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Analysis of the n-Dimensional Quadtree
Decomposition for Arbitrary Hyperrectangles

Christos Faloutsos, Member, IEEE, H.V. Jagadish, Member, IEEE,
and Yannis Manolopoulos, Member, IEEE Computer Society

Abstract —We give a closed-form expression for the average number of n-dimensional quadtree nodes (“pieces” or “blocks”)
required by an n-dimensional hyperrectangle aligned with the axes. Our formula includes as special cases the formulae of previous
efforts for two-dimensional spaces [8]. It also agrees with theoretical and empirical results that the number of blocks depends on the
hypersurface of the hyperrectangle and not on its hypervolume. The practical use of the derived formula is that it allows the
estimation of the space requirements of the n-dimensional quadtree decomposition. Quadtrees are used extensively in two-
dimensional spaces (geographic information systems and spatial databases in general), as well in higher dimensionality spaces (as
oct-trees for three-dimensional spaces, e.g., in graphics, robotics, and three-dimensional medical images [2]). Our formula permits
the estimation of the space requirements for data hyperrectangles when stored in an index structure like a (n-dimensional) quadtree,
as well as the estimation of the search time for query hyperrectangles, for the so-called linear quadtrees [17]. A theoretical
contribution of the paper is the observation that the number of blocks is a piece-wise linear function of the sides of the hyperrectangle.

Index Terms —Regular decomposition, geometric data, quadtrees, oct-trees, GIS, robotics.

——————————   ✦   ——————————

1 INTRODUCTION

IERARCHICAL decomposition of space plays an impor-
tant role in every application that involves geometric

data. The idea is that the space is decomposed recursively
into smaller and smaller pieces, until the content of each
such piece is homogeneous. The problem solved in this pa-
per is the analytical estimation of the number of pieces that
an n-dimensional rectangle (hyperrectangular region) is
decomposed into.

Consider a two-dimensional image represented as a 2k

´ 2k array of 1 ´ 1 squares. Each such square is called a
pixel. The length K = 2k of the side of the image is called
the granularity of the image. A geometric object within
such an image is represented by turning the appropriate
pixels to black, while the background is considered white.
More than one geometric object may exist in an image. A
block is a 2m ´ 2m square (0 £ m £ k) obtained as the result
of recursive decomposition of the image into quadrants
and sub-quadrants. We focus on representing one object
only. An object within an image is decomposed into blocks
as in Fig. 1. For example, in this figure the square [0, 2] ´
[2, 4] is a block, while the square [1, 3] ´ [2, 4] is not.

For a two-dimensional object, the result of such a de-
composition is termed as a region quadtree. Such a hierarchi-
cal decomposition approach has been used in several areas,
including:

• In graphics and robotics (three-dimensional space) [3].
• In geographic information systems and spatial data-

bases. The TIGER project at the U.S. Bureau of Census
uses a linear quadtree representation to store all the
points of interest in the map of U.S.A. [22]. A similar
approach has also been used by Shaffer in the QUILT
system for geographic and spatial databases [21], as
well as by Orenstein in the extensible data base man-
agement system PROBE [18].

• In traditional databases, where records with n attrib-
utes correspond to points in an n-dimensional space.
Many methods have been suggested to store such a
collection of data, utilizing the hierarchical decompo-
sition approach (e.g., k-d trees [4], quadtrees and their
variations [11]).

• In spatiotemporal and scientific databases, where
time introduces one more axis [16].

• In image databases, e.g., [2], where three-dimensional
brain scans have to be stored. Regions in these brain
scans can be encoded using oct-trees, to save space
and to achieve faster response on range queries.

• In Grand-Challenge databases [5] (e.g., with meteoro-
logical, environmental, sensor data, etc.). In general,
these databases contain large multidimensional arrays,
(e.g., tuples of the form (x, y, z, t, temperature)), which
can be stored in some multiresolution, hierarchical
fashion, clustering related (i.e., nearby) points together.

• Whenever a transformation is used (e.g., a two-
dimensional rectangle corresponds to a four-
dimensional point [9], [12]; a polyhedron is mapped
to a high-dimensionality point [15]).

We focus on rectilinear hyperrectangles, that is, n-d rec-
tangles with sides aligned with the axis. The problem we
examine here is the following:
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Given a rectilinear hyperrectangle of size s1 ´ s2 ´ ... sn,
Find the number of blocks that it will span on the average.

