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1. INTRODUCTION

The paper entitled ‘The ubiquitous B-tree’ by Comer was published in ACM Com-
puting Surveys in 1979 [36]. Actually, the keyword ‘B-tree’ was standing as a
generic term for a whole family of variations, namely the B*-trees , the B+-trees
and several other minor variants [78]. The title of the paper might seem provocative
at that time. However, it represented a big truth, which is still valid in our days,
since all textbooks on databases or data structures devote a considerable number
of pages to explain definitions, characteristics and basic procedures for searches,
inserts and deletes on B-trees. Moreover, B+-trees are not just a theoretical no-
tion. On the contrary, for years they remain the de facto standard access method in
all prototype and commercial relational systems for typical transaction processing
applications, although one could observe that some quite more elegant and efficient
structures have appeared in the literature.

While the 80s were the period of the wide acceptance of relational systems in
the market, at the same time it became apparent that the relational model was
not adequate to host new emerging applications. To name a few of them: multi-
media, CAD/CAM, geographical, medical and scientific applications are just some
examples, where the relational model had been proven to behave poorly. Thus, the
object-oriented model and the object-relational model were proposed in the sequel.
One of the reasons for the shortcoming of the relational systems was their inability
to handle the new kind of data with B-trees. More specifically, B-trees were de-
signed to handle alphanumeric (i.e., one-dimensional) data, like integers, characters
and strings, where an ordering relation can be defined. A number of new B-tree
variations have appeared in the literature to handle object-oriented data (see [17]
for a comparative study). Mainly, these structures were aiming at hosting data of
object hierarchies of data in a single structure. However, these efforts had limited
applicability and could not cover the requirements of the so many new application
areas.

In light of this evolution, entirely novel access methods were proposed, evaluated,
compared and established. One of these structures, the R-tree, was proposed by
Guttman in 1984 aiming at handling geometrical data, such as points, line segments,
surfaces, volumes and hyper-volumes in high-dimensional spaces [57]. R-trees were
treated in the literature in much the same way as B-trees. In particular, many
improving variations have been proposed for various instances and environments,
several novel operations have been developed for them and new cost models have
been suggested. It seems that due to the modern demanding applications and
after the academia has paved the way, recently the industry recognized the use and
necessity of R-trees. Thus, R-trees are adopted as an additional access method to
handle multidimensional data. Based on the observation that ‘space is everywhere’
[153], we anticipate that we are in the beginning of the era of the ‘ubiquitous R-tree’
in an analogous manner as B-trees were considered 25 years ago. Nowadays, spatial
databases and geographical information systems have been established as a mature
field, spatiotemporal databases and manipulation of moving points and trajectories
are being studied extensively, and finally image and multimedia databases able
to handle new kinds of data, such as images, voice, music, or video, are being
designed and developed. An application in all these cases should rely to R-trees as
ACM Computing Surveys, Vol. V, No. N, Month 20YY.
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a necessary tool for data storage and retrieval.
R-tree applications cover a wide spectrum, from spatial and temporal to image

and video (multimedia) databases. The initial application that motivated Guttman
to his pioneering research was VLSI design (i.e., how to efficiently answer whether
a space is already covered by a chip or not). Of course, handling rectangles quickly
found application in geographical and, in general, spatial data, including GIS (build-
ings, rivers, cities etc.), image or video/audio retrieval systems (similarity of ob-
jects either in original space or in high-dimensional feature space), time series and
chronological databases (time intervals are just 1D objects), and so on. Therefore,
we argue that R-trees are found everywhere.

This survey aims at summarizing the literature relevant to R-trees. The structure
of the paper is as follows. In Section 2, we present the original R-tree structure and
its variants. The number of the R-tree variants is quite large and, therefore, we
examine them in several subsections, having in mind the special characteristics of
the assumed environment or application. In Section 3, query processing issues are
presented by focusing on new types of queries, such as topological, directional and
distance operators. Section 4 presents work on query optimization, including ana-
lytical cost models and histogram-based optimization techniques. The next section
describes implementation issues concerning R-trees, such as parallelism and concur-
rency control, and summarizes what is known from the literature about prototype
and commercial systems that have implemented them. The last section concludes
the survey.

2. THE FAMILY TREE OF R-TREES

The survey by Gaede and Guenther [47] annotates a vast list of citations related to
multidimensional access methods and, in particular, refers to R-trees to a significant
extent. In the present survey, we are further focusing in the family of R-trees by
enlightening the similarities and differences, the advantages and disadvantages of
the various variations in a more exhaustive manner. Since the numbers of variants
that have appeared in the literature is large, we group them according to the special
characteristics of the assumed environment or application and examine the members
of each group in chronological order.

2.1 Dynamic Versions of R-trees

In this subsection, we present dynamic versions of the R-tree, where the objects
are inserted on a one-by-one basis, as opposed to the case where a special packing
technique can be applied to insert an apriori known static set of objects into the
structure by optimizing the storage overhead and the retrieval performance. The
latter case will be examined in the next subsection. In simple words, here we focus
in the way that dynamic insertions and splits are performed in assorted R-tree
variants.

2.1.1 The Original R-tree. Although, nowadays the original R-tree is being de-
scribed in many standard textbooks and monographs on databases [88; 101; 146;
147], we briefly recall its basic properties. R-trees are hierarchical data struc-
tures based on B+-trees. They are used for the dynamic organization of a set
of d-dimensional geometric objects representing them by the minimum bounding
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d-dimensional rectangles (for simplicity, MBRs in the sequel). Each node of the
R-tree corresponds to the minimum MBR that bounds its children. The leaves of
the tree contain pointers to the database objects, instead of pointers to children
nodes. The nodes are implemented as disk pages.

It must be noted that the MBRs that surround different nodes may be overlap-
ping. Besides, an MBR can be included (in the geometrical sense) in many nodes,
but can be associated to only one of them. This means that a spatial search may
visit many nodes, before confirming the existence or not of a given MBR.

The rules obeyed by the R-tree are as follows. Leaves reside on the same level.
Each leaf contains pairs of the form (R, O), such that R is the MBR that contains
spatially object O. Every other node contains pairs of the form (R,P ), where P is
a pointer to a child of the node and R is the MBR that contains spatially the MBRs
contained in this child. Every node (with the possible exception of the root) of an
R-tree of class (m,M) contains between m and M pairs, where m ≤ dM/2e. The
root contains at least two pairs, if it is not a leaf. Figure 1 depicts some objects on
the left and the corresponding R-tree on the right. Data rectangles R1 through R9

are stored in leaf nodes, whereas MBRs Ra, Rb and Rc are hosted in intermediate
nodes.
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Fig. 1. An R-tree example.

Insertions of new objects are directed to leaf nodes. At each level, the node that
will be least enlarged is chosen. Thus, finally the object is inserted in an existing
leaf if there is adequate space, otherwise a split takes place. The minimization of
the sum of the areas of the two resulting nodes being the driving criterion, Guttman
proposed three alternative algorithms to handle splits, which are of linear, quadratic
and exponential complexity:

Linear. Choose two objects as seeds for the two nodes, where these objects are
as furthest as possible. Then, consider each remaining object in a random order
and assign it to the node requiring the smaller enlargement of its respective MBR.

Quadratic. Choose two objects as seeds for the two nodes, where these objects
if put together create as much dead space as possible (dead space is the space
that remains from the MBR if the areas of the two objects are ignored). Then,
until there are no remaining objects, choose for insertion the object for which the
difference of dead space if assigned to each of the two nodes is maximized, and
insert it in the node that requires smaller enlargement of its respective MBR.
ACM Computing Surveys, Vol. V, No. N, Month 20YY.
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Exponential. All possible groupings are exhaustively tested and the best is chosen
with respect to the minimization of the MBR enlargement.

Guttman suggested using the quadratic algorithm as a good compromise to achieve
reasonable retrieval performance.

In all R-tree variants that have appeared in the literature, tree traversals for any
kind of operations are executed in exactly the same way as in the original R-tree
(see next section). Basically, the variations of R-trees differ in the way they perform
splits during insertions by considering different minimization criteria instead of the
sum of the areas of the two resulting nodes. Therefore, in the sequel, we present
and annotate them according to their chronological order of appearance.

2.1.2 The R+-tree. R+-trees were proposed as a structure that avoids visiting
multiple paths during point queries and, thus, the retrieval performance could be
improved [160; 152]. This is achieved by using the clipping technique. In simple
words, R+-trees do not allow overlapping of MBRS at the same tree level. In turn,
to achieve this, inserted objects have to be divided in two or more MBRs, which
means that a specific object’s entries may be duplicated and redundantly stored
in various nodes. Therefore, this redundancy works in the opposite direction of
decreasing the retrieval performance in case of window queries. At the same time,
another side effect of clipping is that during insertions, an MBR augmentation may
lead to a series of update operations in a chain-reaction type. Also, under certain
circumstances, the structure may lead to a deadlock, as, for example, when a split
has to take place at a node with M+1 rectangles, where every rectangle encloses a
smaller one. An R+-tree for the same dataset illustrated in Figure 1, is presented
in Figure 2.
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Fig. 2. An R+-tree example.

2.1.3 The R∗-tree. Although proposed in 1990 [12], R∗-trees are still very well
received and widely accepted in the literature as a prevailing performance-wise
structure that is often used as a basis for performance comparisons. The R∗-tree
does not obey the limitation for the number of pairs per node and follows a sophis-
ticated node split technique. More specifically, the technique of ‘forced reinsertion’
is applied, according to which, when a node overflows, p entries are extracted and
reinserted in the tree (p being a parameter, with 30% a suggested optimal value).
Other novel features of R∗-trees is that it takes into account additional criteria
except the minimization of the sum of the areas of the produced MBRs. The ben-
efit from involving these criteria will be made clear later, in Section 4, where the

ACM Computing Surveys, Vol. V, No. N, Month 20YY.



6 · Yannis Manolopoulos et al.

performance of the R∗-tree will be analyzed. These criteria are the minimization
of the overlapping between MBRs at the same level, as well as the minimization of
the perimeter of the produced MBRs. The benefits from considering these criteria
will be made clear in Section 4, where the R∗-tree performance will be analyzed.
Conclusively, the R∗-tree insertion algorithm is quite improving in comparison to
that of the original R-tree and, thus, improves the latter structure considerable as
far as retrievals are concerned (up to 50%). Evidently, the insertion operation is
not for free as it is CPU demanding since it applies a plane-sweep algorithm.

2.1.4 Hilbert R-tree. The Hilbert R-tree is a hybrid structure based on R-trees
and B+-trees [77]. Actually, it is a B+-tree with geometrical objects being char-
acterized by the Hilbert value of their centroid. Thus, leaves and internal nodes
are augmented by the largest Hilbert value of their contained objects or their de-
scendants, respectively. For an insertion of a new object, at each level the Hilbert
values of the alternative nodes are checked and the smallest one that is larger than
the Hilbert value of the object under insertion is followed. In addition, another
heuristic used in case of overflow by Hilbert R-trees is the redistribution of objects
in sibling nodes. In other words, in such a case up to s siblings are checked in order
to find available space and absorb the new object. A split takes place only if all
s siblings are full and, thus, s+1 nodes are produced. This heuristic is similar to
that applied in B*-trees, where redistribution and 2-to-3 splits are performed dur-
ing node overflows [78]. According to the authors’ experimentation, Hilbert R-trees
were proven to be the best dynamic version of R-trees as of the time of publication.
However, this variant is vulnerable performance-wise to large objects.

2.1.5 Linear Node Splitting. Ang and Tan in [7] have proposed a linear algo-
rithm to distribute the objects of an overflowing node in two sets. The primary
criterion of this algorithm is to distribute the objects between the two nodes as
evenly as possible, whereas the second criterion is the minimization of the over-
lapping between them. Finally, the third criterion is the minimization of the total
coverage. Experiments using this algorithm have shown that it results in R-trees
with better characteristics and better performance for window queries in compari-
son with the quadratic algorithm of the original R-tree.

2.1.6 Optimal Node Splitting. Garcia, Lopez and Leutenegger elaborated the
optimal exponential algorithm of Guttman and reached a new optimal polynomial
algorithm O(nd), where d is the space dimensionality [49]. In the same paper, the
authors give another insertion heuristic, which is called ‘sibling-shift’. In particular,
the objects of an overflowing node are optimally separated in two sets. Then, one
set is stored in the specific node, whereas the other set is inserted in a sibling
node that will depict the minimum increase of an objective function (e.g., expected
number of disk access). If the latter node can accommodate the specific set, then
the algorithm terminates. Otherwise, in a recursive manner the latter node is split.
Finally, the process terminates when either a sibling absorbs the insertion or this
is not possible, in which case a new node is created to store the pending set. The
authors reported that the combined use of the optimal partitioning algorithm and
the sibling-shift policy improves the index quality (i.e., node utilization) and the
retrieval performance in comparison to the Hilbert R-trees, at the cost of increased
ACM Computing Surveys, Vol. V, No. N, Month 20YY.
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insertion time.

2.1.7 Branch Grafting. More recently, in [150] an insertion heuristic is proposed
to improve the shape of the R-tree so that the tree achieves a more elegant shape,
with a smaller number of nodes and better storage utilization. In particular, when
a node overflows, then its father content is checked whether a sibling node with
overlapping MBR could accommodate any of the objects of the node in question.
This technique is called branch grafting and could be considered as an eager method
handling overflows locally at a reasonable cost, whereas forced reinsertion could be
viewed as a lazy approach with higher costs whenever applied. The comparison
regards only various storage utilization parameters and not query processing effi-
ciency.

2.1.8 Compact R-trees. Huang et al. proposed ‘compact R-trees’, a dynamic
R-tree version with optimal space overhead [68]. Among the M+1 entries of an
overflowing node during insertions, a set of M entries is selected to remain in this
node, under the constraint that the resulting MBR is the minimum possible. Then,
the remaining entry is inserted to a sibling that (i) has available space, and (ii) its
MBR is enlarged the minimum possible. Thus, a split takes place only if there is
not available space in any sibling. The heuristic is quite simple to implement, it
results in storage utilization in the area of 97-99% (as opposed to 70% of the original
R-tree) at no extra insertion overhead, whereas the window query performance is
similar to that of the original R-tree.

2.1.9 cR-trees. Lastly, Brakatsoulas et al. have altered the assumption that an
overflowing node has to necessarily be split in exactly two nodes [22]. In particular,
they relied on the k-means clustering algorithm and assumed that an overflowing
node can be split up to k nodes (k ≥ 2 being a parameter). Their experimentation
showed that the resulting index quality, the retrieval performance and the insertion
time are significantly better that those of R-trees (assuming quadratic split) and
similar to those of R∗-trees.

2.1.10 Deviating Variations. Finally, other interesting variants have been pro-
posed, which, however, in some sense deviate drastically from the original idea of
R-trees. Among other efforts, we note the following works. The Sphere trees by
Oosterom use minimum bounding spheres instead of MBRs [113], whereas the Cell
trees by Guenther use minimum bounding polygons designed to accommodate ar-
bitrary shape objects [52]. The Cell tree is a clipping-based structure and, thus, a
variant of Cell trees has been proposed to overcome the disadvantages of clipping.
The latter variant uses ‘oversize shelves’, i.e., special nodes attached to internal
ones, which contain objects that normally should cause considerable splits [53; 54].
Similarly to Cell trees, Jagadish and Schiwietz proposed independently the struc-
ture of Polyhedral trees or P-trees, which use minimum bounding polygons instead
of MBRs [70; 148]. The X-tree by Berchtold et al. uses the notion of ‘supernodes’
(i.e., nodes of greater size) to handle overflows and avoid splits [15]. The S-tree by
Aggrawal et al. relaxes the rule that the R-tree is a balanced structure and may
have leaves at different tree levels [3]. However, S-trees are static structures in the
sense that they demand the data to be known in advance. Another recent effort by
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8 · Yannis Manolopoulos et al.

Ang and Tan is the Bitmap R-tree [8], where each node contains bitmap descrip-
tions of the internal and external object regions except the MBRs of the objects.
Thus, the extra space demand is paid off by savings in retrieval performance due to
better tree pruning. The same trade-off holds for the RS-tree, which is proposed by
Park at al. [133] and connects an R∗-tree with a signature tree with an one-to-one
node correspondence. Agarwal et al. [4] proposed the Box-tree, that is, a bounding-
volume hierarchy that uses axis-aligned boxes as bounding volumes. They provide
worst-case lower bounds on query complexity, showing that box-trees are close to
optimal, and they present algorithms to convert box-trees to R-trees, resulting in
R-trees with (almost) optimal query complexity. Lee and Chung [89] developed the
DR-tree, which is a main memory structure for multi-dimensional objects. They
couple the R∗-tree with this structure to improve the spatial query performance.
Finally, Bozanis et al. have partitioned the R-tree in a number of smaller R-trees
[21], along the lines of the binomial queues that are an efficient variation of heaps.

