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Abstract. The WISE 2014 challenge was concerned with the task of
multi-label classification of articles coming from Greek print media. Raw
data comes from the scanning of print media, article segmentation, and
optical character segmentation, and therefore is quite noisy. Each article
is examined by a human annotator and categorized to one or more of
the topics being monitored. Topics range from specific persons, products,
and companies that can be easily categorized based on keywords, to more
general semantic concepts, such as environment or economy. Building
multi-label classifiers for the automated annotation of articles into topics
can support the work of human annotators by suggesting a list of all
topics by order of relevance, or even automate the annotation process for
media and/or categories that are easier to predict. This saves valuable
time and allows a media monitoring company to expand the portfolio of
media being monitored. This paper summarizes the approaches of the
top 4 among the 121 teams that participated in the competition.

1 Introduction

In the past, gathering information was paramount only for top-tier companies.
In the information age, mining and categorization of relevant information is
necessary for all companies. Media monitoring - the activity of monitoring the
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output of the print, online and broadcast media - allows every company to search
a wide range of media, from print media to internet publications, and be informed
on their area of expertise and remain competitive.

Media monitoring companies rely on human experts that watch/read/listen to
media clips and manually index them using concepts from a predefined ontology.
This task requires significant amount of time and money to be accomplished.
Machine learning can be employed to construct systems for assisting the human
annotators by suggesting a list of all concepts by order of relevance, or even for
automating the annotation process for media and/or concepts that are easier
to predict. This would allow a media monitoring company to invest the saved
resources towards expanding the portfolio of media being monitored.

The WISE 2014 challenge was concerned with the task of multi-label classifi-
cation of articles coming from Greek print media. Data was collected by scanning
a number of Greek print media from May 2013 to September 2013. Articles were
manually segmented and their text extracted through OCR (optical character
recognition) software. The text of the articles is represented using the bag-of-
words model and for each token encountered inside the text of all articles, the
tf-idf statistic is computed and unit normalization is applied to the tf-idf values
of each article. There are therefore 301561 numerical attributes corresponding
to the tokens encountered inside the text of the collected articles. Articles were
manually annotated by a human expert with one or more out of 203 labels rang-
ing from specific persons, products, and companies that can be easily categorized
based on keywords, to more general semantic concepts, such as environment or
economy. 99780 articles were collected. The chronologically first 64857 form the
training set, and the following 34923 form the test set. The goal is to predict
the relevant labels in the test set, where the labels of the articles are withheld.
The evaluation metric was the mean F1 score, also known as example-based F1

score [1].
This paper discusses the approaches of the top four teams, which were also

the ones that provided a summary of the solution. These teams, in order of their
final ranking are:

1. Alexander D’yakonov, from the LomonosovMoscow State University, Russia.

2. Antti Puurula and Jesse Read from University of Waikato, New Zealand and
Aalto University, Finland respectivey.

3. Jan Švec, from the University of West Bohemia, Czech Republic.

4. Stanislav Semenov, from the Higher School of Economics and the Yandex
School of Data Analysis, Russia.

The rest of this paper is organized as follows. Section 2 discusses the learning
approaches employed by the teams to obtain a vector of numerical scores for
the labels and Section 3 discusses the thresholding approaches that were used to
obtain bipartitions of the set of labels into relevant and irrelevant ones from the
numerical scores. Finally, Section 4 presents the conclusions of the WISE 2014
challenge.
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2 Learning Methods

The 1st team employed binary relevance instantiated with an ensemble of 10
classifiers:

– Four kNN classifiers, with k ∈ {1, 2, 3, 50} respectively. For k > 1 the neigh-
bors are averaged according to their cosine distance. For k = 50 initial ex-
periments measured an F1 score of around 0.68. This was the least accurate
family of models.

– Three ridge regression classifiers, with ridge parameter taking values from
{0.4, 0.8, 1.2}. For ridge parameter equal to 0.8, initial experiments measured
an F1 score of around 0.76.

– Three logistic regression classifiers, with L1 regularization and regularization
parameter taking values from {2, 6, 10}. For regularization parameter value
equal to 6, initial experiments measured an F1 score of around 0.78. This
was the most accurate family of models.

The ensemble was combined via Stacking [2] using ridge regression. Training
data for the meta-model were produced by training the ensemble on the first
50,000 examples of the training set and obtaining its predictions on the rest
14,857 examples. The same last set of examples was used for initial parameter
exploration of the base classifiers.

Feature engineering investigations (singular value decomposition, transform-
ing the features to polynomial, adding the features a 2nd time sorted by value)
did not lead to significant improvements in the best case.

