cost of an
unsuccessful search in the last subinterval, times the num-
ber of ways the remaining records of the batch may lie in
the first n subintervals. It is worth noting that the cost of
this last search is n and not (n + 1) block accesses. The
quantity of the parenthesis is divided by the number of the
ways the k records may lie in the (n + 1) subintervals.
Therefore,

COST ns. arep
B 1
CC(n + 1, k)
n+1
: [Z iCli ~ 1,k —1) = C(n, k — 1)}
i=k

k C(n, k — 1)

:(n+2)k+l—C(n+l,k)
k k
=0) T T (2)

where C(a, b) is the a-choose-b combination.

B. Completely Unsuccessful Batched Search Under a
Replacement Model

Now, we assume that the k records obey a replacement
model. This means that a number of batched records may
be retrieved from the same subinterval, i.e., the batch may
contain nondistinct records. The analysis for the cost of
the completely unsuccessful batched search under the re-
placement model is similar to that of the previous section.
The only difference is in the estimation of the number of
ways the records of the batch may lie in the possible sub-
intervals. This is depicted in the bounds of the summation
and the combinations. Finally, in terms of the expected

796 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 6. JUNE 1989

value of block accesses, this cost is

COST . rep 1 {Z iCli +k—=2,i—1)

T C(n + k k)=
+ nC(n + k — l,n)]

1
- k+ 1
o ED [kC(n + k,)

— (k= 1)C(n + k = 1, k)
+nC(n + k — 1, n)]
k n

=n——0+
"k+ 1l T nrk

C. Partly Unsuccessful Batched Search

In this case of partly unsuccessful batched search many
possibilities arise, because existing and nonexisting rec-
ords may obey a replacement and a nonreplacement
model. We proceed to the analysis according to the two
assumptions that the k; (k,) records retrieved obey a
nonreplacement (replacement) model.

Having in mind that the last record in the batch may be
either existing or nonexisting in the file, the analysis is
based on that of the previous subsections. The cost of a
partly unsuccessful batched search, in terms of the ex-
pected value of block accesses is:

1
C(n, k) C(n + ky, k)

fork = 1. (3)

C()STuns. par —

[E i(Cli+hk — 1, k)Ci — 1,k — 1) +

i=ki

Cli+k =2,k —1)Cli — 1,k)) +

nC(n, k) C(n + ky — 1, ky — 1)}

The denominator gives the number of ways that the k; and
k, records may lie in the n and (n + 1) subintervals, re-
spectively. The second term in the parenthesis represents
the combined cost of the successful and the unsuccessful
search of the last record of the batch in case it corresponds
to the last record and the last subinterval of the file, re-
spectively, times the number of ways this case may hap-
pen. The summation of the parenthesis concerns all the
remaining cases that the last record of the batch may (not)
match any file record (subinterval) but the last one. After
some algebra based on the properties of combinations and
the binomial coefficient relations [1], we can derive the
following relation:

COST s, par
Rk + k) nky(k + k) + k(= k)
- (n + k) (ki + k) (k) + Ky + 1)
nk,
n+k (4)

Relations (1) and (3) are produced from (4) by assigning
k, = 0 and k, = O, respectively.

III. J-ArRYy SEARCH TREE

A j-ary search tree [3], [8], [14] is a B-tree [1], [2]
having at maximum j sons per father node or, equiva-
lently, at maximum j — 1 records in every node. The tree
is also characterized by its height /, i.e., the maximum
distance from the root to the bottom node. Thus the tree
has I + 1 levels. For the sake of mathematical analysis,
it is assumed that the tree is complete and, therefare, the
number of nodes is:

+j' =" =1/ = D).

The number of records in the tree is j'*' — 1 and the
number of subintervals between the records is j'*'.

We start our analysis by introducing the analysis in [8].
By assuming a nonreplacement model it was proved that
the cost of batched search of k records in a j-ary tree with
[+ 1 levels is:

COST,, (k. [+ 1)

1 +j+j2+ -

k .
=14 j 2 PROB,.(i, I, k) COST.(i, 1) (5)
i=1

where
PROB,,.(i, I, k)
=c(j' -1, c(i"™ - k=1)/
c(j™' =1, k).

The initial conditions for COST, (i, [) are set as fol-
lows:

COST,,.(0,) = 0 for all and
COSTy (i, 1) = 1 foralli > 0.