2.2 Static Versions of R-trees

There are common applications that use static data. For instance, insertions and
deletions in census, cartographic and environmental databases are rare or even they
are not performed at all. For such applications, special attention should be paid in
order to construct an optimal structure with regards to some tree characteristics,
such as storage overhead minimization, storage utilization maximization, minimiza-
tion of overlap or cover between tree nodes, or combinations of the above. There-
fore, it is anticipated that query processing performance will be improved. These
methods are well known in the literature as ‘packing’ or ‘bulk loading’. Thus, next
we examine such methods that require the data to be known in advance.

2.2.1 The Packed R-tree. The first packing algorithm was proposed by Rous-
sopoulos and Leifker in 1985, soon after the proposal of the original R-tree [141].
This first effort basically suggests ordering the objects according to some spatial
criterion (e.g., according to ascending x-coordinate) and then grouping them in
leaf pages. No experimental work is presented to compare the performance of this
method to that of the original R-tree. However, based on this simple inspiration a
number of other efforts have been proposed later in the literature.

2.2.2 The Hilbert Packed R-tree. Kamel and Faloutsos proposed an elaborated
method to construct a static R-tree with 100% storage utilization [76]. In partic-
ular, among other heuristics they proposed sorting the objects according to the
Hilbert value of their centroids and then build the tree in a bottom-up manner.
Experiments showed that the latter method achieves significantly better perfor-
mance than the original R-tree with quadratic split, the R∗-tree and the Packed
R-tree by Roussopoulos and Leifker in point and window queries. Moreover, Kamel
and Faloutsos proposed a formula to estimate the average number of node access,
which is independent of the details of the R-tree maintenance algorithms and can
be applied to any R-tree variant.

2.2.3 The STR R-tree. STR (Sort-Tile-Recursive) is a bulk-loading algorithm
for R-trees proposed by Leutenegger et al. in [91]. Let N be a number of rectangles
in two-dimensional space. The basic idea of the method is to tile the address space
ACM Computing Surveys, Vol. V, No. N, Month 20YY.
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by using S vertical slices, so that each slice contains enough rectangles to create
approximately

√
N/C nodes, where C is the R-tree node capacity. Initially, the

number of leaf nodes is determined, which is P = dN/Ce. Let S =
√

P . The
rectangles are sorted with respect to the x coordinate of the centroids, and S slices
are created. Each slice contains S ·C rectangles, which are consecutive in the sorted
list. In each slice, the objects are sorted by the y coordinate of the centroids and
are packed into nodes (placing C objects in a node). The method is applied until
all R-tree levels are formulated. The STR method is easily applicable to high di-
mensionalities. Experimental evaluation performed in [91] has demonstrated that
the STR method is generally better than previously proposed bulk-loading meth-
ods. However, in some cases the Hilbert packing approach performs marginally
better. It has to be noticed that Garcia et al. [50] proposed an R-tree node re-
structuring algorithm for post-optimizing existing R-trees and improving dynamic
insertions, which incurs an optimization cost equal to that of STR. The resulting
R-tree outperforms dynamic R-tree versions, like the Hilbert R-tree, with only a
small additional cost during insertions. Moreover, an analytical model to predict
the number of disk accesses for buffer management is described by Leutenegger and
Lopez [90], which evaluates the quality of packing algorithms measured by query
performance of the resulting tree.

2.2.4 Top-Down Greedy Split. Unlike the aforementioned packing algorithms
that build the tree bottom-up, the top-down greedy-split (TGS) method [48] con-
structs the R-tree in a top-down manner. TGS recursively applies a splitting process
that partitions a set of N rectangles into two subsets by applying an orthogonal cut
to a selected axis. This process must satisfy the following conditions: 1) the value
of an objective function should be minimized, 2) one subset has a cardinality i·S for
some i so that the resulting subtrees are packed. The method is recursively applied
to both subsets. The objective function has the form f(r1, r2), where r1, r2 are the
MBRs of the two subsets produced. The performance evaluation of the method
reported in [48] has demonstrated that the TGS approach is generally better than
previously proposed packing algorithms.

2.2.5 Small-Tree-Large-Tree and GBI. The previous packing algorithms build
an R-tree access method from a set of spatial objects. The small-tree-large-tree
method (STLT) [32] performs efficient bulk insertions into an existing R-tree struc-
ture. Let R be a set of spatial objects indexed by an already existing R-tree and
N a set of new objects that must be inserted. Instead of inserting the objects in
the R-tree one-by-one, the STLT method constructs a small R-tree for N and then
inserts the small R-tree into the large R-tree. Obviously, the efficiency of the re-
sulting index depends on the data distribution of the small R-tree. If the objects in
N cover a large part of the data space, then using the STLT approach will result in
increasing overlap in the resulting index. Therefore, the method is best suited for
skewed data distributions. STLT is extended in [34], where the Generalized R-tree
Bulk-Insertion Strategy (GBI) is proposed. GBI inserts new incoming data sets into
active R-trees as follows: it first partitions the data sets into a set of clusters and
outliers, then it constructs a small R-tree for each cluster, finding suitable places
in the original R-tree to insert the newly created R-trees, and finally it bulk-inserts
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the new R-trees and the outliers in the original R-tree.

2.2.6 Buffer R-tree. Arge et al. [11] proposed the Buffer R-tree (BR) for per-
forming bulk update and queries. BR is based on the buffer tree lazy buffering
technique and exploits the available main memory. Analytical results in [11] show
the efficiency of BR, whereas experimental results illustrates its superiority over the
the other methods. BR requires smaller execution times to perform bulk updates
and produces a better quality index in terms of query performance. Moreover, BR
(differently from other methods) allows for simultaneous batch updates and queries.

2.2.7 R-tree with low stabbing number. deBerg et al. [40] have proposed an R-
tree construction algorithm from a given set of spatial objects (focus is on not
very high dimensionality), and they prove that the resulting R-tree has good query
complexity for point and range queries with ranges of small width. Their analysis
is based on the stabbing number, i.e., the number of rectangles containing a given
point. The produced bounds are optimal for certain special cases. Nevertheless, no
comparison is performed against other methods.

2.3 Spatiotemporal R-tree Variants

Spatiotemporal access methods (STAMs) provide the necessary tools to query spa-
tiotemporal data. A large number of the proposed methods are based on the well
known R-tree structure. In the sequel, we introduce a number of STAMs and query
processing techniques related to spatiotemporal applications, such as bitemporal
spatial applications, trajectory monitoring, and moving objects. All the presented
methods are based on the concept of the R-tree.

2.3.1 3D R-trees. The 3D R-tree, proposed in [168], considers time as an extra
dimension and represents 2D rectangles with time intervals as three-dimensional
boxes. This tree can be the original R-tree [57] or any of its (ephemeral) variants.

The 3D R-tree approach assumes that both ends of the interval [t1, t2) of each
rectangle are known and fixed. If the end time t2 is not known, this approach does
not work well. For instance, assume that an object extends from some fixed time
until the current time, now (refer to [35] for a thorough discussion on the notion of
now). One approach is to represent now by a time instance sufficiently far in the
future. This leads to excessive boxes and consequent poor performance. Standard
spatial access methods (SAMs), such as the R-tree and its variants, are not well
suited to handle such ‘open’ and expanding objects. One special case where this
problem can be overcome is when all movements are known a priori. This would
cause only ‘closed’ objects to be entries of the R-tree.

The 3D R-tree was implemented and evaluated analytically and experimentally
[168; 171], and it was compared with the alternative solution of maintaining a spa-
tial index (e.g., a 2D R-tree) and a temporal index (e.g., a 1D R-tree or a segment
tree). Synthetic (uniform-like) datasets were used, and the retrieval costs for pure
temporal (during, before), pure spatial (overlap, above), and spatiotemporal oper-
ators (the four combinations) were measured. The results suggest that the unified
scheme of a single 3D R-tree is obviously superior when spatiotemporal queries are
posed, whereas for mixed workloads, the decision depends on the selectivity of the
operators.
ACM Computing Surveys, Vol. V, No. N, Month 20YY.
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2.3.2 The 2+3 R-tree. One possible solution to the problem of ‘open’ geometries
is to maintain a pair of two R-trees [108]:

—a 2D R-tree that stores two-dimensional entries that represent current (spatial)
information about data, and

—a 3D R-tree that stores three-dimensional entries that represent past (spatiotem-
poral) information; hence the name 2+3 R-tree.

The 2+3 R-tree approach is a variation of an original idea proposed in [86] in the
context of bitemporal databases, and which was later generalized to accommodate
more general bitemporal data [19; 18].

As long as the end time t2 of an object interval is unknown, it is indexed by the
(2D) front R-tree, keeping the start time t1 of its position along with its ID. When
t2 becomes known, then:

—the associated entry is migrated from the front R-tree to the (3D) back R-tree,
and

—a new entry storing the updated current location is inserted into the front R-tree.

Should one know all object movements a priori, the front R-tree would not be used
at all, and the 2+3 R-tree reduces to the 3D R-tree presented earlier. It is also
important to note that both trees may need to be searched, depending on the time
instance related to the posed queries.

2.3.3 The Historical R-tree. Historical R-trees (HR-trees, for short) have been
proposed in [107], implemented and evaluated in [108] and improved recently in
[163]. This STAM is based on the overlapping technique. In the HR-tree, concep-
tually a new R-tree is created each time an update occurs. Obviously, it is not
practical to physically keep an entire R-tree for each update. Because an update
is localized, most of the indexed data and thus the index remain unchanged across
an update. Consequently, an R-tree and its successor are likely to have many iden-
tical nodes. The HR-tree exploits this and represents all R-trees only logically. As
such, the HR-tree can be viewed as an acyclic graph, rather than as a collection of
independent tree structures.

With the aid of an array pointing to the root of the underlying R-trees, one can
easily access the desired R-tree when performing a timeslice query. In fact, once
the root node of the desired R-tree for the time instance specified in the query
is obtained, the query processing cost is the same as if all R-trees where kept
physically.

The concept of overlapping trees is simple to understand and implement. More-
over, when the number of objects that change location in space is relatively small,
this approach is space efficient. However, if the number of moving objects from one
time instance to another is large, this approach degenerates to independent tree
structures, since no common paths are likely to be found.

2.3.4 The RST-tree. The RST-tree [144] is capable of indexing spatio-bitemporal
data with discretely changing spatial extents. In contrast to the indexing structures
described previously, the RST-tree supports data that has two temporal dimensions
and two spatial dimensions. The valid time of data is the time(s)—past, present,
or future—when the data is true in the modeled reality, while the transaction time
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of data is the time(s) when the data was or is current in the database [71; 158].
Data for which both valid and transaction time is captured is termed bitemporal.

2.3.5 The MV3R-tree. To overcome the shortcomings of the 3D R-tree and the
HR-tree, Tao and Papadias [164] proposed the MV3R-tree, consisting of a multi-
version R-tree and small auxiliary 3D R-tree built on the leaves of the former.
Through extensive experimentation, the MV3R-tree turned out to be efficient in
both timestamp and interval queries with relatively small space requirements.

2.3.6 The Partially Persistent R-tree. Kollios et al. in [79] recently proposed the
partially-persistent R-tree (PPR-tree), actually a directed acyclic graph of nodes
with a number of root nodes, where each root is responsible for recording a subse-
quent part of the ephemeral R-tree evolution. The disadvantage of both indexing
techniques is that space requirements become prohibitive for agile datasets.

2.3.7 The TB-tree. The TB-tree (Trajectory Bundle) [136] relaxes a fundamen-
tal R-tree property, i.e., keeping neighboring entries together in a node, and strictly
preserves trajectories such that a leaf node only contains segments belonging to the
same trajectory. This is achieved by giving up on space discrimination. The TB-
tree indexes past locations of objects and supports continuous changes.

2.3.8 The Time-Parameterized R-tree. The aforementioned access methods fo-
cus on providing access paths to present or past values of objects. An access method
that is based on the R-tree structure and provides access to present and future val-
ues is the Time-Parameterized R-tree [145]. This method is based on the concept of
non-static MBRs of leaf and internal nodes. In other words, the MBR of an object
or a tree node is a function of time. It is assumed that the velocity vector of each
object is known. Based on the last location of the object and its velocity vector,
one can determine the current object position in space. One basic characteristic of
the TPR-tree structure is that the covering MBRs of the internal nodes are rarely
minimum (although they are conservative). In a recent work [138] an efficient vari-
ation of the TPR-tree has been proposed that eliminates some basic disadvantages
of the structure and shows better performance in query processing.

2.4 R-trees in OLAP, Data Warehouses and Data Mining

R-trees have not been used only for storing and processing spatial or spatiotemporal
data. Modifications to the R-tree structure have been also proposed in order to
handle queries in OLAP applications, Data Warehouses and Data Mining.

Variations for OLAP and Data Warehouses store summary information in in-
ternal nodes, and therefore in many cases it is not necessary to search lower tree
levels. Examples of such queries are window aggregate queries, where parts of the
dataspace are requested that satisfy certain aggregate constraints. Nodes totally
contained by the query window do not have to be accessed. One of the first efforts
in this context was the variant of Ra∗-tree, which has been proposed for efficient
processing of window aggregate queries, where summarized data are stored in inter-
nal nodes in addition to the MBR [74]. The same technique has been used in [123]
in the case of spatial data warehouses. In [165] the aP-tree has been introduced in
order to process aggregate queries on planar point data. Finally, in [124] a combi-
nation of aggregate R-trees and B-trees has been proposed for spatiotemporal data
ACM Computing Surveys, Vol. V, No. N, Month 20YY.
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warehouse indexing.
Recently, R-trees have been also used in the context of Data Mining. In par-

ticular, Spatial Data Mining systems [58] include methods that gradually refine
spatial predicates, based on indexes like the R-tree, to derive spatial patterns, e.g.,
spatial association rules [80]. Nanopoulos et al. [109], based on the R-tree structure
and the closest-pairs query, developed the C2P algorithm for efficient clustering,
whereas [110] proposed a density biased sampling algorithm from R-trees, which
performs effective pre-processing to clustering algorithms.

3. QUERY PROCESSING

The processing of spatial queries presents significant requirements, due to the large
volumes of spatial data and the complexity of both objects and queries [115] Ef-
ficient processing of spatial queries capitalize on the proximity of the objects,
achieved by the R-tree, so as to focus the searching on objects that satisfy the
queries.

Besides efficiency, one of the main reasons for the popularity of R-tree indexes
stems from their versatility, since they can efficiently support many types of spatial
operators. The most common types of operators are: a) Topological (e.g., find all
objects that overlap or cover a given object), b) Directional (e.g., find all objects
that lie north of a given object), c) Distance (e.g., find all objects that lie in less than
a given distance from a given object). These operators comprise basic primitives
for developing more complex ones in applications that are based on management
of spatial data, such as GIS, cartography and many others.

As described, the R-tree abstracts object with complex shapes (polygons, poly-
gons with holes, etc) by using their MBR approximations. To answer queries con-
taining the aforementioned operators, a two-step procedure is followed [24]: (i)
Filter step: the collection of all objects whose MBRs satisfy the given query is
found, which comprises the candidate set. (ii) Refinement step: The actual geome-
try of each member of the candidate set is examined to eliminate false hits and to
find the answer to the query. The two steps are illustrated in Figure 3. In general,
the filter step cannot determine the inclusion of an object in the query result. Nev-
ertheless, there are few operators (mostly directional ones) that allow for finding
query results from the filter step also. This is shown in Figure 3 by the existence
of hits (i.e., answers to the query) in the filter step.
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Fig. 3. Two-step query processing procedure.
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In the following, we will describe in more detail the query processing techniques
that have been developed for each query type. Since the refinement step is or-
thogonal to the filtering step, the developed techniques have mainly focused on the
latter. More details on representations different from the MBR, and their impact
on the refinement step can be found in [25].