A distinctive aspect of the approach of the 2nd team was that it reverse-
engineered the word counts in the documents from the provided tf-idf vectors.
This clever hack allowed the construction of two additional feature vectors: word
pairs [3] and 50-300 topics extracted via LDA (Latent Dirichlet Allocation).

The 2nd team created a much larger ensemble, of over 200 classifiers, by em-
ploying a variety of multi-label classification algorithms (binary relevance, classi-
fier chains, (pruned) label powerset, random k-labelsets and others) instantiated
with a subset of a variety of base classifiers (centroid classifier, multinomial naive
bayes, random forest, c4.5, support vector machines) using combinations of the
3 different feature sets. Depending on the size of the feature set and the com-
plexity of the base classifiers different multi-label classifiers could be afforded.
In other words not all the above combinations were realized. The final ensem-
ble of the 2nd team consisted of about 50 models selected by a hill-climbing
search attempting additions, removals and replacements of the classifiers in the
ensemble.

The ensemble of the 2nd team was combined by a variant of Feature-Weighted
Linear Stacking [4,5], using the first 59857 documents for developing base clas-
sifiers and the following 5000 documents for optimizing the ensemble. This
improves simple majority voting by predicting for each instance optimal vote
weights based on meta-features computed from all available information. Their
variant approximates optimal weights for each training instance, and uses the ap-
proximated weights as targets for regression models. Linear regression was used
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to develop the ensemble, but for the best submission a random forest with 40
trees was used to predict the vote weights. The set of meta-feature included doc-
ument features, training set frequencies of the predicted labels and labelsets, as
well as correlations between the classifier outputs. One new type of meta-feature
that proved useful was the labelset predictions for neighboring documents: since
the data was organized in time order, labels occurred often in sequences, and
predictions for neighboring documents could be used to improve the classifier
vote weight prediction. Two windows of neighboring documents were used: one
with 650 documents and one with 6. The score for each label was the sum of the
weighted classifier outputs.

The 3rd team employed binary relevance instantiated with a simple linear
model trained using stochastic gradient descent (SGD) [6] with modified Huber
loss and elastic net regularization. For predicting the posterior probability the
method described in [7] was used. The regularization parameters of the binary
models were tuned iteratively based on the mean F1 score: models were tuned
one after the other in descending order of frequency. Multiple iterations over all
labels were conducted.

In addition, a distinctive aspect of the approach of the 3rd team was that it
employed semi-supervised learning. In specific, the aforementioned supervised
model tuned using three iterations over all labels was used to give predictions
in the test set and then these predictions were taken as ground truth. The same
SGD models with another three tuning iterations were applied to this expanded
training set. After each tuning iteration, the test data were re-labeled.

The final model arbitrated among: 1) the supervised models, 2) the semi-
supervised models, and 3) two additional tuning iterations of the semi-supervised
models. This can be seen as a classifier selection approach per label, choosing
among 1 supervised model and 3 semi-supervised models, with 3, 4 and 5 tuning
iterations respectively.

The 4th team used a linear SVM with L1 regularization for each label. This
shows how far one can get by focusing on the design of a powerful thresholding
method.

3 Thresholding Methods

Let Y = {λ1, . . . , λq} be a set of q labels. Let gj, j = 1 . . . q be the predicted
score of label λj for a given test instance. Let p be a threshold.

The 1st team explored 4 different thresholding rules, according to which a label
λj was included in the final output when the following corresponding expressions
were true:

gj ≥ min(p,max(g1, . . . , gq)), (1)

gj
max(g1, . . . , gq)

≥ p, (2)

gj
g1 + · · ·+ gq

≥ p, (3)



Multi-label Classification of Print Media Articles to Topics 543

gj − (g1 + · · ·+ gq)/q

maxi(gi − (g1 + · · ·+ gq)/q)
≥ p. (4)

Figure 1 shows the F1 score of these rules when logistic regression is used as
a binary classifier for each label for different values of the threshold p ranging
from 0 to 1. The second and forth decision rules appear to be more effective. In
its final solution the 1st team used the second rule with p = 0.55.
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Fig. 1. Performance of decision rules

The 2nd team followed the same simple, but obviously effective, rule, but with
p = 0.5. This team had successfully used this rule again in the past as part of
its winning solution for the LSHTC4 competition [8].

The approach of the 3rd team outputs all labels with probability higher than
0.5. The label with the highest probability is given in the output even if its
probability, p∗, is lower than 0.5. In addition, the approach outputs the 4, 3 or
2 labels with the highest probability when the probability of the 4th, 3rd and
2nd label correspondingly are larger than tC · p∗, tB · p∗ and tA · p∗ respectively,
where the values of tA, tB and tC are tuned using grid search to optimize the
mean F1 measure on the training data. In cases where multiple conditions are
satisfied (e.g. it is possible to assign both two and four labels) the set with the
larger cardinality is used.