Previous attempts have been restricted to two-dimensional
rectangles: Dyer in [6] presented an analysis for the best,
worst and average case of a square of size 2n ´ 2n, giving an
approximate formula for the average case. Shaffer in [20]
gives a closed formula for the exact number of blocks that
such a square requires when anchored at a given position
(x, y); he also gives the formula for the average number of
blocks for such squares (averaged over all the possible po-
sitions). In a previous paper [8], we generalized some of
these formulae for arbitrary (two-dimensional) rectangles.
Analysis of the closely related Peano and Hilbert space
filling curves for two-dimensional spaces was presented in
[14] and [19].

In this paper, we generalize the formulae for n-dimen-
sional rectangles. The derived formulae are useful when-
ever a hierarchical decomposition is used for higher-
dimensionality spaces, either for data hyperrectangles, or
for query hyperrectangles. In all these cases, the number of
pieces that a hyperrectangle decomposes into clearly affects
the space overhead and the search time. Therefore, it is es-
sential for query optimization in spatial/temporal data-
bases [1].

The proposed methodology is as follows:

1) Find the formulae when the sides of the hyperrectan-
gles are of the form 2 1mi - , for every dimension i =
1, 2, ..., n. Let’s call these hyperrectangles magic. One
important observation is the fact that the solution for
magic rectangles is simple.

2) Prove that the formula for a nonmagic hyperrectangle
can be derived by a linear interpolation from the sur-
rounding magic hyperrectangles.

The paper is organized as follows. Section 2 gives some pre-
liminary definitions and examples. Section 3 gives the solu-
tion (closed-form formulae) for the magic hyperrectangles.
Section 4 establishes a theorem that the solution for non-
magic hyperrectangles can be derived by using linear inter-
polation. Section 5 gives closed formulae for the average
number of blocks in the case of two-dimensional rectangles
and three-dimensional parallelepipeds. Section 6 makes some
observations and suggests future research directions.

2 PRELIMINARIES

A hyperrectangle is represented as ( , , , , , ,x s x s xn1 1 2 2 �

sn)where xi (i = 1, ..., n) is the ith coordinate of the anchor
(i.e., the corner with the smallest coordinate values or the
‘lower left’ corner; this is the corner closest to the origin,
since all the coordinates are nonnegative) and si is the size
of the hyperrectangle on the ith dimension. Table 1 shows
the symbols and their definitions.

TABLE 1
DEFINITION OF SYMBOLS

Symbol Definition

n Number of dimensions

x , , x1 n� Coordinates of the lowest corner of the

hyperrectangle (i.e., the one closest to the origin)

si Length of the hyperrectangle in i
 
th dimension

b x , s , ,
x , s

1 1

n n

(
)
� Number of blocks to cover a specific hyperrec-

tangle

b s , s , , s1 2 n�2 7 Average number of blocks to cover the hyperrec-
tangle of the query size

K = 2k Granularity = side of the ‘universe’ in hyperpixels

DEFINITION 1. The average number of blocks for a rectangle of
sides s s sn1 2, , ,�2 7 is given by:

b s s s

K
b x s x s x s

n

n
x

K

n n
x

K

n

1 2

0

1

1 1 2 2
0

11

1

, , ,

, , , , , ,

�

� �

2 7

2 7

=

=

-

=

-

å å (1)

where K = 2k is the granularity. Intuitively, we let the hy-
perrectangle go to each and every possible position, and we
average the number of blocks that the hyperrectangle de-
composes into, at each position. Notice that:

• K should be large enough so that the K ´ K ... ´ K hy-
percube completely encloses the hyperrectangle un-
der examination. In other words: si £ K for i = 1, ..., n.

• The hyperrectangle wraps around the edges. This as-
sumption has been used in all the previous analyses
of quadtrees [6], [8].

Some important observations, that allow recursive de-
composition of the problem:

OBSERVATION 1 (Slicing). If the starting coordinate xi on
the ith axes of a hyperrectangle is odd, then we can
“slice off” a hyperplane of width one, that is per-
pendicular to the ith dimension and starts at xi. In
such a case, the number of blocks of the two pieces
added together is the same as the number of blocks
of the whole hyperrectangle, in this given position.
Without loss of generality, assume the hyperrectan-
gle starts at an odd point in the first dimension.
Then:

b x s x s x s

b x x s x s

b x s x s x s

n n

n n

n n

2 1

2 1 1

2 2 1

1 1 2 2

1 2 2

1 1 2 2

+ =

+

+ + -

, , , , , ,

, , , , , ,

, , , , , ,

�

�

�

2 7

2 7

2 7

Fig. 1. The shaded rectangle is decomposed into three blocks.
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JUSTIFICATION. No block of size 2 1k k >1 6  starts at an odd
coordinate. Thus, the blocks of the sliced-off hyper-
plane can not be combined with the rest of the blocks
of the hyperrectangle, to form larger blocks.