3.1 Range and Topological Queries

The most common operation with an R-tree index is a range query, that is, the
finding of all objects that a query region intersects. In many cases the query
region is a rectangle and the query is called window query. The processing of a
range/window query is defined in [57]. It commences from the root node of the
tree. For each entry whose MBR intersects the query region, the process descends
to the corresponding subtree. At the leaf level, for each object bounding rectangle
that intersects the query region, the corresponding object is examined (refinement
step). Also, it has to be mentioned that point queries (i.e., find all objects that
contain a query point) can also be treated as a range query, since the query point
can be considered as a degenerated rectangle. In [128] the case of combining the
execution of several range queries in order to achieve better overall performance
was considered.

The intersection operator, which is examined by the range query, can be consid-
ered a special case of a more detailed retrieval of topological relations. Papadias
et al. [120] developed a systematic description of the topological information that
MBRs convey about the corresponding spatial objects, and proposed an algorithm
to minimize the I/O cost of topological queries, that is, queries that involve topolog-
ical relations. In particular, the intersection test of the range query corresponds to
the disjoint or non disjoint condition between the indexed objects (called primary
objects, i.e., those contained in the R-tree) and the query object (called reference
object). Although the disjoint relation is left unchanged, the non disjoint relation
is refined further with the following relations: meet, equal, overlap, contains and
covers. Figure 4 depicts all possible relations between two objects.
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Fig. 4. Topological relations: a) disjoint(q, p), b) meet(q, p), c) overlap(q, p), d) covers(q, p), e)
contains(q, p) or inside(p, q), f) equal(q, p).

The topological relation between two MBRs does not necessarily coincide with
the topological relations between the two corresponding objects, because MBRs
are approximate representations. Therefore, given two objects, the corresponding
MBRs satisfy, in general, a number of possible relations [120]. In order to perform
a topological query with an R-tree, [120] defines the more general relations that will
be used for downwards propagation at the intermediate nodes. For convenience, we
denote the aforementioned approach as PTSE (from the names of the authors).
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Experimental results in [120] indicate that the topological relations can be divided
in three categories, with respect to the incurred I/O cost. The first category con-
tains relation disjoint, which requires the larger cost (almost equal to the scanning
of the entire R-tree contents), the second contains relations meet, overlap, inside
and covered by, which require medium cost, and the third the relations equal, cover,
contains, which require small cost. Compared to the straightforward case where a
range query is first executed and then the topological relations are examined only
at the refinement step, the approach of [120] shows an improvement of up to 60%.

3.2 Directional Queries

R-trees have been also used to answer queries involving directional information (left,
above, north etc.). Papadias et al. [119] discussed relations between points (e.g.
north) and relations between non-point objects approximated by their MBRs (e.g.,
strong-north, weak-north) and provided a methodology to support these types of
queries when objects’ MBRs are indexed by an R-tree. The methodology includes
two steps:

(1) all node rectangles that could include hits are detected based on a direction
relation, possibly different from the target relation,

(2) the candidate hits are accessed based on another direction relation.

As in the case of topological queries, the above procedure that involves MBRs
only composes the filter step, while actual hits are detected during the refinement
step, which involves the exact geometry of objects. Consider the following example:
assume we ask for objects p weak-north of an object q; each object p is approximated
by its MBR p′ and each rectangle r is defined by its lower-left corner rl and its upper
right corner ru. The R-tree nodes P that might include hits are those that fulfill
the following constraint: Pu north of q′u and Pl south of q′u. Respectively, candidate
hits p′ are those that fulfill the following constraint: p′u north of q′u and p′l north
of q′l and p′l south of q′u. Following the same strategy, [119] supported a number of
directional queries and showed through experiments their performance.

3.3 Nearest Neighbor Queries

The problem of answering k nearest-neighbor (NN) queries using R-trees has been
introduced by Roussopoulos et al. [142]. This approach is based on metrics that
measure the optimistic and pessimistic distances between the R-tree contents and
the query point1. Given a query point P and an object O that is represented by its
MBR, [142] describes two metrics. The first is called MINDIST and corresponds to
the minimum possible distance of P from O. The second is called MINMAXDIST
and corresponds to the minimum of the maximum possible distances from P to a
vertex of O’s MBR. These two metrics comprise a lower and an upper bound on
the actual distance of O from P , respectively. More specifically, MINDIST(P, R)
is the distance from P to the closest point on the boundary of R, which does not
necessarily have to be a corner point. MINMAXDIST(P,R) is the distance from P
to the closest corner of R that is adjacent (i.e., connected with an edge of R) to the

1The NN query can be also extended to non-point objects, by providing appropriate distance
measures. See [63] for more details.
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corner that is farthest from P . Figure 5 illustrates an example of the MINDIST
and MINMAXDIST metrics between a two-dimensional query point P and three
MBRs (for the rectangle that includes P , MINDIST is equal to 0).
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Fig. 5. Example of MINDIST and MINMAXDIST.

In [142], a branch-and-bound R-tree traversal algorithm is presented that uses
the aforementioned metrics to order and prune the search tree. The search or-
dering determines the node visits during the tree traversal. As described in [142],
MINDIST produces more optimistic ordering than MINMAXDIST, but there may
exist cases of data sets (depending on the sizes and the layouts of MBRs) where
the latter produces less costly traversals. For a query point P , the pruning of node
visits during the searching is performed according to the following heuristics. The
complete algorithm for finding the 1st NN is presented in Figure 6. 2

(1) An MBR M with MINDIST(P,M) greater than the MINMAXDIST(P,M ′) of
another MBR M ′, is discarded because it cannot contain the NN. This is used
in downward pruning.

(2) An actual distance from P to a given object O, which is greater than the
MINMAXDIST(P,M) for an MBR M , can be discarded because M contains
an object O′ that is nearer to P . This is also used in downward pruning.

(3) Every MBR M with MINDIST(P, M) greater than the actual distance from
P to a given object O is discarded because it cannot enclose an object nearer
than O. This is used in upward pruning.

Cheung and Fu [33] have observed that a more efficient version of the aforemen-
tioned branch-and-bound algorithm can be derived on the basis that pruning with
respect to the number of node accesses is considered. It is based on the observation
that only the third pruning heuristic is necessary to maintain the same number of
pruned nodes. (This observation was independently made also by [63].) However,
this pruning heuristic has to be applied in a different position, thus resulting to
a modified NN search algorithm, which we denote as MN. For these reasons, the
NNSearch procedure of Figure 6 is modified by removing step 12 (which applies
the first and second pruning heuristics) and by repositioning of step 3 (third prun-
ing heuristic) before the recursive application of step 15. Thus, the for-loop of
steps 13–17 is given in Figure 7.

2For finding k-NN (k > 1), the previous procedure can be easily modified so as to maintain the
current k most closest objects and by pruning with respect to the furthest object each time.
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Procedure NNSearch(Node, Point, Nearest)
1. if Node.type == LEAF
2. for i=1 to Node.count
3. dist = objectDIST(Point, Node.branch[i].rect)
4. if dist < Nearest.dist
5. Nearest.dist = dist
6. Nearest.rect = Node.branch[i].rect
7. endif
8. endfor
9. else
10. genBranchList(branchList)
11. sortBranchList(branchList)
12. last = pruneBranchList(Node, Point, Nearest, branchList)
13. for i = 1 to last
14. newNode = Node.branch[branchList[i]]
15. NNSearch(newNode, Point, Nearest)
16. last = pruneBranchList(Node, Point, Nearest, branchList)
17. endfor
18. endif
19. end

Fig. 6. Nearest Neighbor Search Algorithm.

13. for i = 1 to last
14. Apply Pruning Heuristic 3
15. newNode = Node.branch[branchList[i]]
16. NNSearch(newNode, Point, Nearest)
17. endfor

Fig. 7. Modification in the NNSearch.

Finally, it has to be noticed that Belussi et al. [14] have proposed a nearest-
neighbor algorithm for the R+-tree variant. Their method considers information
on the reference space to improve the search. The resulting data structure integrates
the R+-tree with a regular grid, indexed by using a hashing technique, combining
the advantages of the rectangular space decomposition attained by R+-trees, with
a direct access attained by hashing.

3.4 Incremental Nearest Neighbor Queries

Hjaltason and Samet [63] presented the problem of incremental NN searching with
an R-tree. Incremental NN queries find the data objects in their order of distance
from the query object (ranking). For instance, let a set of cities C and the query:
‘find the nearest city to q ∈ C whose population is larger than 1 million people’. By
obtaining the neighbors incrementally, they can be examined against the specified
criterion. This operation is defined as distance browsing [63]. It has to be noticed
that it is different from searching for a prespecified k, because k cannot be known
in advance.
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The algorithm for incremental NN searching is based on maintaining the set of
nodes to be visited in a priority queue (for the case of skewed and high-dimensional
data, [63] proposes that the queue should be divided in several tiers, one of which
remains in main memory and the others on secondary storage). The entries in the
queue are sorted according to the MINDIST metric. It is assumed that the actual
objects (e.g., polygons) are stored separately in the data level, as long as each
object is completely contained by its corresponding bounding rectangle. Thus, at
the leaf-level of the R-tree the object bounding rectangles (i.e., the MBRs of the
data objects) can advocate pruning. (In the following, the bounding rectangle of
an object O is denoted as [O].) The algorithm is depicted in Figure 8.

Procedure IncNNSearch(q)
1. enqueue(PriorityQueue, root’s children)
2. while PriorityQueue not empty
3. element ← dequeue(PriorityQueue)
4. if element is an object O or an object bounding rectangle [O]
5. if element == [O] and not PriorityQueue empty

and objectDist(q, O) > First(PriorityQueue).key
6. enqueue(PriorityQueue, O, objectDist(q, O)
7. else
8. Output element /*or if element is bounding rectangle, the associated object*/
9. endif
10. else if element is leaf node
11. foreach object bounding rectangle [O] in element
12. enqueue(PriorityQueue, [O], dist(q, [O])
13. endfor
14. else /*non-leaf node*/
15. foreach entry e in element
16. enqueue(PriorityQueue, e, dist(q, e)
17. endfor
18. endif
19. endwhile
20. end

Fig. 8. Optimal Nearest Neighbor Search Algorithm.

For the analysis of the incremental NN searching algorithm, [63] makes the key
observation that any algorithm for the R-tree must visit all the nodes that intersect
the search region, and notices that the incremental algorithm visits exactly these
nodes. Based on the assumption of low dimensionality and uniform data distribu-
tion, it is proven in [63] that the expected number of leaf node accesses for k-NN
processing is O(k +

√
k).

Evidently, the incremental NN search algorithm can be applied to the problem
of finding the k NNs (for a specified k), since it can terminate after having found
the first k neighbors. For this case, however, the approach of [63] differs from [142].
The branch-and-bound algorithm of Section 3.3 traverses the index in a depth-first
fashion. Once a node is visited, its processing has to be completed even if other
(sibling) nodes are more probable to contain the NN object; thus at each step only
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local decisions can be made [63]. In contrast, the described algorithm in [63] makes
global decisions by using the priority queue to maintain the nodes that are going to
be visited, and chooses among the child nodes of all nodes that have been visited,
instead of the current one. Thus, it uses a best-first traversal of the tree, and prunes
the visiting to nodes according to the third pruning heuristic. This approach has
the characteristic of optimality with respect to the number of R-tree node visits,
however not to the NN problem itself. (Interestingly enough, [16] have described
an analogous k-NN searching algorithm that is based on the approach of [61] (a
prior version of [63]), which is called Optimal Nearest Neighbor Search.)

3.4.1 Comparison of Nearest Neighbor Algorithms. From the description of all
the k-NN algorithms (original branch-and-bound KNN [142], the modified MNN [33],
and the incremental INN [63]) it follows that there are three design issues that affect
the performance of the NN searching:

(i) the criterion of ordering node visits,
(ii) the manner of ordering node visits (i.e., traversal type), and
(iii) the pruning heuristics.

Table I summarizes the selection made by each algorithm for the above issues,
whereas the pruning heuristics are explained in Section 3.3.

KNN MNN INN

ordering MINDIST or MINMAXDIST MINDIST MINDIST

traversal type Depth-First Depth-First Best-First

pruning heuristics 1,2,3 3 3

Table I. Characterization of NN search algorithms.

Experimental results in [63] show that INN clearly outperforms KNN. Neverthe-
less, it has to be noticed that the comparison for high-dimensional data is left as
an open issue (where it has to be considered that the size of the priority queue may
increase significantly and it has to be stored on disk).

3.5 Reverse and Conditional Nearest Neighbor Queries

3.5.1 Reverse Nearest Neighbors. Reverse NN queries find the set of database
points that have the query point as the NN. The reverse and the NN problems are
asymmetric. If the NN of a query point q is a data point p, then it does not hold
in general that q is the NN of p (i.e., q is not necessarily the reverse NN). The
aforementioned problem has been introduced in [83], however it was restricted to
static data and specialized data structures. Stanoi et al. [159] have developed a
reverse NN algorithm for the R-tree, which can handle dynamic data efficiently.

The algorithm of [159] is based on the notion of space dividing lines. For the
two-dimensional space, each point can be associated with three lines around it.
They are denoted as l1, l2 and l3, where l1 is parallel to the x axis, and the angle
between l1 and l2, l2 and l3, l3 and l1 is 2π/3. The left part of Figure 9 illustrates the
arrangement of the three space dividing lines, which determine 6 regions (denoted
as S1, . . . , S6).
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According to [159], for a query point q and the corresponding region Si, either
the NN of q in Si is also the reverse NN, or there does not exist a reverse NN in Si.
Therefore, for each of the Si regions, the NN of the query point has to be found.
This set of points for all regions determine a candidate set that has to be examined
so as to identify the reverse NN. Hence, for the two-dimensional space, this limits
the choice of RNN(q) to one or two points in each of the six regions [159]. The
corresponding algorithm is depicted in the right part of Figure 9. (Note that the
computations corresponding to all six regions is done in a single traversal and not
separately for each region).
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Procedure RNNSearch(Point)
1. RNNResult = ∅
2. CandidateList = CondNNSearch(q)
3. EliminateDuplicates(CandidateList)
4. foreach p ∈CandidateList
5. NNSearch(p, r) /*r = NN(p)*/
6. if objectDist(p, q) ≤ objectDist(p, r)
7. RNNResult = RNNResult ∪ p
8. endif
9. endfor
10. return RRNResult
11. end

Fig. 9. Left: Space dividing lines. Right: Reverse Nearest Neighbor Search Algorithm.

3.5.2 Conditions Determined by Space Dividing Lines. Given one of the six
regions Si, the conditional NN determines the NN of the query point in Si. This
procedure is based on the observation that the examination of points that belong
in MBRs that are out of Si, can be pruned. However, for an MBR that belongs
to Si, their overlapping is done either fully or partially. This leads to five possible
cases for, e.g., the S2 region:

(1) MBR A: fully contained (all four vertices within S2).
(2) MBR B: three vertices are in S2. Thus, there exist some data points in B that

are also contained in S2.
(3) MBR C: two vertices are in S2. Thus, at least one data point of C is also in S2

(because an entire edge of C is in S2 and there exist at least one point on that
edge).

(4) MBR D: only one vertex is in S2. No implication can be done on the existence
of points in D that also belong in S2.

(5) MBR E: no vertices in S2, but part of E overlaps S2. No implication can be
done on the existence of points in D that also belong in S2, nor on the not
existence.

With the consideration of the aforementioned cases, the conditional NN searching
traverses the tree and prunes out the sections that cannot lead to an answer either
because a) their MBRs do not belong in the examined region, or b) because it can
be determined that other points in the region are closer to the query point.
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3.5.3 Generalized Conditional Nearest Neighbor Searching. The conditional NN
searching that is determined by constraints due to space dividing lines is extended
by Ferhatosmanoglou et al. [46] to consider more general constraints. They define
the constrained NN (CNN) queries as NN queries that are constrained to a specified
region (determined by a convex polygon [46]). For instance, let a two-dimensional
map, depicted in the left part of Figure 10, which contains several cities that are
represented by points. Given the query point q, a CNN query is: find the nearest
city to the south of a q.3 Evidently, in unconditional NN search, the result would
be city a. In contrast, the result of the above CNN query is city b. Therefore, CNN
queries can combine directional and distance operators. Moreover, CNN queries
can involve multiple constraint regions [46].

A straightforward approach for the CNN problem (e.g., to first apply a range
query with the specified constrained region and then search for the NNs in the
results of the range query, or to use INN [63] for finding nearest points in the order
of their distance and testing if they satisfy the given constraint at the same time)
may unnecessarily retrieve a large number of points that do not belong in the query
region, before finding the desired ones.
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Fig. 10. Left: An example of CNN query. Right: The modified metrics for CNN.