The approach of the 4th team follows the paradigm of [9,10], which train a
regression model to predict a separate threshold for each test instance. This is
based on obtaining the predicted probabilities for (a subset of) the training data.
Consider for example the predicted probabilities (sorted in descending order)
and the corresponding ground truth for an instance of a multi-label learning
task with 5 labels that are given in the first two rows of Table 1.

In [9] the regression target was the threshold that minimized the number of
labels with wrong prediction, i.e. a threshold in (0.7,0.9) or in (0.3,0.6) in the
above example. In [10] the regression target was the threshold that maximized
the F1 score, i.e a threshold in (0.3,0.6) in the above example. Usually, the mean
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Table 1. Number of wrong labels (3rd row) and F1 score (4th row) for 6 different
threshold ranges for an instance of a multi-label learning task with 5 labels. The first
two rows show the predicted probabilities sorted in descending order and the corre-
sponding ground truth for the 5 labels.

predictions 0.9 0.7 0.6 0.3 0.1
ground truth 1 0 1 0 0

wrong labels 2 1 2 1 2 3
F1 0 0.67 0.5 0.8 0.67 0.57

of the lower and upper boundaries is taken, e.g. for a chosen range of (0.3,0.6),
the target would be 0.45. In the approach of the 4th team, two regression models
are built, one for predicting the upper and one for the lower boundary of the
range that optimizes the F1 score. A linear combination of the two predicted
boundaries can then be taken in the form of αl + (1 − α)u, where l and u are
the predicted lower and upper boundaries respectively. Figure 2 shows the Mean
F1 for different values of α as investigated by the 4th team. A value around 0.5
leads to best results.

Fig. 2. Mean F1 for different values of combining the predicted upper and lower bound-
ary

The predicted probabilities were used as input features for the regression in
[9], while the features of the instance itself were used in [10]. The 4th team used
a versatile set of input features for the two regression tasks: the predicted proba-
bilities, the sorted predicted probabilities, the differences among two consecutive
values of the sorted predicted probabilities, the differences among all pairs of the
top 10 probabilities and the 20 first principal components extracted by applying
PCA to the input space of the main learning task.
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4 Conclusions

Examining the top 4 solutions in the WISE 2014 challenge, a number of conclu-
sions can be drawn. A first well-known and expected conclusion is that ensemble
methods do well. Indeed, the top 3 solutions employed more than one models
(10, 50, 5 respectively). On the other hand, the single model solution of the
4th team shows the importance of a strong thresholding technique. The top 3
solutions used simple, yet effective thresholding techniques, based on dividing
each score with the maximum score for a given instance. The 4th team employed
a more elaborate thresholding technique that involved learning and appears to
be more successful. Another conclusion, more or less also known, is that linear
models do well in text classification. Linear models were important components
in the solutions of all the top 4 teams. Furthermore, from the approach of the
3rd team, it seems that semi-supervised approaches can go that extra mile com-
pared to supervised approaches, especially for multi-label data where scarcity of
labeled examples often arises for some labels.

Another issue worth mentioning is that of overfitting, as it most probably
played a decisive role in the final standing. Both the first two teams were well
behind in the leaderboard until the private results came out. Both of these teams
submitted less than half than the 3rd and 4th teams: (26, 21) vs (52, 72). The
first two teams also divided the dataset according to the time-order, instead of
doing cross-validation, so that the models were fitted to data closer in time to
the test set, and not across the whole dataset. This is always a wise choice for
data streams.

Comparing the top 2 solutions, we can see evidence in favor of Occam’s razor
[11]. The solution of the 2nd team involved three different feature representa-
tions and over 200 classifiers that resulted from the combination of many different
multi-label and single-label classification algorithms, combined by a very power-
ful stacking variant [4]. The solution of the 1st team involved the original feature
vectors and 10 different classifiers from 3 standard families (kNN, logistic regres-
sion, ridge regression), combined using standard stacking with ridge regression.
Given that they both employed almost the same thresholding strategy, we can
say that perhaps simple solutions are still worth being considered first.

Finally, the clever hack of the 2nd team, teaches us that if privacy of the
sources has to be protected due to copyright or other issues, then more careful
pre-processing has to be applied to the data, such as adding noise, adding bi-
grams, removing frequent/rare words and disclosing as few details as possible
for the actual pre-processing steps.
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