Clearly, the same principle can be used if the hyperrec-
tangle ends at an odd point. Fig. 2 illustrates the slicing
principle for a two-dimensional space.

OBSERVATION 2 (Unit). If any one dimension of a hyperrec-
tangle is of unit size, then it can be covered only with
unit size blocks. Thus, the number of blocks required to
cover it is equal to its volume and is obtained as the
product of the sides, independent of position. That is:

b x s x s x x s sm n n i
i

n

1 1 2 2
1

1, , , , , , , , ,� �2 7 =

=

Õ

JUSTIFICATION. The blocks will either start or end at an odd
coordinate; thus, as in Observation 1, they cannot be
combined to form larger blocks.

OBSERVATION 3 (Shrinking). If a hyperrectangle starts and
ends at even numbers in all dimensions, then we can
make the granularity coarser, maintaining the same
number of blocks:

b x s x s x s

b x s x s x s

n n

n n

2 2 2 2 2 21 1 2 2

1 1 2 2

, , , , , ,

, , , , , ,

�

�

2 7
2 7

=

JUSTIFICATION. Every block of size 2k (k ³ 2) in the original
address space corresponds 1-to-1 to a 2k-1 block of the
“shrinked” space.

Fig. 3 gives a two-dimensional example of the idea.
The above observations, for n = 2 dimensional address

space, have been used in [21] and [8].

3 SOLUTION FOR MAGIC HYPERRECTANGLES

DEFINITION 2. A rectangle is called magic iff each side si is of the
form 2 1mi - .

LEMMA 1 (Magic hyperrectangles). If a rectangle is magic, then
the number of blocks it decomposes to is independent of
the position of the anchor:

b x x x

x x x

m m
n

m

n

n
1 2

1 2

2 1 2 1 2 11 2, , , , , ,

, , ,

- - -
�
�

�
� =

"

�

�

 

constant       2 7

PROOF. Without loss of generality, let s1 be the smallest side
of the hyperrectangle. For every dimension i, we can
apply the Slicing Observation exactly once, because
every side si is odd. After that, all the sides are even,
and the anchor points are even as well. So we can ap-
ply the Shrinking Observation; the resulting rectangle
will still be magic: for every dimension i, after slicing
and shrinking we will have a side of size: (si - 1)/2 =

2 1 1 2 2 11m mi i- - = -
-4 9 . Applying this step induc-

tively, and using the Unit Observation as the base
case, we have the required lemma. �

COROLLARY 1. For magic hyperrectangles, we have:

b s s s b x s x s x s x x xn n n n1 2 1 1 2 2 1 2, , , , , , , , , , ,,2 7 3 8 2 7= "� �      

Based on this corollary, we can quickly derive formulae
for magic rectangles, bypassing (1).

3.1 Solution for Magic Hypercubes
Consider first a magic hyperrectangle with all its sides the
same size, that is, a hypercube. Let this size be 2m 

- 1.

LEMMA 2. For a magic hypercube the number of blocks is:

b m m m n n t n

t

m

2 1 2 1 2 1 2 1 2 1
1

1

- - = - - - -

=

-

å, ,�4 9 4 9 4 9 4 9

PROOF. Independent of the position of the anchor, we “slice
off” one slice in each dimension and then shrink. Thus:

b x x

b

m
n

m

m n m n

m m

1

1 1

2 1 2 1

2 1 2 2

2 1 2 1

, , , ,

, ,

- - =

- - -

+ - -
- -

�

�

4 9

4 9 4 9

4 9

                    (2)

where the first two terms give the number of blocks
contained in the slices, and the last term calculates the
number of internal blocks. Solving this recursive rela-
tion (2) we have:

Fig. 2. Slicing from the left, when the rectangle starts at an odd point
(the left slice is more heavily shaded).