For the above reasons, [46] proposes a new approach that merges the conditions of
NN and regional constraints in one phase. It is based on an extension of the work
described for the reverse NN, which considers general areas defined by polygons
instead of the regions determined by space dividing lines. CNN again considers the
five possible cases for the overlap between the query region and an MBR, which were
described in Section 3.5.2. The MINDIST and MINMAXDIST metrics, however,
are modified in a different way.

Let a query (i.e., constraint) region R, a query point q and an MBR M . Also,
let the IR polygon be the intersection between R and M , i.e., IR = R∩M (several
well known techniques exist to identify the intersection polygon). Then, having
calculated the edges of IR polygon, [46] defines MINDIST(q, M, R) to be the min-
imum of all distances from q to these edges. This case is illustrated in the right
part of Figure 10, where it has to be noticed that MINDIST(q, M, R) offers a
tighter bound compared to MINDIST(q, M). Similarly, MINMAXDIST as defined
by [142] does not hold when M is only partially contained in R. Therefore, [46]

3Although this constraint does not explicitly determine a convex polygon, as described in [46] the
combination of the directional line with the space boundary gives the desired polygon.
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defines MINMAXDIST(q, M, R), which is computed only over the edges of M that
are completely contained in R (so as to identify the distance that guarantees the
inclusion of a point from M in R). This case is illustrated in the right part of
Figure 10, where the shaded area represents IR, the original metrics are depicted
with dashed line and the modified ones with solid line.

3.6 Spatial Join Queries

Given two spatial relations A = {a1, . . . , an} and B = {b1, . . . , bm} (ai, bi are
spatial objects), the spatial join computes all pairs (ai, bj), ai ∈ A, bj ∈ B that
satisfy a spatial predicate, like the topological operators overlap (i.e., ai ∩ bj 6= ∅)
and coverage (i.e., ai covers bj). For instance, such queries can find all rivers that
cross cities. Based on the two-step processing scheme (presented at the beginning of
Section 3), the R-tree facilitates the filter step, that is, the determination of all pairs
(MBR(ai), MBR(bj)) that satisfy the required operator; for instance MBR(ai) ∩
MBR(bj) 6= ∅, for the case of overlap. Spatial join queries, differently from selection
queries (range and NN) that are single-scan, are characterized as multiple-scan
queries, since objects may have to be accessed more than once. Therefore, these
types of queries pose increased requirements for efficient query processing. In the
following, we examine the case of 2-way join, whereas the multi-way join is examined
in the next section.

3.6.1 Algorithm based on Depth-first Traversal. Brinkhoff et al. [23] first pre-
sented an algorithm for the processing of spatial joins using R-trees. Let R and S
be the joined R-trees. The basic form of the algorithm traverses the two R-trees in
a depth-first manner, testing each time the entries of two nodes NR and NS , one
from each tree respectively. Let ER ∈ NR and ES ∈ NS . If their MBRs do not in-
tersect, then the further examination of the corresponding subtrees can be avoided.
Otherwise, the algorithm proceeds recursively to the entries of the subtrees. This
presents a search pruning criterion that capitalizes on the clustering properties of
the R-tree. The description of the basic form of the algorithm is given in Figure 11.

Procedure RJ(NR, NS)
1. foreach ES ∈ NS

2. foreach ER ∈ NR with MBR(ER) ∩ MBR(ES) 6= ∅
3. if NR is leaf node /* NS is also a leaf */
4. output(ER, ES)
5. else
6. RJ(ER.childPtr, ES .childPtr)
7. endif
8. endfor
9. endfor
10. end

Fig. 11. Basic Depth-First Spatial Join Algorithm.

In procedure RJ it is assumed (step 3) that both trees are of equal height. In [23]
it is described that when the trees have different heights and the algorithm reaches
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a leaf node (whereas the other node is not a leaf), then window queries on the
subtrees rooted at the non-leaf node are performed with the MBRs of the entries
belonging to the leaf node. Nevertheless, the experimental results in [23] indicate
that window queries do not profit very much from the proposed optimizations, that
will described in the sequel; thus the performance of the join query may be impacted
in this case. Also, to avoid as much as possible the multiple rereading of nodes, an
LRU buffer is used.

In the basic form of the algorithm, each node entry is examined against all entries
of the other node. For this reason, two optimizations are proposed in [23]:

Restricting the search space: Let two nodes NR and NS , and I = MBR(NR) ∩
MBR(NS) the intersection rectangle. This optimization is based on the obser-
vation that only the entries ER ∈ NR and ES ∈ NS for which ER ∩ I 6= ∅
ES ∩I 6= ∅ have to be examined, since they are the only that can have a common
intersection.

Spatial sorting and plane sweep: Given two nodes NR and NS , let Rseq and Sseq

represent the collection of the MBRs of the node entries. Rseq and Sseq are sorted
with respect to the lower-x coordinate values of their entries. The sequences are
processed using a plane-sweep algorithm, where the sweep-line is moved each time
to the next unmarked rectangle among Rseq and Sseq with the smaller lower-
x value, and the above procedure is repeated, until one of the two sequences
has been exhausted. It has to be noted that the sorted node of entries is not
maintained in the nodes during insertions/deletions.

The reduction of I/O cost, compared to the basic form of the algorithm, is
achieved in [23] with the computation of a read schedule, which controls the way
that nodes are fetched from the disk into the buffer. The following local optimiza-
tion polices are proposed, which are based on spatial locality, and try to maintain
in the buffer nodes whose MBRs are close in space:

Local plane-sweep order with pinning: It is based on the plane-sweep sequence,
that was described for the tuning of CPU-time. Each time it pins in the buffer
MBRs with the maximum number of intersections between it and the MBRs of
entries belonging to the other tree that have not been processed. Due to pinning,
pages whose MBR frequently intersects other MBRs, are completely processed
so as to avoid their rereading.

Local z-order: The intersections between the MBRs of the two nodes is first com-
puted. Then, the MBRs are sorted with respect to a space filling curve, like the
Peano curve, opting to bring together MBRs that are closed in space. As in the
previous case, the pinning of nodes is applied.

The overall experimental results (those that evaluate all the described optimiza-
tions) indicate that the optimized form of the spatial join performs about 5 times
faster than the basic one (notice that the basic form is CPU-bounded, whereas the
optimized is I/O-bounded).4

4It has to be noticed that [104] reported an improvement of the join execution time, by applying
a grid-based heuristic instead of plane-sweeping. However, no consideration was paid for the case
of buffer overflow.
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3.6.2 Algorithm based on Breadth-first Traversal. Huang et al. [67], differently
from the depth-first traversal of [23], propose the synchronous traversal of both
R-trees in a breadth-first manner, for the processing of spatial joins. This approach
is based on the observation that the method of [23] does not have the ability to
achieve a global optimization for the ordering of node visits, because the local
optimizations (read-scheduling) performed in [23] do not capture the access pattern
of nodes beyond the currently examined nodes. The BFRJ (Breadth-First R-tree
Join) algorithm of [67] opts for such global optimizations. The basic form of BFRJ
is depicted in Figure 12, where the results, i.e., pairs of intersected entries, at each
level l are maintained in the intermediate join index (IJIl) (when the two R-trees
do not have the same height, then when reaching the leaf level of one tree, BFRJ
will have to proceed by descending the levels of the other tree, until the leaf-level
is reached also for this tree).

Procedure BFRJ(R, S)
1. NR = root(R), NS = root(S)
2. IJI0 = {(ER, ES) | ER ∈ NR, ES ∈ NS , MBR(ER) ∩MBR(ES) 6= ∅}
3. for i=1 to height−− 1
4. foreach (ER, ES) ∈ IJIi
5. NR = ER.childPtr, NS = ES .childPtr
6. IJIi+1 = IJIi+1 ∪ {(E′R, E′S) | E′R ∈ NR, E′S ∈ NS , MBR(ER) ∩ MBR(ES) 6= ∅}
7. endfor
8. endfor
9. output IJIi /* the IJI of leaf-level */
10. end

Fig. 12. Breadth-First R-tree Join Algorithm.

Huang et al. [67] use the CPU-tuning optimizations proposed in [23], but propose
three new global optimizations for the tuning of I/O-time, which according to the
experimental results in [67] indicate an improvement in terms of disk accesses,
compared to the approach of [23]. At level l, the global optimizations of BFRJ are
based on IJIl−1 to schedule the reading of nodes, and they are described as follows.

IJI Ordering: BFRJ orders the contents of IJI by trying not to spread too widely
their multiple appearances. Since each member of IJI corresponds to two MBRs,
this form of clustering may have to be performed concurrently for both of them.
In [67] several options are considered for the processing, where the most efficient is
with respect to the sum of the centers (for each member of IJI, the x coordinates
of the centers of the two MBRs are calculated, and their sum is taken).

Memory Management of IJI: If not enough main memory exists, the contents of IJI
have to be stored on disk. BFRJ stores the contents only after the corresponding
level has been completely written. However, with this option the shuffling of the
IJI contents between disk and main memory cannot be avoided.

Buffer management of IJI: The multiple reading of nodes is further minimized by
BFRJ by predicting which node will be fetched again in the sequel. Therefore,
the buffer can purge nodes that have completed their processing.
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For an easy comparison between the two described spatial join algorithms ([23;
67]), Table II summarizes the options followed by each one.

[23] [67]

traversal type depth-first breadth-first

CPU-time restrict search space, plane-sweep restrict search space, plane-sweep

I/O-time plane-sweep/pinning, z-ordering IJI ordering, memory
and buffer management for IJI

Table II. Characterization of spatial join algorithms.

3.6.3 Join between an R-tree and a Non-index Data Set. In the case that an
intermediate query result (e.g., of a range query) participates in the join, then an
R-tree will not be available for it. A straightforward approach to perform the join in
this case is to apply multiple range queries, one for each object in the non-indexed
data set, over the R-tree of the other data set. Evidently, this approach is efficient
only when the size of the intermediate data set is very small.

An R-tree can be created (e.g., with bulk-loading) for the non-indexed data set
in order to apply the already described algorithms for joining two R-trees [134].
This approach, however, may introduce a non-negligible cost, required for the R-
tree creation. In order to improve the latter approach, Lo and Ravishankhar [94]
propose the use of the existing R-tree as a skeleton to build the seeded tree for the
non-indexed data set. Also, the sort-and-match algorithm [130] sorts the objects
of the non-indexed data set (using spatial ordering), creates leaf nodes that can
be accommodated in main memory, and examines each of them with leaves of the
existing R-tree of the other data set with respect to the join condition. An analo-
gous approach is the Sort/Sweep Algorithm, developed in [56], which is based on
plane sweeping. Arge et al. [10] propose the Priority Queue-Driven Traversal (PQ)
algorithm, which combines the index-based and non-indexed based approaches such
that in both forms can be processed using a single algorithm. Mamoulis and Papa-
dias [98] propose the slot index spatial join (SISJ), which applies hash-join using the
structure of the existing R-tree to determine the extents of the spatial partitions.
By additionally considering data that are indexed with quadtrees, [37] proposes an
algorithm that joins a quadtree with an R-tree data structure. Moreover, Hoel and
Samet [65] present a performance comparison of PMR quadtree join against join
for several R-tree-like structures. All the aforementioned methods employ special-
ized techniques to handle the non-index data set, which do not directly relate to
query processing for existing R-trees. The interested reader is directed to the given
references.

3.7 Multiway Spatial Join Queries

The spatial join algorithms that were examined in Section 3.6 focus on the case
of two R-trees. In GIS applications, large collections of spatial data may have
several thematic contents, thus they involve the join between multiple inputs. Mul-
tiway spatial joins queries, proposed by Mamoulis and Papadias [100] (an earlier
version was presented in [121]), involve an arbitrary number of R-trees. Given n
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data sets D1, . . . , Dn (each indexed with an R-tree) and a query Q, where Qij rep-
resents the spatial predicate that should hold between Di and Dj , the multiway
join query finds all tuples {(r1,w, . . . , ri,x, . . . , rj,y, . . . rn,z) | ∀ i, j : ri,x ∈ Di, rj,y ∈
Dj , ri,x Qij rj,y}. Therefore, multiway spatial join queries can be considered as a
generalization of pairwise spatial join that were presented in Section 3.6. Query
Q can be represented by a graph whose nodes correspond to the data sets Di and
edges to join predicates Qij . In general, the query graph can be a tree (graph
without cycles), a graph with cycles or a complete graph (every node connected to
each other). For instance, Figure 13 depicts these three different cases of a query
graph along with a tuple that satisfies the corresponding predicates (henceforth,
based on [100], it is assumed for simplicity that each predicate Qij corresponds to
the spatial operator overlap).
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Fig. 13. Examples of multiway queries: a) Acyclic (chain) query. b) Query with cycle. c) Complete
graph query.

One method to perform multiway spatial joins is the combination of a sequence of
pairwise joins (PJM). The order of pairwise joins is determined by the minimization
of expected I/O cost (in terms of page accesses). In this sequence, a pair does
not necessarily correspond to a join between two R-trees (i.e., indexed data sets).
Therefore, (i) RJ or BFRJ (see Section 3.6) is applied when both inputs are indexed,
(ii) Slot Index Spatial Join (SISJ) [98] is applied when only one data set is indexed,
and (iii) Hash spatial Join (HJ) [96] when none of the data sets is indexed (i.e.,
they are intermediate results).

A different approach than PMJ is also described in [100; 121], called Synchronous
Traversal (ST). ST starts from the root nodes and synchronously traverses the
R-trees. It proceeds only with the combination of nodes that satisfy the query
predicates Qij , until reaching leaf nodes. ST is facilitated by the R-tree structure
to decompose the problem into smaller local ones at each level. If fmax is the
maximum node fanout, then in the worst case each local problem examines fn

max

combinations. The local problem is defined by:

—A set of n variables, v1, . . . , vn, each corresponding to an R-tree.
—A domain Di, for each variable vi, which consists of the entries {Ei,1, . . . Ei,fi}

of node Ni in the Ri tree (fi is the fanout of Ni).
—Each pair of variables (vi, vj) is constrained by predicate overlap, if Qij is true.

Based on [100], a binary assignment {vi ← Ei,x, vj ← Ej,y} is consistent iff
(Qij is true) ⇒ (Ei,x overlaps Ej,y). A solution of a local problem is a n-tuple
τ = (E1,w, . . . , Ei,x, . . . , Ej,y, . . . , En,z) such that ∀ i, j{vi ← Ei,x, vj ← Ej,y} is
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consistent. The objective of ST is the finding of all assignments of entries to vari-
ables so as all predicates are satisfied.

Park et al. [131] made the observation that the optimization techniques of the
original 2-way R-tree join algorithm are still required in the case of multiway join,
and they proposed the M-way join algorithm. Furthermore, Mamoulis and Papa-
dias [100] propose two optimizations for the ST algorithm, which exploit the spatial
structure of the multiway join problem:

Static Variable Ordering (SVO): This heuristic pre-orders the problem variables by
placing the most constrained one first. Thus, variables are sorted in decreasing
order of their degree. SVO is applied once (before performing ST) and produces
a static order that is used in find-combinations and space-restriction procedures.

Plane-Sweep combined with Forward Checking (PSFC): PSFC is an improved im-
plementation of procedure find-combinations, which decomposes a local problem
into a series of smaller problems, one for each event of the sweep line. With this
heuristic, the overhead of searching and backtracking in large domains is avoided.

Experimental results in [100] show that the improvement due to SVO is significant
when the few first variables are more constrained, whereas this does not apply
for complete query graphs. The combination of SVO-PSFC presents significant
reduction in both I/O and CPU cost, compared to the version of ST that does
not use these optimizations (PSFC performs better with increasing page size). In
general, the savings in CPU cost are considered more significant in [100], since ST
is CPU bounded.

Finally, it has to be noticed that [100] proposes the optimization with dynamic
programming to derive the query execution plan. Each time, either ST or PJM
is selected for the intermediate executions. With this approach, execution plans
that are slightly more expensive (12% in the worst case) than the optimal one are
selected [100]. Nevertheless, if n (the number of input R-trees) is larger than 10,
the cost of the dynamic programming is prohibitive. For this reason, [100] also
describes a randomized search algorithm for finding the execution plan of large
queries, i.e., for large n.