Some explanations are necessary about the recursive
formula (5). PROB,,. (i, [, k) gives the probability that i
records of the batch out of the k ones exist in a subtree of
height /.- Therefore, the expected number of total accesses
is equal to one access for the root plus the expected num-
ber of accesses in the j subtrees of the root. For any sub-
tree out of the j ones in any level we multiply the proba-
bility that it contains i (out of the k) records by the search
cost of the corresponding subtree.

A. Completely Unsuccessful Batched Tree Search

In case of an unsuccessful tree search it is certain that
the bottom level will be reached. Having this in mind and
under the assumption of the nonreplacement model it is
easy to proceed to the analysis with a similar reasoning to
that of the previous paragraphs. Therefore, the cost of
batched tree search of k nonexisting records, in terms of
the expected number of block accesses, is

COST, (k, | + 1)
k

=1+ 4{?' PROB,,, (i, /, k) COST,,.(i, 1) (6)

MANOLOPOULOS AND KOLLIAS: BATCHED SEARCH OF SEQUENTIAL AND TREE-STRUCTURED FILES 797

where
PROB,, (i, 1, k)
=c(jL i)y =ik =iy/c" k).

The initial conditions for COST,, (i, /) are set as fol-
lows:

COST,,(0, 1) = 0 for all /
COST,,(1,1) = 1 forall
and
1 ifi =j
COSTy (i, 1) = .
0 ifi > j.
If a replacement model is assumed, then (6) is still valid,
but now
PROB, (i, 1, k)
=C(j'+i-Lic(" -j'+k—-i-1,
k—i)/C(j"" + k= 1,k)
and

COST,,s(i, 1) = 1 forall i, jand i > 0.

B. Partly Unsuccessful Batched Tree Search

Suppose that the batch consists of k| existing and k,
nonexisting records. Again, the k or k, records may obey
either the nonreplacement or replacement model. The ex-
pected value of block accesses to perform the batched
search in a j-ary tree with / levels is:

COST,, (ky, ky, I + 1)
ki k2

=1+j 2 2 COST(i, m,) PROB(i, m, [)

i=0m=0
(7)

where the initial conditions are defined as follows:

COST,, (£ 0, 1) = COST (i, 1),

COST,, (0, m,) = COSTy,(m, 1),

COST,, (i, m, 1) = 1 fori,m > 0
and

PROB(i, m, [) = PROB (i, /) PROB,(m,).

The explanation of these relations is obvious. The
model obeyed by the records of the batch may be moni-
tored through the probability distributions PROBy,. (i, /)
and PROB,; (m, ['), which have been defined earlier.

C. Approximate Formulas

In this section, some simpler approximate expressions
in place of the recursive ones will be derived. In [8] the
probability of a tree node not being selected is estimated.

This quantity is
. j=1
quc:(l _kl/(]H-I - l)) .

This relation is based on a formula derived in [6], which
is a very good approximation to the exact but computa-
tionally expensive one which appeared in [13]. These for-
mulas estimate the expected value of block accesses in a
random file under the nonreplacement model. By quoting
from [8], the formula for Q. is explained as follows. The
total number of keys in the (/ + 1) levels of the tree is
j'*' — 1. The k; records of the batch are retrieved out of
the keys of the tree at random. Therefore, the probability
that a specific key is selected is equal to the fraction
ki /(j"™' = 1). The probability of a key not being se-
lected is one minus the fraction. Since a node contains (j
— 1) records the above formula follows.
With a similar manner we define the quantity Q,,, as

Quns = (1 - k2/j1+l)j‘

Evidently, this quantity depicts the probability that a tree
node is not selected when the tree is searched for k,
nonexisting records. The differences to the previous for-
mula for Q. are: 1) that the total number of subintervals
in between the key records is j/*', and 2) the number of
subintervals in between the key records of a specific node
is j.

By using the quantity Q. (6) may be approximated by

L+ = Q) + 7200 = Q)
o (1= Ol

Some explanations for this relation are necessary. First,
the unit stands for the access of the root node. At the first
level, which is the one below the tree root, j nodes reside.
Every node at this level corresponds to j' subintervals.
Since every node contains j subintervals, a specific node
out of these j ones will not be visited with probability
Qilfi = @i ' The probability that a node at this level will
be visited is 1 minus the previous quantity. Since there
are j nodes at this level it is easy to conclude to the second
term of the summation. Hereafter, in the same way we
continue to the second tree level up to the /th one. We

-continue by simplifying the previous approximation:

. PR Dl 2
+J - (.]quns +J2Q1uns + -
=1

D/G=1) = 2" Qs

(8)