3.8 Incremental Distance Join and Closest Pair Queries

3.8.1 Incremental Distance Join. Given two spatial relations A and B, distance
join queries find the subset of the Cartesian product A×B, which satisfies an order
that is based on distance. Halation and Samet [62] present an incremental approach
for processing distance join and distance semi-join queries (the latter is a variant of
the former, and finds for each object in A the nearest object in B). The incremental
algorithms for these queries that are described in [62] report the results one-by-one,
with respect to the distance ordering. In contrast, the spatial join algorithms, that
have been described in Section 3.6, will first have to compute the entire result and
then to sort it before starting the output. Evidently, the focus of the incremental
algorithm is on starting the output of results as early as possible.

For two R-trees R1 and R2, the Incremental Distance Join Algorithm (IDJ)
maintains a set P of pairs (each pair has one item from R1 and R2 respectively).
During the processing of P ’s entries, each time a pair p ∈ P is encountered that
contains a node item n (i.e., not a data object), it is replaced by all pairs resulting by
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substituting n with all its children nodes. The elements of P has to be maintained
sorted according to their distance. To achieve this, P is implemented as priority
queue. The basic algorithmic form of IDJ is depicted in Figure 14, where the
ProcessNode procedure (which is also depicted) uses the same basic loop as the
incremental NN algorithm of Section 3.4 (Item2 corresponds to the query object,
for this reason the same notation [O] is used for the object bounding rectangles
(OBRs)).

Procedure IDJ(R1, R2)
1. Enqueue(Q, 0, (R1.root, R2.root))
2. while Q not empty
3. elem ← Q
4. if both items of elem are data objects
5. output elem /*elem = (O1, O2)*/
6. else if both items OBRs
7. D = objectDist(O1, O2)
8. if Q empty or D ≤ Front(Q).dist
9. output (O1, O2)
10. else
11. Enqueue(Q, D, (O1, O2))
12. endif
13. else if first item of elem is node
14. ProcessNode(Q, elem, 1)
15. else
16. ProcessNode(Q, elem, 2)
17. endif
18. end

Procedure ProcessNode(Q, elem, order)
/* elem = (i1, i2) */

1. if order == 1
2. Node = i1, Item2 = i1
3. else
4. Node = i2, Item2 = i1
5. endif
6. if Node is leaf
7. foreach entry [O] of Node
8. Enqueue(Q,dist([O],Item2,([O],Item2))
9. endfor
10. else
11. foreach child c of Node
12. Enqueue(Q, dist(c, Item2), (c, Item2))
13. endfor
14. endif
15. end

Fig. 14. Basic form of Incremental Distance Join Algorithm.

In [62] optimizations are described over the basic form of the algorithm with
respect to the tie-braking criteria and the order of processing node items. The
evaluation of all described options is given in [62] through experimental results.
These results indicate that the best performance is achieved by the combination of
the following two optimizations: (i) Depth-first-like traversal: Elements containing
data objects or object bounding rectangles can be given priority over other elements
with the same distance (resolves tie-breaking); also, for elements containing non-
leaf items, priority can be given to nodes at smaller level (i.e., deeper in the tree).
(ii) Even: When a pair (n1, n2) with non-leaf nodes is retrieved from the head of
the priority queue, the node at a higher level is chosen to be processed, to achieve
a more even traversal of the two trees (resolves the order of processing).

During the processing of the distance join, the priority queue may become very
large. For the implementation of the priority queue [62] describes an approach
that is analogous to the one presented in Section 3.4, which divides the queue in a
number of partitions, where one is kept in main memory the others are maintained
on disk. Nevertheless, most of the pairs still will have a large distance and they will
probably never be retrieved by the queue. In order to limit the number of entries
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in the priority queue, [62] proposes the use of restrictions based on a minimum and
a maximum specified distance that the query results have to satisfy. If no such
constraints on the distance can be posed by the user, [62] sets an upper bound on
the number of examined pairs (facilitated by the ‘STOP AFTER’ clause of SQL,
which reports only a specified number K of results). This is done by estimating
a lower bound for the distance Dmax, which can be used to impose the required
constraint.

It has to be noticed that recently a k-distance join algorithm has been proposed
by Shin et al. [157], which differently from [62], joins the first k pairs with re-
spect to their distance. Their approach is based on a bi-directional expansion of
R-tree nodes and on plane-sweeping for pruning distant pairs. Moreover, they de-
velop adaptive, multi-stage algorithms for k-distance join and incremental distance
join algorithms. Experimental results illustrate the performance gains due to the
adaptive algorithms over previous approaches (including [62]).

3.8.2 Distance Semi-Join. As mentioned, the distance semi-join query is a spe-
cial case of the distance join query, since for each pair (o1, o2) in the result, the
object o1 appears only once (i.e., it does not appear in any other pair). In order to
achieve this, [62] uses a set S0 to keep track of all first objects in each pair that is
output.

The experimental evaluation in [62] indicates that the GlobalAll option presents
the best performance. The GlobalAll option operates as follows: for each node and
data object in the first R-tree, the smallest dmax distance that has been encoun-
tered so far, is maintained. A new pair (i1, i2) is enqueued only in the case that
its distance is smaller than dmax for i1. Since this option may require significant
memory space, dmax can be maintained for nodes only. Compared to the straight-
forward approach of applying multiple NN queries (one for each object of the first
R-tree), the results of [62] show that the incremental algorithm outperforms the
straightforward one by up to 40%.

3.8.3 Finding Closest Pairs. As described, the incremental distance join algo-
rithm can be easily modified to produce up to K pairs [62]. In this case, the
algorithm finds the K closest pairs between the two data sets, that is, the pairs of
objects from the two data sets that have the K smallest distances between them
(K=1 yields to the classic closest-pair problem of computational geometry). For
instance, given a collection of archaeological sites and holiday resorts, the K closest
pair query finds sites that have the K smallest distances to a resort, so as tourists
to be accommodated easily.

Corral et al. [38] proposed a different approach, called CP, for closest pair queries
than the one of [62]. Two types of algorithms have been investigated in [38], also
described briefly in the sequel. (We present the case for K=1, since the extension
to K > 1 is easy, according to [38]. Also, we assume that the trees have the same
height.)

Recursive based on sorting distances. This algorithm, called STD, descends the two
R-trees and keeps track of the closest distance T found so far. When two internal
nodes are accessed, the MINMAXDIST is calculated for all pairs formed by their
contents. T can be updated (a kind of downward pruning) if it is larger than one
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of such distances. When reaching the two leaf leaves, the actual object distances
are calculated and T is updated.5

Non-recursive based on heap Similar to [62], this algorithm, called HEAP, main-
tains the pairs to be examined within a heap structure, sorted with respect to
MINDIST metric. However, differently from [62], HEAP considers only pairs
that have MINDIST smaller than T . Moreover, similar to STD, HEAP updates
T with respect to the MINMAXDIST metric.

STD is a type of depth-first closest pair algorithm, which considers local opti-
mizations. In contrast, HEAP and the incremental distance join algorithm belong
to the type of best-first algorithms, which consider global optimizations. Also,
recall that these two different algorithmic types have also been described for NN
and join queries. Evidently, closest pair queries combine the characteristics of both
these types of queries. Regarding the tie-braking criteria, [38] describes several
ones, however the best performance is achieved by resolving ties by giving priority
to the pair whose elements have the largest MBR. Also, if different tree heights
are addressed with two methods, then [38] proposes the Fix-at-root policy, which
stops the downwards propagation in the tree with lower level and continues the
propagation in the other tree, until a pair of nodes at the same level is found.

The comparison between STD and HEAP, which is experimentally performed
in [38], indicates that HEAP outperforms STD for very small buffer sizes and
for data sets with large overlapping. For medium and large buffer sizes, STD
clearly compares favorably to HEAP. Finally, in [39] the impact of buffering on
the performance of CP queries using R-trees was considered for several searching
approaches and buffer replacement policies.

3.9 Classification of R-tree Query Processing Algorithms

In this section, we give a summary and a classification of all the described methods.
The classification is given in Figure 15 and uses the same notation for the names of
the algorithms as the one used throughout the previous sections. The links between
the contents of Figure 15 represent the relationships among them.
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Fig. 15. Classification of the described R-tree based query processing methods.

5Note that STD is formed by a number of optimizations, which are presented separately in [38].
Herein we only present STD in its final form because it significantly outperforms the others [38].
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Four general types of spatial queries were presented, namely range, topological,
NN and join queries. The algorithm for the range query (denoted as Gutt) is the
first searching algorithm that was developed for the R-tree. Topological queries
(the corresponding algorithm is denoted as PTSE) form a second type of queries,
since they generalize the non-disjoint operator used by the range query. NN queries
include KNN and its improved version MNN, which address the finding of the k-NN.
Moreover, based on KNN, RNN determines the reverse NNs. A different approach
is followed by INN, which incrementally finds the NNs in the order of their distance
from the query object. By generalizing the constraints of RNN, and based on INN
(in order to achieve its ‘optimality’), CNN determines the NNs according to a query
constraint. Therefore, constrained NN queries is a combination of range and NN
queries. Finally, the spatial join query between two R-trees is addressed by RJ
(depth-first) and BFRJ (breadth-first). For the multiway join, PJM is based on RJ
in order to perform multiple pairwise joins, whereas ST traverses all trees at the
same time. IDJ (analogously to INN) focuses on the distance join (i.e., operator
within) and finds the results incrementally, in the order of the distance between
them. Closest pair queries (CP algorithm) find the k closest pairs between two
indexed data sets, and can be considered as combination of both NN and join
queries. Finally, IDJ can also lead to the finding of closest pairs; for this reason
there is a connection between CP and IDJ.

4. QUERY OPTIMIZATION ISSUES

Determining the best execution plan for a spatial query requires tools for measuring
(more precisely, estimating) the number of (spatial) data items that are retrieved
by a query as well as its cost, in terms of I/O and CPU effort. As in traditional
query optimization, such tools include cost-based optimization models, exploiting
analytical formulae for selectivity (the hit percentage) and cost of a query, and
histogram-based techniques.

In particular for spatial databases supported by R-tree indices, cost-based opti-
mization exploits analytical models and formulae that predict the number of hits
among the entries of the R-tree and the cost of a query retrieval, measured in R-tree
node accesses (or actual disk accesses, assuming existence of a buffering scheme).

Traditionally, R-tree performance has been evaluated by the ability to answer
range queries by accessing the smallest possible number of pages (i.e., nodes) in
the disk. Other queries, such as NN [142] and join queries [23] are also of great
interest for a spatial query optimizer. Thus, Sections 4.1 and 4.2 survey work on
cost models for selection and join queries, respectively, followed by Section 4.3,
which presents sampling and histogram-based techniques.

4.1 Cost Models for Selection Queries

Considering that each R-tree node corresponds to a physical page in the disk, the
cost estimation of a query (i.e., how many pages are accessed in order to retrieve
the result of the query) turns into the problem of estimating the number of nodes
visited during R-tree traversal. Apparently, the actual time required (number of
disk pages times the time required to read a page resident in disk) could be less
than the estimated due to buffering. Therefore, several models have included buffer
parameters in their formulae.
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4.1.1 Formulae for Range Queries. The first attempt to estimate the perfor-
mance of R-trees for range queries was made by Faloutsos et al. [44]. In that
paper, the authors made two fundamental assumptions: (i) uniform distribution
of data, and (ii) all the R-tree nodes were supposed to be full of data. For point
queries, the cost formula derived expressed the fact that the number of nodes to be
visited equals the overlap of parent nodes per level or, in other words, the density
of nodes per level summed up for all but the leaf level (the authors did not use the
term density in that paper; this was used later in [167] as will be discussed below).

Although the analysis in [44] was restricted by the uniformity assumption and
packed trees, it served as a framework for almost all related work that appeared
later. Among the proposed formulae, one of the most useful was about the expected
height h of an R-tree:

h = logf
N

C
(1)

where f is the fanout of parent nodes, C is the capacity of leaf nodes, and N is the
number of data entries.

Later, Kamel and Faloutsos [76] and Pagel et al. [116] independently extended
the analysis in [44] and presented the following formula that gives the average
cost CW of a range query with respect to a query window q = (q1, ..., qd), assum-
ing the dataset is indexed by a d-dimensional R-tree and provided that the sides
(sj , 1, ..., sj , d) of each R-tree node sj are known (the summation extends over all
tree nodes).

CW (R, q) =
∑

j

{
d∏

i=1

(sj,i + qi)

}
(2)

Eq. (2) allows the query optimizer to estimate the cost of a query window (mea-
sured in number of node accesses) assumed that the corresponding R-tree has been
already built and, hence, the MBR of each node sj of the R-tree can be measured.
This formula, implicitly presents the dependency between the sizes of the R-tree
nodes and the query window, on the one hand, and the cost of a range query, on the
other hand. Moreover, the influence of the node perimeters is revealed, which helps
understanding the R∗-tree efficiency as, it was the first method among the R-tree
variants to take into account the node perimeter during its construction phase (see
Section 2.1 for relevant discussion and [166] for a performance-wise comparison of
the most popular members of the R-tree family until that time).

Extending the work performed in [116], Pagel et al. in [117] proposed an optimal
algorithm that established a lower bound result for the performance of packed R-
trees. It was also shown through experimental results that the best known static and
dynamic R-tree variants, the packed R-tree by Kamel and Faloutsos [76] and the R∗-
tree [12], respectively, performed about 10%-20% worse than the lower bound. [117]
defined the problem of measuring the performance of SAMs like R-trees, as follows:
For a bucket set B and a query model QM , let Prob(q meets Bi) be the probability
that performing query q forces an access of bucket Bi. Then the expected number
of bucket accesses needed to evaluate query q is called the performance measure
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PM for QM and is given by:

PM(QM, B) =
m∑

i=1

Prob(q meets Bi) (3)

[117] also formalized the so called Bucket Set Problem (BSP): Given a set of
geometric objects, a bucket capacity Cb ≥ 2, and a query model QM , determine
the bucket set Bopt for which the performance measure PM is minimal. They
also distinguished two cases, the simple case (called, SBSP) where Cb=2, and the
universal case (called, UBSP) where Cb ≥ 3, and proved that SBSP can be solved in
polynomial time, while UBSP is NP-hard. Practically, this means that in R-trees
etc. (where Cb = M >> 2), it is not possible to find and integrate an optimal
construction algorithm.

The impact of the three parameters that are involved in Eq. (2), namely the
area sum of rectangles, the perimeter sum, and the number of rectangles, was
further studied in [118], where formulae for various kinds of range queries, such
as intersection, containment and enclosure queries of various shapes (points, lines,
circles, windows, etc.), were derived. One of the main conclusions of that paper
was that window queries can be considered as representative for range queries in
general.

However, Eq. (2) could not predict the cost of a range query just by taking
into consideration the dataset properties only since R-tree properties were involved
(namely, the R-tree node extents sj). Faloutsos and Kamel [45] and Theodoridis
and Sellis [167] extended this formula towards this goal. [45] used a property
of the dataset, called fractal dimension. The fractal dimension fd of a dataset
(consisting of points) can be mathematically computed and constitutes a simple
way to describe non-uniform datasets, using just a single number. According to
the model proposed in [45], the estimation of the number of disk accesses at level
1 (i.e., leaf level), denoted by CW (R1, q), is given by:

CW (R1, q) =
N

f
·

d∏

i=1

(s1,i + qi) (4)

where s1,i = (f/N)1/fd, ∀i = 1, ..., d and f is the average fanout of the R-tree
nodes.

In [45], the Hausdorff fractal dimension (D0) was used to estimate the cost of
a range query. In [13], another fractal dimension, the correlation one (D2), was
used to make selectivity estimation. In both cases, the accuracy of the estimations
was very good, a fact that illustrated how surprisingly often real (point) datasets
behave like fractals. [45; 13] were also the first attempts to support analytically
non-uniform distributions of data (with uniform distribution being a special case:
fd = d) superseding [44] analysis that assumed uniformity. However the models
proposed are applicable to point datasets only.

In a different line, [167] used another property of the dataset, called density
surface. The density D of a set of N (hyper-)rectangles with average extent s =
(s1, ..., sd) is the average number of rectangles that contain a given point in d-
dimensional space. Equivalently, D can be expressed as the ratio of the global data
area over the work space area. If we consider a unit workspace [0, 1)d then the
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density D(N, s) is given by the following formula:

D(N, s) =
∑

N

d∏

i=1

si = N ·
d∏

i=1

si (5)

Using the framework proposed in [116] and based on the investigations that: (i)
the expected number of node accesses CW (R, q) for a query window q is equal to
the expected number of intersected nodes at each level, (ii) the average number of
intersected nodes is equal to the density D of the node rectangles inflated by qi at
each direction, (iii) the average number of nodes Nj at level j is Nj = N/f , where
N is the cardinality of the dataset and f is the fanout, and (iv) an expression of
the density Dj of node rectangles at each level j can be expressed as a function of
the density of the dataset, [167] proposed the following formula:

CW (R, q) =
1+logf

N
f∑

j=1

{
N

f j
·

d∏

i=1

(
(Dj · f j

N
)1/d + qi

)}
(6)

To reach this formula, the authors assumed ‘square’ node rectangles and argued
that this is a reasonable simplification and a nice property for an efficient R-tree
(the same was also argued in [76]). They also assumed uniform distribution of
data as well as of node rectangles. Under these assumptions, the above formula
estimates the number of node accesses by only using the dataset properties N and
D, the typical R-tree parameter f and the extents of query window q.

[167] also provided a formula for the selectivity S of a range query specified by
a query window q, i.e., the ratio of the expected number of hits in the dataset
over the total number N of entries. Since, S is equal to the ratio of the number
of intersected rectangles among the N rectangles of the input dataset over N , the
formula proposed for the selectivity is the following:

S =
d∏

i=1

(
(
D

N
)1/d + qi

)
(7)

However, Eqs. (6) and (7) assumed uniformity of data (in particular, in order to
express the density of parent nodes at a level j+1 as a function of the density of
child nodes at level j). This assumption is restrictive as already discussed, and, to
overcome it, the authors proposed the evolution of density from a single number D
to a varying parameter (graphically, a surface in two-dimensional space) showing
deviations, if projected in different points of the work space, with respect to the
average value D. For example, in Figure 16, a real dataset is illustrated together
with its density surface, which is actually a two-dimensional histogram.

Using the introduced density surface, [167] showed that non-uniform distributions
of data could be supported as well, after the following modifications were made in
Eqs. 5 and 6: (i) the average density D0 of the dataset is replaced by the actual
density D′

0 of the dataset within the area of the query window q. (ii) the cardinality
N of the dataset is replaced by a transformation of it, called N ′, computed as
follows: N ′ = D′0

D0
·N

It was also noted that in order for the above formulae to be usable for point
datasets also, the average density of a dataset is considered to be always D0 > 0,
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(a)
(b)

Fig. 16. (a) A real dataset (LB county TIGER dataset), (b) Its density surface.

even for point datasets, since zero density corresponds to zero-populated work area.
A comparison of the analytical estimates with experimental results using R∗-trees
on synthetic and real datasets showed that the estimates were accurate enough,
with the relative error being below 10% (20%) for CW on uniform (non-uniform)
data and below 5% (10%, respectively) for S.

A similar idea was proposed by Jin et al. [72], where a density file was proposed
to be maintained in addition to the R-tree. In particular, the density file proposed
in [72] is an auxiliary data structure that contains the number of points (assuming
a point dataset) falling within a specific Hilbert range. In case of rectangular
data items, a cumulative density scheme was proposed, gridding spatial extents
and keeping four values for each Hilbert cell about the number of rectangles whose
lower-left / lower-right / upper-left / upper-right corner lies in the cell. Based on
this density file, models for estimating the selectivity as well as the cost of a range
query were proposed with their accuracy shown to be high (usually less than 5%
errors for uniform to skewed datasets using the packed R-tree [76] as a case-study).

More recently, in [139] the authors studied the distribution of the MBRs of R-
tree nodes and observed that it follows the distribution of the underlying data set.
Therefore, accurate estimations of the number of accessed nodes for range queries
can be obtained, by taking into consideration the MBR distribution.

All the above models can provide cost estimations measured in number of R-tree
nodes accessed, which is an upper bound for the number of actual disk accesses. The
latter can be significantly lower than the former with the existence of a buffering
scheme, which is always the case in real life systems. The effect of the buffering on
the R-tree performance for selection queries was studied in [92].

In particular, Leutenegger and Lopez [92] modified Eq. (2), originally proposed in
[76; 116], by introducing the buffer size following the LRU replacement policy. The
authors also discussed the appropriate number of R-tree levels to be pinned, and
argued that pinning may mostly benefit point queries and, but only under special
conditions. For example, for point queries, it was argued that pinning R-tree levels
is advantageous, but only when the total number of nodes pinned is within a factor
of two of the buffer size, while for range queries the benefit is even more modest.
Practically, if the buffer is shared among many applications, [92] suggested that
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pinning R-trees should be done only when the rest applications do not need the full
buffer size.

4.1.2 Formulae for NN Queries. Exploiting the branch-and-bound algorithm
for NN query processing proposed in [142], Papadopoulos and Manolopoulos [126]
derived lower and upper bounds for its performance (number of disk accesses to R-
tree leaf pages). In particular, they first proved two propositions for the expected
number of R-tree leaf pages accessed in order to find the NN of a point P : the
minimum (maximum) number of leaf pages touched is the number of leaf pages
intersected by a circle C1 (C2) with center P and radius dnn (dm), where dnn is
the actual distance between P and its NN (not known in advance) and dm is the
MINMAXDIST between P and the first touched leaf page. (cf. subsection 3.2
for a definition and discussion on MINMAXDIST metric) Then, extending Eq. (4)
proposed in [45] for range queries on uniform datasets, [126] came up with the
following pair of formulae for lower and upper bounds:

CNN (R, P )lower =
N − 1

f
· (s + 2 · dnn)D2 (8)

CNN (R, P )upper =
N − 1

f
· (s + 2 · dm)D2 (9)

The experimental results presented in that work showed that the actual cost is
well bounded by the two proposed bounds and, in general, the measured cost is
closer to the lower than to the upper bound.

The above analysis was restricted to estimating the cost for the first NN and its
extension to support k-NN queries is not straightforward at all. Recently, Bohm
[20] and Tao et al. [162] tackled the problem of estimating the average dk distance
between P and its k-th NN. The model proposed in [20] involves integrals in the
computation of dk, which can be solved only numerically, thus making it not easily
applicable for query optimization purposes. On the other hand, [162] proposed the
following closed formula:

dk =
2

CV
·
{

1−
√

1− (k/N)1/d

}
(10)

where CV =
√

π
Γ(d/2+1)1/d and Γ(x + 1) = x · Γ(x), Γ(1)=1, Γ(1/2)=π1/2. A side

effect of the above analysis is also the estimation of the smallest value for k for
which sequential scan would surpass R-tree based search, as a side effect of the
curse of dimensionality. According to the authors’ experiments, the threshold value
decreases dramatically with the dimensionality, a conclusion consistent with the
related work of [173].

4.2 Cost Models for Join Queries

Spatial join requires high processing cost due to the high complexity and large
volume of spatial data. Therefore, the accurate estimation of the selectivity and
cost of spatial join queries has a great influence on the query optimizer. Unlike
range queries, the number of input datasets in join queries is variable, thus we
distinguish between models proposed for pair-wise joins and those proposed for
multi-way joins.
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4.2.1 Formulae for Pair-wise Joins. The first work on predicting the selectivity
of join queries was by Aref and Samet [9]. In that paper, the authors proposed
analytical formulae for the number of hits, based on uniformity assumption and
the R-tree analysis provided in [76]. The motivating idea was the consideration of
a join query as a set of selection queries (with the first R-tree playing the role of the
target index and the second R-tree assumed to be the source of query windows).
Demonstrated experimental results showed the accuracy of the proposed selectivity
estimation formula.

Also assuming uniform distribution of data, Huang et al. [66] proposed a cost
model for R-tree-based spatial joins distinguishing two cases: either lack or exis-
tence of a buffering mechanism. Two corresponding formulae were proposed, one
estimating cost assuming no buffering and one estimating actual cost taking into
account the probability of a page not to be (re-)visited due to buffering mechanism:

CSJ (R1, R2) = 2 ·
h−1∑

l=1

N l
1∑

i=1

N l
2∑

j=1

d∏

k=1

(sR1,k + sR2,k) (11)

and

CSJ (R1, R2)actual = n + m + (CSJ(R1, R2)− n−m) · Prob(x ≥ b) (12)

The triple sum in Eq. (11) denotes the pairs of considered node MBRs, one for
each tree, for all levels. Thus, to find the cost this number is counted twice (once for
each tree). Also, in Eq. (12), the first two terms (n+m) represent the total number
of first accesses for all tree pages traversed during join (every node will be traversed
at least once), while the term CSJ(R1, R2)–n–m represents the expected number
of non-first accesses with the probability of one such access causing a page fault
being Prob(x ≥ b). The accuracy of the two formulae was also demonstrated after
a comparison with experimental results for varying buffer size (with the relative
error being around 10%-20%).

Theodoridis et al. [169; 170] also considered the depth-first approach for a join
query between two R-trees R1 and R2 as a series of query windows, where e.g.,
the node rectangles of R1 at a level l could play the role of query windows on a
‘dataset’ consisting of the node rectangles of R2 at a corresponding level. Under
this consideration, Eq. (6), proposed in [167] for range queries, was modified to
calculate the cost of a join query. In particular, the cost for each R-tree at level l
is the sum of costs of NR2,l+1 different window queries on R1:

CW (Rl
1, R

l
2) = CW (Rl

2, R
l
1) = NR2,l+1 ·NR1,l+1 · (|sR1,l+1|+ |sR2,l+1|)d (13)

for 0 ≤ l ≤ h− 2.
Hence, for R-trees with equal height h, the total cost of a spatial join between

R1 and R2 is the sum of node accesses at each level:

CSJ(R1, R2) =
h−2∑

l=0

{
CW (Rl

1, R
l
2) + CW (Rl

2, R
l
1)

}

= 2 ·
h−1∑

l=1

{
NR2,l ·NR1,l · (|sR1,l|+ |sR2,l|)d

}
(14)
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Evidently, the cost shown in Eq. (14) is an upper bound where no buffer is
considered and every node access in Ri corresponds to a node access in Rj . [170]
provided a detailed description of cost formulae for Rj , including the case of R-trees
with different heights. As in [167], all the involved parameters were expressed as
functions of dataset properties, namely cardinality N and density D. Experimental
results suggested that the above cost model is accurate for uniform data (where the
density remains almost invariant through the workspace), and reasonably good for
non-uniform data distributions, where the density surface is used (similar results
were shown in [97]).

4.2.2 Formulae for Multi-way Joins. As already discussed in Section 3.6, multi-
way spatial join queries between n R-trees R1, ..., Rn, can be represented by a graph
Q, where Qij denotes the join condition between Ri and Rj . Papadias et al. [121;
122] provided formulae for the selectivity (i.e., the number of solutions among all
possible n-tuples in the cartesian product) and the cost (in terms of node accesses)
of some special cases of multi-way queries. In particular, taking into consideration
the general idea that the total number of solutions is given by the following formula:

#solutions = #(all possible n− tuples) · Prob(a n− tuple constitutes a solution)
(15)

and the fact that the pairwise probabilities are independent in case of acyclic graphs,
the selectivity of an acyclic join graph is:

Prob(a n− tuple is a solution) =
∏

∀i,j:Q(i,j)=TRUE

(|sRi |+ |sRj |
)d (16)

and the total number of solutions at tree level l is:

#solutions(Q, l) =
n∏

i=1

NRi,l ·
∏

∀i,j:Q(i,j)=TRUE

(|sRi,l|+ |sRj ,l|
)d (17)

However, in case of cycles, the assignments are not independent anymore and
Eq. (16) does not accurately estimate the probability that a random tuple consti-
tutes a solution. For the special case of cliques only, [122] provided a formula for
selectivity, based on the fact that if a set of rectangles mutually overlap then they
must share a common area (the proof is extensive and can be found in [122]):

#solutions(Q, l) =
n∏

i=1

NRi,l ·



n∑

i=1

n∏

j=1,j 6=i

|sRj ,l|



d

(18)

In order to provide cost formulae for multi-way joins, [122] decomposed the query
graph Q into a set of legal subgraphs Qx,y (legal, means connected graph), which
could be processed e.g., by applying Synchronous Traversal (cf. ST algorithm in
Figure 14). Since, according to ST algorithm, the x roots of R-trees must be
accessed in order to find root level solutions and, in turn, each solution will lead
to x accesses at the next (lower) level, in its generalization at level l, there will
be x ·#solutions(Qx, y, l + 1) node accesses and the total cost for processing Qx,y
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using ST would be:

CmSJ(R1, R2, ..., Rn, Qx,y) = x +
h−2∑

l=0

x ·#solutions(Qx,y, l + 1) (19)

Again, this formula is useful for query optimization purposes only when an ac-
curate estimation of the number of solution is possible, i.e., in the cases of acyclic
graphs and cliques only. Experimental results on those types of query graphs and
uniform distributions of data demonstrated the accuracy of Eqs. (16-19), with the
relative error being below 10% on the average and below 25% on the worst case. The
extension of the cost models to support arbitrary query graphs and non-uniform
data distribution was left as an open issue.

Extending [121], Park and Chung [132] analyzed the time and temporary space
complexity of the formulae for tree and clique multi-way joins and showed that the
complexity for the former type is much more than that for the latter type.

In a different line, Mamoulis and Papadias [99] addressed the problem of complex
query processing, in which a n-way join follows n independent selection queries on
the original (R-tree indexed) spatial datasets (see an example illustration in Figure
17, for n=2). Assuming that the original datasets share a common workspace, the
authors anticipated that the spatial selections would affect not only the number of
objects that would participate in the succeeding join, but also their spatial distri-
bution, adding a dependency overhead. Two selectivity formulae, one for acyclic
and one for clique joins, were proposed. The experimental results provided in [99]
showed that the formulae were accurate enough, especially for pair-wise joins (the
relative error was 8% for n=2, while it was raised up to 38% for n=4). Although
the above analysis assumed uniformity, the model was also extended to work for
arbitrary data distributions, taking into account the density surface concept [167;
169]. However, in that case the accuracy of the estimation was lowered.

Fig. 17. A complex query execution plan.

4.3 Sampling and Histogram-based Techniques

Recalling the query optimization problem illustrated in Figure 4.2, selectivity es-
timation could be based on samples of the two (or n, in general) spatial datasets
involved. An et al. [6] proposed the following three-step methodology: (i) pick sam-
ples from input datasets, either exploiting their R-tree indices or not; (ii) construct
an R-tree for each of the samples; (iii) perform an R-tree join on the constructed
R-trees. This was evaluated in comparison with the alternative of joining one sam-
ple with the entire other dataset. The conclusions drawn from the experimentation
were clearly in favor of the proposed methodology.
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Recently, a significant research effort has also focused on selectivity estimation
based on histograms. In particular, [6] and [161] introduced novel types of his-
tograms for estimating the selectivity of spatial selections and spatial joins, re-
spectively, while [1] addressed the issue of accuracy in estimations of related work
due to the ignorance of the cost of the refinement step and proposed new types
of histograms that capture the complexity, size and location of the spatial objects.
We do not provide further details about these works because they are not directly
related to R-tree-based query optimization. The interested reader can find more in
the cited papers.

5. IMPLEMENTATION ISSUES

The implementation of an access method in a commercial DBMS or a research
prototype raises many issues that must be considered in order to provide an effective
and efficient access to the underlying data. An access method is useless, unless it
can be efficiently implemented in real-life data intensive applications. Making the
access method part of a larger (usually multi-user) system is not an easy task. The
access method must be adjusted to the underlying system architecture and therefore
issues like concurrency control and parallelism must be handled carefully. In this
section we discuss implementation issues regarding the R-tree access method. More
specifically we investigate the following issues:

—the adjustment of the R-tree to parallel architectures
—the management of concurrent accesses
—R-tree implementations in research prototypes and commercial systems

5.1 Parallel Systems

One of the primary goals in database research is the investigation of innovative tech-
niques in order to provide more efficient query processing. This goal becomes much
more important considering that modern applications are more resource demand-
ing, and are usually based on multi-user systems. A database research direction
that has been widely accepted by developers is the exploitation of multiple resources
(processors and disks) towards more efficient processing.

The design of algorithms for parallel database machines is not an easy task.
Although in some cases the parallel version of a serial algorithm is straightforward,
one must look carefully at three fundamental performance measures:

—speed-up: shows the capability of the algorithm when the number of processors
is increased and the input size is constant. The perfect speed-up is the linear
speed-up, meaning that if T seconds are required to perform the operation with
one processor, then T/2 seconds are required to perform the same operation using
two processors.