On the other hand by using Q.. and Q,,, (7) for the

partly unsuccessful batched search may be approximated
by

L+j+j2+ -

+ 500 = (' -

1+ (1 = Q) + jQhns (1 = QD671
+ 731 = Q) + 0N (1 = @y)
4o i = Q) (1 = 0L

=" =-D/G -1+
/
ZJ-HHQJI—_I Q‘,fﬂ“’/‘f"’.

i=1

(9)

798

TABLE 11
EXPECTED VALUES OF BLOCK ACCESSES IN A SEQUENTIAL FILE FOR
VARIOUS VALUES OF n AND k

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 6. JUNE 1989

n
100 1000 10000
COSTeuc 91,82 910,00 9091.82
10 | COSTune.ram 91.82 910.08 9091.91
COSTuna, nres 92.63 910. 90 9092.73
COSTaue 96.19 953.33 9524.76
K 20 | COSTune,rae 96.07 953,36 9524.81
H COSTuna, nres 96.94 954,27 9525.71
£OSTaue 99,02 981,37 9804. 90
50 | €0STune,remn 98.71 981,34 9804.92
COSTuna, aree 99.50 982,30 9805.88

TABLE 111

EXPECTED VALUES OF BLOCK ACCESSES IN A SEQUENTIAL FILE FOR
VARIOUS VALUES OF kK, AND k,. THE FILE CONTAINS n = 100 RECORDS.

o 0.00 50.99 &7.65 75,97 80.96 84,29 8b.66 88.44 BF.B2 90.92 91.82
1 | 50.50 &7.49 75.90 80.92 84,26 B6.44 B8.43 B9.81 90,92 91.82 92,57
2 | 67,33 75.23 80.88 84.24 86,23 88.42 B89.81 90.91 91.82 92.57 97.20
3 75.75 B80.B4 B4.21 Bb6.461 88.41 89.80 90.91 91.82 92,57 33.21 93.7%
4 | 80.BC 84,19 Bb6.60 88,40 B7.80 0,91 91.82 92.57 93.21 93.75 94.23
k, | 5 | 84,17 84,59 B8.39 89.79 90.91 91,82 92,57 93.21 93.76 94,23 94.64
& 86.57 88.38 B9.79 90.90 71.82 92.58 93.21 93.76 94.23 94.64 95.01
7 | 88.38 89.78 90.90 91.82 92,58 93.22 93.76 94.24 94.45 95.01 95.33
8 | 89.78 90.90 91.82 92.58 93.22 93.77 94.24 94,65 95.01 95.34 95.42
9 | 90.90 91.82 92,58 93.22 93.77 94.24 94.66 95.02 95.34 95.63 95.89

10| 91.B2 92.58 93.22 93.77 94.25 94,646 95.02 93.35 95.63 95.89 96.12

IV. ExaMPLES AND CONCLUSIONS

Exact and approximate formulas have been derived for
the cases of completely and partly unsuccessful batched
search in sequential and tree-structured files.

A. Sequential Files

Expressions (2), (3), and (4) are exact. Tables II and
III show the expected values of block accesses for various
parameters.

Formulas (1)-(3) are used to construct Table II. It is
shown in the table and can be easily proved with simple
algebra that:

1) The values of the completely unsuccessful batched
search under the nonreplacement model are always greater
than the values of the completely successful batched
search:

COSTyps,nep = COST, forall k < n.

TABLE IV
EXPECTED VALUES OF BLOCK ACCESSES IN A COMPLETE TERNARY TREE-
STRUCTURED FILE WITH 4 LEVELS FOR VARIOUS VALUES OF k; AND k, BY
UsING THE EXACT FORMULA (7). THE FILE CONTAINS n = 80 RECORDS.

12,05 13.50 14,80 16.00 17.09 18.10
1 3.55 6.10 8.26 10.14 11,78 13.26 14.59 15.80 16.91 17.94 18.89

2 5.70 7.92 9.83 11.51 13,01 14.37 15.60 16.75 17.77 18.74 19.44

k. | 5| 10.66 12,29 13.48 14,98 16,18 17.27 18.29 19.23 20,10 20.92 21.99

7 13.21 14.56 15.79 16,93 17.98 18.95 19.85 20.70 21.49 22.237 22.92

9 | 15.40 16,57 17,66 1B.66 19.60 20.47 21.28 22.04 22.76 23.43 24.07

2) The values of the completely unsuccessful batched
search under the replacement model are greater than the
completely successful batched search when n = k%

COSTyps ep = COST,,. when n = k.

3) There are breakpoints beyond which the values of
the completely unsuccessful batched search under the re-
placement model are smaller or greater than the values of
the completely successful batched search under the nonre-
placement model. These breakpoints are specified by the
following third order equation. That is:

COSTUI’\S.HT&P = COSTHHS.I‘QP A
k* — nk?* — n’k + (n* + n) = 0.

It is worth noting that the completely successful batched
search under the nonreplacement model is always more
expensive than the successful batched search under the
replacement model [4].

Table III has been produced by using (4) for various
numbers of existing (k;) and nonexisting (k,) records.
The file considered contains 100 records.

B. Tree-Structured Files

Expressions (6) and (7) are exact while (8) and (9) are
approximate. Tables IV and V have been produced by
using (6)-(9).

Tables IV-VI concern a ternary tree with four levels.
Table IV [V] is produced by using the exact formula (7)
[approximate formula (9)]. Table VI shows the relative
error of the approximate formula. For the parameter range
used, the deviation is approximately less than 5 percent.

By following [6], this study can be extended in two pos-
sible directions. First, other approximate expressions can
be derived in place of formulas (8) and (9), by taking only
the first two or three factors of the summations. In this
way the deviation should increase. Second, the limitation
that the block capacity of the sequential file is one record,
also accepted in [3], [7], can be removed. Therefore, a

MANOLOPOULOS AND KOLLIAS: BATCHED SEARCH OF SEQUENTIAL AND TREE-STRUCTURED FILES 799

TABLE V
EXPECTED VALUES OF BLOCK ACCESSES IN A COMPLETE TERNARY TREE-
STRUCTURED FILE WITH 4 LEVELS FOR VARIOUS VALUES OF k; AND k3 BY
USING THE APPROXIMATE FORMULA (10). THE FILE CONTAINS n = 80
RECORDS.

0 0.00 3.80 6.24 8.40 10,34 12.09 13,69 15.16 16.53 17.94 18.98
1 3.37 S.8Bi 7.97 9.91 11.67 13.28 14.76 16.17 17,40 18,60 17.72
2 S.43 7.59 9.57 11.29 12.90 14.38 1S5.75 17.04 18.23 19.36 20,43
3 7.24 9.18 10.94 12.54 14,03 15,40 1b.69 17.8%9 19.02 20.09 21.10

.79 21.74

1,85 22,36

7 12.92 14.27 15.55 16.74 17.87 18.94 19.95 20.92 21.837 22.70 23.53

10 | 16.14 17.25 18.31 19,31 20.26 21.17 22.03 22.B& 23.65 24.41 25.13

TABLE VI
RELATIVE ERROR (PERCENT) IN EXPECTED VALUES OF BLOCK ACCESSES IN
A COMPLETE TERNARY TREE-STRUCTURED FILE WITH 4 LEVELS FOR
VARIOUS VALUES OF k, AND k, BY USING THE EXACT (7) AND THE
APPROXIMATE FORMULA (10). THE FILE CONTAINS n = 80 RECORDS.

kz
[1 2 3 4 S & 7 B 9 10
0 0.0 5.1 39 2.4 1.0 -0.3 -1.84 -2.4 -3,3 -4.1 -4.9
1 5.1 4.8 3.5 2.2 Lo -0.2 -1.2 -2.1 -2.9 -3.7 -4.4
2 4.8 4.1 3.0 1.9 0.9 -0.1 -1.0 -1.B -2.&4 -I.7 -4.90
3 4.1 3.5 2.6 1.7 0.8 -0.0 -0.9 ~t.6 -2,.7 -T.0 -3.7
4 3.6 3.0 2.3 1.5 0.7 -0.0 -0.7 -1.4 -2.1 -2.8 -G.4

[2, 2.2 1.7 1.2 0.6 0.0 -0,6 =-1.2 -1.7 -2.3 -2.9
7 2.2 1.9 1.5 1.1 0.6 0.0 -0.5 ~i.i -1.6 -2.1 -Z,7
8 1.9 1.7 1.4 1.0 0.5 0.0 -0.5 -{.0 -1.5 -2.0 -2.9
9 1.7 1. .3 0.9 0.5 0.1 -0.4 -0.% -i.3 -1.8 -2.3

possible extension would assume block capacity greater
than one and produce new formulas.

ACKNOWLEDGMENT

The authors would like to thank M. Devetsikiotis and
G. Papaioannou for their help in proofreading this paper
and the preparation of the tables. Also, constructive com-
ments from the referees led to improvement of the pre-
sentation.

REFERENCES

(1] D. E. Knuth, The Art of Computer Programming, vol. 3, Sorting and
Searching. Reading, MA: Addison-Wesley, 1973.