—size-up: shows the behavior of the algorithm when the input size is increased and
the number of processors remains constant.

—scale-up: shows the performance of the algorithm when both the input size and
the number of processors are increased.

There are three basic parallel architectures that have been used in research and
development fields [41]:
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—shared everything: all processors share the same resources (memory and disks)
and the communication among processors is performed by means of the global
memory.

—shared disk: all processors share the disks but each one has its own memory.
—shared nothing: the processors use different disks and different memory units

and the communication among processors is performed using message passing
mechanisms.

In addition to the above basic parallel architectures, several hybrid schemes have
been proposed, in order to combine the advantages and avoid the disadvantages of
each one. For example, the shared virtual memory [156; 26] scheme combines the
shared nothing and the shared memory scheme in order to provide a global address
space.

Parallelism can also be categorized in:

—CPU parallelism, where a task is partitioned to several processors for execution
—I/O parallelism, where the data are partitioned to several secondary storage units

(disks or CD-ROMs) in order to achieve better I/O performance.

5.1.1 Multi-disk Systems. Using more than one disk devices leads to increased
system throughput, since the workload is balanced among the participating disks
and many operations can be processed in parallel. RAID systems have been in-
troduced in [135] as an inexpensive solution to the I/O bottleneck. Using more
than one disk devices, leads to increased system throughput, since the workload is
balanced among the participating disks and many operations can be processed in
parallel [29; 30].

Given a disk array, one faces the problem of partitioning the data and the associ-
ated access information, in order to take advantage of the I/O parallelism. The way
data is partitioned reflects the performance of read/write operations. The declus-
tering problem attracted many researchers and a lot of work has been performed
towards taking advantage of the I/O parallelism, to support data intensive appli-
cations. Techniques for B+-tree declustering have been reported in [151]. In [175]
the authors study effective declustering schemes for the grid file structure. The
challenge is to decluster an R-tree structure among the available disks, in order to:

—distribute the workload during query processing as evenly as possible among the
disks, and

—activate as few disks as possible

There are several alternative designs that could be followed in order to take
advantage of the multiple disk architecture. These alternatives have been studied
in [75].

5.1.1.1 Independent R-trees. The data are partitioned among the available disks,
and an R-tree is build for each disk. The performance depends on how the data
distribution is performed:

—Data Distribution. The data objects are assigned to different disks in a round
robin manner, or by using a hash function. This method guarantees that each
disk will host approximately the same number of objects. However, even for
small queries, all disks are likely to be activated in order to answer the query.
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—Space Distribution. The space is divided to d partitions, where d is the number of
available disks. The drawback of this approach is that due to the non-uniformity
of real-life datasets, some disks may host more number of objects than the others,
and therefore may become a bottleneck. Moreover, for large queries (large query
regions) this method fails to balance the load equally among all the disks.
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Fig. 18. Independent R-trees.

5.1.1.2 R-tree with Super-Nodes. This alternative uses only one R-tree. The
exploitation of the multiple disks is obtained by expanding each tree node. More
specifically, the logical tree node size becomes d times larger, and therefore each
node is partitioned to all d disks (disk stripping). Although the load is equally bal-
anced during query processing, all disks are activated in each query. This happens
because since there is no total order of the rectangles (MBRs) that are hosted in a
tree node, each node must be reconstructed by accessing all the disks (each node is
partitioned among all disks).
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Fig. 19. R-tree with super-nodes.

5.1.1.3 Multiplexed (MX) R-trees. This alternative uses a single R-tree, having
its nodes distributed among the disks. The main difference with an ordinary R-tree
is that inter-disk pointers are used in order to formulate the tree structure. Each
node pointer is a pair of the form < diskID, pageID >, where diskID is the disk
identifier that contains the page pageID. An example of an MX R-tree with 10
nodes distributed in 3 disks is given in Figure 20. It is assumed that the R-tree
root is maintained in memory.
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Fig. 20. MX R-tree example.

The main issue that must be explained is the node-to-disk assignment policy. The
insertion of new objects will cause some nodes to split. The problem is to which
disk the newly created node Nn will be assigned, whereas the target is to minimize
the query response time. In order to obtain the best result, we could examine all
nodes that lie in the same tree level. However, this operation is very costly because
it results in many I/O operations. Instead, only the sibling nodes are examined,
i.e., the nodes that have the same parent with Nn. Moreover, it is not necessary
to fetch the sibling nodes, since the information that we require (MBRs) resides in
the parent node (which has been fetched already in memory in order to insert the
new object). There are several criteria that could be used in order to perform the
placement of the new node Nn:

—data balance: In the best case, all disks must host the same number of tree nodes.
If a disk contains more nodes than the others, it may become a bottleneck during
query processing.

—area balance: The area that each disk covers plays a very important role when
we answer range queries. A disk that covers a large area, will be accessed with
higher probability than the others, and therefore it may become a bottleneck.

—proximity: If two nodes are near in space, the probability that they will be
accessed together is high. Therefore, proximal nodes should be stored to different
disks in order to maximize parallelism.

Although it is very difficult to satisfy all criteria simultaneously, some heuristics
have been proposed in order to attack the problem:

—round-robin: The new node is assigned to a disk using the round-robin algorithm.
—minimum area: This heuristic assigned the new node to the disk that covers the

smallest area.
—minimum intersection: This heuristic assigned the new node to a disk in order

to minimize the overlap between the new node and the nodes that are already
stored in this disk.

—proximity index: This heuristic is based on the proximity measure, which com-
pares two rectangles and calculates the probability that they will be accessed
together by the same query. Therefore, rectangles (which correspond to tree
nodes) with high proximity must be stored in different disks.

Several experimental results have been reported in [75]. The main conclusion is that
the MXR-tree with the proximity index method for node-to-disk assignment outper-
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forms the other methods for range query processing. The performance evaluation
has been conducted by using uniformly distributed spatial objects and uniformly
distributed range queries. The proposed method manages to activate few disks for
small range queries, and activate all disks for large queries, achieving good load bal-
ancing, and therefore can be used as an efficient method for parallelizing the R-tree
structure. It would be interesting to investigate the performance of the method for
non-uniform distributions.

5.1.1.4 Parallel Query Processing. The parallel version of the R-tree answers
the same type of queries as the original R-tree structure much more efficiently.
Although [75] focuses on range queries, parallel algorithms exist for other types
of queries. In [129] parallel algorithms for NN queries on a multi-disk system
have been studied. Three possible similarity search techniques are presented and
studied in detail: Branch-and-Bound (BBSS), Full-parallel (FPSS) and Candidate
Reduction (CRSS). Moreover, an optimal approach (WOPTSS) is defined, which
assumes that the distance Dk from the query point to the k-th NN is known in
advance, and therefore only the relevant nodes are inspected. Unfortunately, this
algorithm is hypothetical, since the distance Dk is generally not known. However,
useful lower bounds are derived by studying the behavior of the optimal method. All
methods are studied under extensive experimentation through simulation. Among
the studied algorithms, the proposed one (CRSS), which is based on a careful
inspection of the R∗-tree nodes, and leads to an effective candidate reduction, shows
the best performance. However, the performance difference between CRSS and
WOPTSS suggests that further research is required in order to approach the lower
bound as much as possible.

5.1.2 Multi-processor Systems. The exploitation of multi-processor systems for
spatial query processing has been used in order to achieve better performance of
spatial data intensive applications. The ability to execute several operations in
parallel may have a dramatic impact on the efficiency of the database system.
While in multi-disk systems the main target is to achieve I/O parallelism, in multi-
processor systems I/O and processing parallelism may be achieved (each processor
may control one or many disks).

Although the use of parallelism seems extremely attractive towards query per-
formance efficiency, several factors must be taken into consideration in order to
provide a viable solution. Parallel query execution plans must be constructed in
order to exploit the multiple processors. Therefore, careful decomposition of the
query must be performed to achieve good load-balancing among the processors.
Otherwise a processor to whom the largest task has been assigned will become a
bottleneck. Moreover, if the processors communicate by means of a local area net-
work (LAN) communication costs for interprocessor data exchange must be taken
into account. These costs must also be included during query optimization and
query cost estimation. Although the proposed techniques are applied in the case
where processors communicate by means of a local area network (loosely coupled
architecture), they can be applied as well in the case where processors are hosted in
the same computer (tightly coupled architecture). In the latter case communication
costs are reduced significantly.
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5.1.2.1 Independent R-trees. Some of the methods used for multi-disk R-tree
declustering can be used in the multi-processor case. For example, the spatial data
could be partitioned allowing each processor to manipulate its own local R-tree
structure (independent R-trees). If such a scheme is used, the following disadvan-
tages are observed:

—If the majority of the queries refer to a subset of the data that most of them
are hosted to a single processor, this processor may become a bottleneck, and
therefore parallelism is not being exploited to a sufficient degree.

—In the case where the spatial data are partitioned with respect to a partitioning
scheme based on a non-spatial attribute, all processors must be activated to
answer a single query, even if a processor contains irrelevant data with respect
to the query’s spatial attributes.

5.1.2.2 Leaf-Based Declustering. In [85] a parallel version of the R-tree has been
proposed in order to exploit parallelism in a multi-computer system, such as a net-
work of workstations. The system architecture is composed of a master processor
(primary site) and a number of slave processors (secondary sites). All sites com-
municate via an ethernet network. The allocation of pages to sites is carefully
performed, in order to achieve efficiency in range query processing. The leaves and
the corresponding data objects are stored in the secondary sites, whereas the up-
per tree levels are maintained in the primary site. More specifically, the leaf-level
stored at the master contains entries of the form (MBR, serverID, pageID). Since
the upper tree levels occupy relatively little space, they can be maintained in the
main memory of the primary processor.

Given that the dataset is known in advance, Koudas et. al. suggest sorting the
data with respect to the Hilbert value of the object’s MBR centroid. Then, the leaf
tree level is formed, and the assignment of leaves to sites is performed in a round-
robin manner. This method guarantees that leaves that contain objects close in
the address space will be assigned to different sites (processors), thus increasing
the parallelization during range query processing. In Figure 21 we present a way
to decluster an R-tree in four processors, one primary and three secondary. For
simplicity it is assumed that each processor controls only one disk.
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Fig. 21. Declustering an R-tree over three sites.

The parallel version of the R-tree described above can be implemented easily in
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a multi-computer system (e.g., network of workstations). The main drawback of
this approach is that the processor, which contains the upper levels of the R-tree,
may become a bottleneck during intensive demands.

5.1.2.3 GPR-tree. The GPR-tree proposed in [174] utilizes a global index struc-
ture shared by a number of processors in a multi-computer system. Each processor
maintains in memory a fraction of the GPR-tree, having its nodes partitioned into
two groups: 1) local, when the corresponding page resides in the local disk, and 2)
remote, when the corresponding page is managed by another processor.

5.1.2.4 Master-Client R-trees. This technique has been proposed in [149] and
as in the leaf-based declustering approach uses a master-slave architecture. The
master holds the upper levels of the R-tree. Unlike the previous approach, the
leaf-level of the master contains entries of the form (MBR, serverID). Each client
maintains its own local R-tree that is used to index the portion of the data that
has been assigned to it. A potential problem with this method is that the master
may become a hot-spot.

5.1.2.5 Upgraded Parallel R-trees. In [87] an upgraded parallel R-tree structure
has been proposed. A partition function is used to partition the area into several
sub-areas. The partition function is determined according to the distribution of
the underlying data. Each sub-area is indexed by an R-tree structure. The whole
structure is composed of: 1) a number of sub-trees, 2) data partitioning functions,
3) primary mapping category, and 4) secondary mapping category. Each item in
primary mapping category is of the form (processorID, number of objects). Each
item in secondary mapping category is of the form (subtree pointer, number of ob-
jects). In order to reduce communication costs, each processor hosts the complete
structure, although only a fraction of the database is stored locally. In [87] experi-
mental results are offered demonstrating the performance of the method. However,
a comparison with previous approaches in not provided.

5.1.2.6 Parallel Query Processing. Several methods have been proposed towards
parallel query processing using R-trees. In [64] a performance evaluation has been
performed by comparing the parallel equivalents of R-trees and PMR quadtrees in
a shared memory architecture. Experimental results have been reported for range
query and spatial join queries.

Brinkhoff et al. in [26] study efficient parallel algorithms for parallel spatial join
processing using R-trees. In their work the shared virtual memory architecture has
been used (a special implementation of shared-nothing with a global address space,
[156]) to implement the access methods and the proposed algorithms.

Parallel range query processing using R-trees with leaf-based declustering has
been studied in [85]. The authors also provide cost estimates, taking into consider-
ation the communication costs incurred due to message passing among processors.

Parallel NN query processing techniques are provided in [125; 127], which are
based on the multi-computer architecture of [85] described previously. The main
motivation is that although the branch-and-bound NN algorithm proposed in [142]
can be directly applied in a parallel R-trees structure, intraquery parallelism is not
being exploited due to the serial nature of the algorithm. Several parallel algorithms
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have been proposed, implemented and evaluated using synthetic and real-life spatial
datasets.

In [5] the authors discuss R-tree implementation issues in a multi-computer ar-
chitecture. The performance of parallel R-trees has been evaluated using insertions,
range queries with large query window, and range queries with small query window.
Uniform and non-uniform datasets have been used for the performance evaluation.
Two metrics have been used: query response time and system throughput when
multiple queries are executed concurrently. It has been shown that parallel imple-
mentation of R-trees on a cluster of workstations comprising of eight Sun Ultra-
Sparc processors give significant improvement in response time and throughput.

Parallel range query processing in distributed shared virtual memory architecture
has been reported in [172]. A range query is decomposed to a number of subqueries,
and each subquery is assigned to a processor. Two phases are identified: (i) in the
workload phase, a number of internal tree nodes are determined, (ii) in the search
phase the corresponding subqueries are executed in parallel. Performance results
based on query response time and speed-up are provided.

A very important issue in parallel and distributed query processing is the migra-
tion of data from one disk to another or from one server to another, according to
the access patterns used to access the data. In [93] the authors study migration
issues for R-trees.

5.2 Concurrency Control

The management of concurrent operations in access methods is considered very im-
portant because it is strongly related to the system performance, the data consis-
tency and the data integrity. When index updates interfere with access operations,
a synchronization mechanism must exist in order to guarantee that the result of
each operation is correct. Moreover, this synchronization must be efficient, pre-
venting exclusive index locking for long time periods. In [143] two main categories
for scheduling operations have been identified:

—top-down approaches, where an update operation locks its scope to prevent other
updates. Read operations might not be allowed in the scope of an update opera-
tion until the latter commits or they may be allowed during the search phase or
the restructuring phase of the update.

—bottom-up approaches, where an update operation behaves like a read operation
on the way to the leaf-level of the index, and then moves up the tree, locking
only a few nodes simultaneously and making the necessary changes.

Since the B-tree is implemented in many commercial systems, concurrency control
issues in B-trees have been extensively studied [73; 106; 143; 155]. As concurrent
operations can improve the efficiency of B-trees, similarly they can also improve R-
tree efficiency. However, due to the different nature of the tree structure, the B-tree
can not be applied directly. Moreover, although some straightforward modifications
could be applied, the results are not efficient enough.

5.2.1 R-link. Ng and Kameda in [111] discuss methods for concurrency control
in spatial access methods, and particularly in R-trees. The first method that we
discuss is similar to the B-link method for the case of B-trees. The R-link method
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have been proposed by Ng and Kameda in [112] and almost simultaneously by
Kronacker and Banks in [81] as a solution for the concurrency control problem in
R-tree based access methods. The R-link is an R-tree variant, where each tree
node contains a number of pointers, one for each child node, and an additional link
pointer used for concurrency control. All nodes that reside at a specific level of the
tree are linked together. The main purpose of the link pointers is to be able to
decompose operations into smaller atomic actions.

In the following study two types of locks are used. An R-lock is used for shared
reading, and an X-lock is used as an exclusive lock. As in the case of B-link, when
a search takes place, a concurrent insertion or delete might split or merge a node
respectively. As a result, link pointers should be followed to check for cases where
the split has not yet been propagated to the parent node.

Search operations start at the root and descent the tree using R-locks. Upon
visiting a tree node an R-lock is applied to the node. The R-lock is released when
the child nodes that must be visited have been determined. The problem is that
some insertions may not have been committed, which means that some split nodes
may not have been recorded in their parent nodes but have only been recorded as
link pointers to their siblings. Therefore, we have to examine all nodes emanating
from horizontal pointers. If the MBRs of these nodes overlap with the query region,
we check if their parent node is valid. If it is valid, the corresponding search path
would be examined from the parent node according to the R-tree search algorithm.
Otherwise, we include in the search path the subtree emanating from the corre-
sponding split node, since it contains relevant data that their existence have not
yet been recorder in the parent node.