[2] T.J. Teorey and J. P. Fry, Design of Database Structures.
wood Cliffs, NJ: Prentice-Hall, 1982.

[3] B. Shneiderman and V. Goodman, ‘‘Batched searching of sequential
and tree structured files,”” ACM Trans. Database Syst., vol. 1, pp.
268-275, 1976.

Engle-

[4] S. Christodoulakis, ‘‘Estimating block transfers and join sizes,”’ in
Proc. SIGMOD-83 Conf., 1983, pp. 40-54.

{5] A. F. Cardenas, ‘‘Analysis and performance of inverted database
structures,”” Commun. ACM, vol. 18, pp. 255-263, 1975.

[6] P. Palvia and S. T. March, ‘‘Approximating block accesses in data-
base organizations,”’ Inform. Processing Lert., vol. 19, pp. 75-79,
1984.

[7]1 D. S. Batory and C. C. Gotlieb, ‘*A unifying model of physical da-
tabases,”” ACM Trans. Database Syst., vol. 10, pp. 97-106, 1982.

[8] P. Palvia, ‘*Expressions for batched searching of sequential and hi-
erarchical files,”” ACM Trans. Database Syst., vol. 10, pp. 97-106,
1985.

[9] S. B. Yao, ‘‘An attribute based model for database access cost anal-
ysis,”" ACM Trans. Database Syst., vol. 2, pp. 45-67, 1977.

[10] T. Y. Cheung, ‘*Estimating block accesses and number of records in
file management,”’ Commun. ACM, vol. 25, pp. 484-487, 1982.

[11] W. S. Luk, **On estimating block accesses in database operations,”
Commun. ACM, vol. 26, pp. 945-947, 1983.

[12] K. Y. Whang, G. Wiederhold, and D. Sagalowicz, **Estimating block
accesses in database operations: A closed non-iterative formula,”
Commun. ACM, vol. 26, pp. 940-944, 1983.

[13] S. B. Yao., ‘*Approximating block accesses in database organiza-
tions,”’ Commun. ACM, vol. 20, pp. 260-261, 1977.

[14] M. Piwowarski, ‘‘Comments on batched searching of sequential and
tree-structured files,”” ACM Trans. Database Syst., vol. 10, pp. 285-
287, 1985.

[15] Y. Manolopoulos, J. G. Kollias, and M. Hatzopoulos, ‘‘Binary vs.
sequential batched search,” Comput. J., vol. 29, pp. 368-372. 1986.

[16] Y. Manolopoulos, L. Petrou, and D. Kleftouris, ‘*Searching for com-
posite queries in a main memory database,’” Angewandte Informatik,
vol. 84, pp. 141-148, 1987.

{17} Y. Manolopoulos and J. G. Kollias, ‘*Estimating disk head movement
in batched search,”” BIT, vol. 28, pp. 27-36, 1988.

[18] —. **Performance of a two-headed disk system when serving data-
base queries under the SCAN policy,”” ACM Trans. Database Syst.,
1989.

[19] Y. Manolopoulos, *‘Probability distributions for seek time evalua-
tion,”” Inform. Sci., submitted for publication.

Yannis Manolopoulos was born in Thessaloniki,
Greece. He received the B.S. and Ph.D. degrees
in electrical engineering from the Aristotelian
University of Thessaloniki, Greece. in 1981 and
1986. respectively. His Ph.D. degree is in the area
of computer science. During the academic year
1984-1985 he was a rescarch visitor at CSRI,
University of Toronto. Toronto, Ont., Canada.

After serving his obligatory military service. he
joined Aristotelian University. where he is cur-
rently an Assistant Professor. His research inter-
ests include physical database design and performance evaluation of access
methods.

Dr. Manolopoulos is a member of the Association for Computing Ma-
chinery and the IEEE Computer Society.

J. (Yannis) G. Kollias was born in Patras,
Greece. He received the B.S. degree in mathe-
matics from the University of Athens. Athens.
Greece, in 1968, the M.Sc. degree in computer
science from the University of Newcastle-upon-
Tyne. England. in 1969, and the Ph.D. degree in
computer science from the University of East An-
glia, Norwich, England. in 1976.

Until February 1983, he was DP manager of a
bank in Greece. During the Spring term of 1983
he was a Visiting Associate Professor at the Mich-
igan Technological University, Houghton. Since 1983 he has been a Pro-
fessor at the National Technical University of Athens. His research inter-
ests include physical database design, distributed databases. and spatial
processing.

Dr. Kollias is a member of the Association for Computing Machinery
and the IEEE Computer Society. and a Fellow of the British Computer
Society (FBCS).