Insertion operations start at the root and descent the tree until the appropriate
leaf node is detected. If the leaf can not hold more entries, a split operation is per-
formed. Changes must be propagated upwards. Only MBRs that need enlargement
are going to change. In order to avoid conflicts with other operations, the MBR
enlargement is deferred. During tree descent the expanded MBR is stored in a list
of pending updates. This list is used in the second phase, where MBR enlargement
takes place. Subsequent operations must examine this list. During the first phase
of descending the tree, the corresponding MBRs are enlarged and parent nodes are
updated with the new split nodes that only existed as linked nodes until now.

In the case of deletions, during tree descent multiple paths are examines, and in
every node we execute the pending updates that have been registered by previously
executed insertions, deletions or splits. If a node becomes empty, it is marked as
deleted and it is not yet removed because other operations may be using it. A
garbage collection algorithm is executed periodically in order to delete all marked
nodes. If a node underflows, it is appended to a list, and when the size of the list
reaches a threshold a condense algorithm is executed.

A slightly different approach has been followed in [81], where a more sophisticated
technique is used in order to provide ordering of sibling nodes. Logical sequence
numbers (LSN) are assigned to the nodes. These numbers are similar to times-
tamps since they monotonically increase over time. The LSN numbers are used
during search and insert operations in order to make correct decisions about tree
traversal. During tree descent no lock-coupling is needed, and therefore only one
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node is locked at any given time. The comparison of the method with lock-coupling
concurrency control mechanisms in R-trees has shown that R-link trees maintain
high throughput and low response times as the load increases.

5.2.2 Top-down Approaches. Although B-link is widely recognized as a struc-
ture of theoretical and practical importance, this is not the case for R-link. Com-
mercial systems are using the classical R-tree [57] structure or the R∗-tree [12]. In
[31] concurrency control techniques have been proposed, by using different methods
than the R-link structure. Three types of locks are used, R-locks, W-locks and X-
locks. Lock-coupling and breadth-first search are used to locate the set of objects
that satisfy the query. A node that is examined remains locked until the search
operation commits.

A search operation starts at the root, and descends the tree by inserting each
visited node into a queue. An element of the queue is extracted and examined in
order to determine which of it’s children’s MBR overlap with the query region. If
the examined node is not a leaf the children that are relevant to the query region
are R-locked and inserted into the queue left-to-right.On the other hand, if the
examined node is a leaf the corresponding children are data objects and must be
examined further (refinement step) to check if they satisfy the query. The search
operations terminated when the queue is empty. Since all nodes in the queue are
R-locked, update operations can not be applied to these nodes.

Insertions are performed in two phases. During the first phase, lock coupling
is used to the path from the root to the corresponding leaf node that will host
the new object. At each node the appropriate path is selected and followed. The
MBRs of the nodes are adjusted properly. In the second phase the new object is
placed into the corresponding leaf node. If the leaf node is full, a split operation
must be applied. To avoid interference of other update operations, the leaf and its
parent are W-locked before the execution of the split. The same is applied to other
ascendants if they are full. Therefore, all full nodes from the leaf to the root are
W-locked. The set of these nodes is the scope of the current operation. During
reconstruction of the tree the W-lock of a node must be converted to an X-lock
before modification. After the split operations, the MBRs of the parent nodes are
adjusted accordingly to cover the MBRs of their children.

Deletions are applied in a similar manner and are also characterized by two
phases. During the first phase an appropriate leaf is found and the corresponding
path from the root to the leaf is W-locked. We note that several paths may qualify,
since many MBRs may totally cover the deleted object. In order to guarantee that
the deleted object will not be missed, all paths must be examined in a breadth-first
search manner. In the second phase the corresponding object is deleted. Appropri-
ate actions must take place in order to deal with node underutilization. Changes
are propagated upwards and the appropriate MBRs are adjusted accordingly. In
general, there are three techniques that can be used in underutilized nodes:

(1) reinsertion, where objects in the underutilized node are reinserted in the tree,
(2) merge-at-half, where the node is merged, and
(3) free-at-empty, where the node is deleted when it is completely empty.

The proposed algorithm used the last technique since it is the most efficient one
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according to [73]. A study of granular locking in R-trees can be found in [28].

5.3 Research Prototypes and Commercial Systems

By studying the literature in SAMs it is evident that the R-tree structure and
its variants attracted a lot of attention. The simplicity of the structure and its
ability to handle spatial objects efficiently are two very tempting reasons in order to
incorporate the structure in research prototypes and commercial database systems.
It is well known that it is not sufficient to support spatial objects in a database
system. Efficient methods to access these data are of great importance taking into
consideration the requirements of modern demanding applications [154].

There are several implementations of the R-tree access method and its variants
that are offered by researchers all over the world. Most of these implementations
have been performed in order to conduct experiments and performance comparisons
with other structures, to investigate the performance of a proposed algorithm, or
to provide modifications and enhancements to the structure in order to improve
its efficiency. However, these implementations have been performed for research
purposes and therefore issues like concurrency control, recovery, buffering issues
and other implementation details have generally been neglected. Moreover, the
majority of these implementations are stand-alone, meaning that they only serve
the needs of the experimental evaluation rather than being an integral part of a
platform. In the sequel we briefly describe efforts for R-tree implementations in
research prototypes and commercial database systems.

5.3.1 BASIS. The BASIS prototype system (Benchmarking Approach for Spa-
tial Index Structures) has been proposed in [55] in order to provide a platform for
experimental evaluation of access methods and query processing algorithms. An
outline of the architecture is depicted in Fig. 22. The platform has been imple-
mented in C++ and runs on top of UNIX or Windows. The platform is organized
in three modules:

—the storage manager: Provides I/Os and caching services,
—the SAM toolkit: It is a set of commonly used SAMs and defines some design

patterns, which support an easy development of new structures, and
—the query processor: It is a library of algorithms whose design follows the general

framework of the iterator model [51].
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Fig. 22. The BASIS architecture.
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The storage manager is essentially in charge of managing a database. A database
is a set of binary files that store either datasets (i.e., sequential collection of records)
or SAMs. A SAM or index refers to records in an indexed data file through record
identifiers.

The buffer manager handles one or several buffer pools. A data file or index
(SAM) is assigned to one buffer pool, but a buffer pool can handle several indices.
This allows much flexibility, when assigning memory to the different parts of a
query execution plan. The buffer pool is a constant-size cache with LRU or FIFO
replacement policy (LRU by default). Pages can be pinned in memory. A pinned
page is never flushed until it is unpinned.

There are two main types of files that are handled by the storage manager:

(1) data files are sequential collections of formatted pages storing records of a same
type. Records in a data file can either be accessed sequentially, or by their
address.

(2) SAMs are structured collections of index entries. An index entry is a built-in
record type with two attributes: the key and a record address. The key is the
geometric key, usually the MBR. The currently implemented SAMs are a grid
file, an R-tree, an R∗-tree and several R-tree variants based on bulk-loading
techniques.

The BASIS architecture allows an easy customization and extension. Depending
on the query processing experiment, each level is easily extendible: the designer
may add a new SAM, add a new spatial operator or algorithm at the query pro-
cessor level, or decide to implement her own query processing module on top of
the buffer management (I/O) module, which implements adequate functionality.
As an example, a performance evaluation of spatial join processing algorithms im-
plemented in BASIS has been reported in [130]. Generally, the BASIS prototype
system can be used for experimental evaluation of SAMs and spatial query process-
ing algorithms, by allowing the designer to create various query execution plans
according to the needs of the experimentation. Moreover, the platform offers a
fair comparison among the competing methods since the same storage and buffer
management policies are used. Some issues, however, have not been taken into
consideration, like concurrency control and recovery.

5.3.2 Generalized Search Trees (GiST). Extensibility of data types and queries
are very important in order to allow database systems to support new non-traditional
applications. GiST (Generalized Search Trees) is an index structure, which sup-
ports an extensible set of data types and queries. GiST is a balanced tree (all leaf
nodes are at the same tree level) that provides template algorithms for searching
and modifying the tree structure [60; 82]. In leaf nodes pairs of (key, recordID)
are stored, whereas in internal nodes the GiST stores (predicate, treePTR) pairs.
GiST supports the standard search, insert and delete operations. However, in order
for these operations to work properly, external functions must be provided. There-
fore, the combination of the generic functionality of GiST and the functionality
provided by the designer results in a fully functional access method.

An overview of the GiST architecture is presented in Figure 23. External func-
tions are called by the GiST core in order to provide the required functionality.
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Fig. 23. Overview of GiST architecture.

These external functions, which comprise the GiST interface, are briefly described
below [60]:

—Consistent(E, q): Given an entry E = (p, ptr) and a query predicate q, the
function returns true if and only if the p matches q.

—Union(P): Given a set P of entries (p1, ptr1), ..., (pn, ptrn) the function returns
the union of p1, ..., pn.

—Compress(E): Given an entry E = (p, ptr), the function returns the entry E′ =
(p′, ptr), where p′ is a compressed representation of p.

—Decompress(E): Returns a decompressed representation of E.
—Penalty(E1, E2): Given two entries E1 = (p1, ptr1) and E2 = (p2, ptr2) returns

a domain-specific penalty for inserting E2 in the subtree rooted at E1. This
function is used for insertion and splitting purposes, where criteria for selecting
a subtree and splitting a node must be specified.

—PickSplit(P): Given a set P of N+1 entries, the function divides P into two
subsets P1 and P2. The function is used for splitting purposes, where criteria for
node splitting must be defined.

By providing implementations for the above functions, all R-tree variants can be
supported by GiST, except the R+-tree. This is due to the fact that the R+-tree
performs object splitting allowing pieces of an object to be stored in several leaf
nodes. This functionality is not supported by GiST, which assumes that the tree
is a hierarchical partitioning of the data. In [60] support for B+-trees, R-trees, and
RD-trees [59] is provided, and several performance and implementation issues are
discussed.

5.3.3 The SHORE Project. SHORE integrates concepts and services from file
systems and object-oriented databases. The main objective of the SHORE project
[27] is to provide a persistent object system to serve the needs of modern de-
manding applications such as CAD systems, persistent programming languages,
geographic information systems (GIS), satellite data repositories and multimedia
applications. SHORE extends the EXODUS storage manager providing more fea-
tures and support for typed objects and multiple programming languages. The
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SHORE architecture is based on the following layers:

—SHORE Storage Manager (SSM): It is a persistent object storage engine that
supports creation of persistent files of records. The storage manager offers con-
currency control and recovery, supporting two-phase locking and write-ahead
logging.

—SHORE Value-Added Server (SVAS): It is based on the functionality of SSM in
order to provide support for types objects, a UNIX-like naming, access control
mechanisms and client-server capabilities.

—SHORE Data Language (SDL): It is based on ODMG ODL and supports object-
oriented data types independently of the programming language used.

Paradise [42] is a parallel geographic information system, based on SHORE,
with many capabilities in handling large geographic datasets. Paradise applies
object-oriented and parallel database features to provide efficiency in storing and
querying large amounts of spatial data. The Paradise server is implemented as
a SHORE value-added server on top of SHORE storage manager. Paradise adds
extra functionality to the basic SHORE server: catalog manager, extend manager,
tuple manager, query optimizer and query execution engine, support for spatial
abstract data types (points, polylines, polygons and raster). Efficient access of
the stored spatial objects is enhanced by the use of R∗-trees. The R∗-tree has
been implemented in the SHORE storage manager relatively easily, since a lot of
B+-tree code (already supported by SHORE) was reused. In addition, Paradise
supports bulk-loaded R-trees. The packing algorithm used in Paradise is similar to
the packing algorithm used in [76], which is based on the Hilbert curve.

5.3.4 R-trees in Commercial Database Systems. The support of complex data
types (non alphanumeric) and access methods is a key issue in modern database
industry, since it allows the DBMS to extend its functionality beyond pure relational
data handling. A simple approach for complex data handling is to use BLOBs
(binary large objects) to store the complex data. The limitation of this approach
is that the DBMS is not aware of what is stored in the BLOB, and therefore the
management of the BLOB contents must be performed by the user application.
The operations and algorithms to manipulate the contents of the BLOB are not
available to the query processor. Another approach is to allow the DBMS to provide
the needed functionality for complex data types (e.g., polygons, line segments) and
access methods. These data types are supported by the DBMS just like the ordinary
alphanumeric data types. The problem is that it is not possible for each DBMS
vendor to implement all the data types and access methods that any application
demands (or will require in the future). A more revolutionary approach is to allow
the user to define additional data types and access methods for data handling
according to application needs (extendible DBMS). In the sequel we briefly describe
efforts from database vendors for spatial query processing using R-trees:

—PostgreSQL: PostgreSQL provides support for B-trees, R-trees, GiST and Hash-
ing. Therefore, a user can rely on the provided R-tree implementation, or can
implement other R-tree variants using the GiST approach. The R-tree supported
is based on the original proposal by Guttman and it is based on the quadratic
split policy. To create an R-tree index using SQL, one should issue the command:
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CREATE INDEX myindex ON mytable USING RTREE (mycolumn). Details
regarding PostgreSQL features can be found in [137].

—Mapinfo SpatialWare: SpatialWare extends an Informix, Microsoft SQL Server,
IBM DB2 or Oracle database to handle spatial data such as points, lines and
polygons. It extends database capabilities avoiding a middleware architecture.
All functionality is contained directly into the DBMS environment. SpatialWare
is implemented in the following ways: 1) in Informix as a datablade, 2) in SQL
Server using the Extended Stored Procedure mechanism, 3) in IBM DB2 as an
extender, and 4) in Oracle as Spatial Server. SpatialWare provides R-tree support
for spatial data indexing purposes [102; 105].

—Oracle Locator and Oracle Spatial: Oracle Locator, which is a feature of Oracle
Intermedia, provides support for location-based queries in Oracle 9i DBMS. Geo-
graphic and location data are integrated in the Oracle 9i server, just like ordinary
data types like CHAR and INTEGER. Oracle Spatial provides location-based fa-
cilities allowing the extension of Oracle-based applications. It provides data ma-
nipulation tools for accessing location information such as road networks, wireless
service boundaries, and geocoded customer addresses. Both Oracle Locator and
Oracle Spatial provide support for linear quadtrees and R-trees for spatial data
indexing purposes [84; 114].

—IBM Informix and DB2 In Informix, the R-tree is built-in to the database kernel
and works directly with the extended spatial data types. The Informix R-tree
implementation supports full transaction management, concurrency control, re-
covery and parallelism. A detailed description of the Informix R-tree implemen-
tation can be found in [69]. A description of spatial data handling in a DB2
database can be found in [2].

—Other Vendors Apart from large database vendors, the R-tree has been adopted
by other application vendors as well. Examples include the EzGIS and EzCAD
applications that exploit the R-tree to index spatial objects [43].

6. EPILOG

Although ‘trees have grown everywhere’ because of their simplicity and their sat-
isfactory average performance, only a small subset of them have been successfully
used by researchers and developers in prototype and commercial database systems.
The R-tree is the most influential SAM and has been adopted as the index of choice
in many research works regarding spatial and multidimensional query processing.
Taking into consideration the work performed so far, we can state that the R-tree
is for the spatial databases, what the B-tree is for alphanumeric data types. In fact,
a serious reason for its acceptance is exactly the resemblance to the B-tree.

Considering the work performed on R-trees we realize that contains almost all
aspects concerning a database system: query processing, query optimization, cost
models, parallelism, concurrency control, recovery. This is the main reason why
gradually database vendors adopted the R-tree and implemented it in their products
for spatial data management purposes.

In this survey paper we presented research performed during the last 18 years,
after Guttman had presented the R-tree access method in 1984 [57]. We described
several modifications to the original structure that improve its query processing
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performance, ranging from structural modifications to algorithmic enhancements.
Also, query processing algorithms were described in detail, that enable the structure
to answer range, NN, spatial joins and other query types. Several cost models esti-
mating the output size and the number of node accesses were presented, according
to the query type used. These cost estimates are invaluable for query optimizers.
Finally, implementation issues were covered, regarding concurrency control, recov-
ery and parallel processing, along with a presentation of R-tree implementations by
several database vendors.
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