Fig. 3. Halving the granularity.
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b m m t n t n

t

m

2 1 2 1 2 1 2 2
1

- - = - - -�
�

�
�

=

å, ,�4 9 4 9 4 9         (3)

or

b m m m n n t n

t

m

2 1 2 1 2 1 2 1 2 1
1

1

- - = - - - -
=

-

å, ,�4 9 4 9 4 9 4 9

This completed the proof. �

Next, we try to find an approximation for large values
of m. Specifically, we try to relate it to the hypersurface S of
the cube. Clearly, for a magic n-d hypercube of side (2m - 1),
we have:

S n

n

m n

m n

= -

»

-

-

2 2 1

2 2

1

1

4 9
0 5

0 5 (4)

COROLLARY 2. For a magic hypercube with a large side (m @ 1),
the number of blocks is approximated by half of the hyper-
surface S, times a constant that depends on the dimension-
ality n:

b
Sm m

n

n2 1 2 1 2
2

2 1

1

1- - »
-

-

-, ,�4 9

PROOF. The tth term of (3) can be approximated by keeping
the first two terms of each binomial expansion:

2 1 2 2 2 1t n t n t nn- - - » -4 9 4 9 0 5

Adding the above terms, (3) gives

b n

n

n

m m t n

t

m

n m

n

n

n
n m

2 1 2 1 2

2

2 1
2

2 1
2

1

1

1 1

1

1

1
1

- - »

»
-

»
-

-
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- +

-

-
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å, ,�4 9 0 5

0 50 5
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From (4), we have that, for large m:

b
Sm m

n

n2 1 2 1
2

2 1 2

1

1- - »
-

-

-, ,�4 9

which completes the proof. �

We can examine some interesting cases:

• For n @ 1, the factor vanishes to one, and the average
number of blocks is approximately S/2.

• For 2d space, which is of much interest, the factor is 2;
thus the average number of blocks is approximately
the perimeter of the rectangle. More accurately, we
obtain, from (3)

b m

S m

S

m m m2 1 2 1 4 2 1 3

3

- - = - -

= -

»

,4 9 4 9

This agrees with the result of Hunter and Steiglitz
[13], stating that the number of quadtree nodes for a
polygon is proportional to its perimeter.

• Similarly, for n = 3, the factor is 4/3; working out the
details from (3), we have

b mm m m m m2 1 2 1 2 1 4 4 18 2 7 14- - - = * - * + +, ,4 9
which leads to the approximation:

b S

S

m m m2 1 2 1 2 1 2 3

2 4 3

- - - »

» *

, ,4 9

That is, for a magic cube, the average number of
blocks is <2/3 of its surface.

3.2 Extension to Any Magic Hyperrectangle
For a magic hyperrectangle, without loss of generality, let
s1 = 2m

- 1 be its smallest side. Also, let si
m di= -+2 1 where

di ³ 0. In other words, we assume that: d1 = 0.

LEMMA 3. For any magic hyperrectangle the number of blocks is:

b m m d m d

m d

i

n
n m j d

i

n

j

m

n

i i
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2 1 2 1 2 1

2

1 11

1
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- - - -
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+

=
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-
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, , ,�4 9

4 9 4 9 4 9

PROOF. Using the Slicing and Shrinking Observations as we
did for the magic hypercubes, we have:

b

b

m m d m d

m m d m d

m m d m d

m m d m d
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Solving the recursion (it bottoms after m steps), we have:

b m m d m d

t d

i

n
t d

i

n

t

m
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1 11
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or

b m m d m d

m d

i

n
n m j d

i

n

j

m

n
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1 11
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Again, we try to find an approximation for large m.

COROLLARY 3. For large m, (5) can be approximated by:

b
Sm m d m d

n

n
n2 1 2 1 2 1 2

2

2 1
2

1

1- - - » *
-

+ +
-

-, , ,�4 9

PROOF. By using a reasoning similar to that of the case of
square rectangles and by using the following expres-
sion for the hypersurface:

S s s s s sn n

m d d n m d
n ii

= * + + * * * *

» * * + + * *

- -
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1
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The tth term of (5) can be approximated using only
the first two terms of the expansion of each product.
Thus:

2 1 2 2

2 2 2 2

2 2 2

1 1

1

1 1

1

t d

i

n
t d

i

n

n t d d d

n t n m

i i

ii n

S

+

=

+

=

- * - -

- * - - *

- - - »

* * + +

» * *
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å

4 9 4 9

4 90 5

0 5 0 5

�

Adding all the above terms from t = 1 to t = m completes
the proof. �

4 PROOF OF LINEARITY

In the previous section, we solved the problem for magic
hyperrectangles. Here, we show how to solve the problem
for arbitrary rectangles using linear interpolation.

LEMMA 4. If x1 + s1 is odd, then:

b x s x s x s

b x s x s x s C

n n

n n

1 1 2 2

1 1 2 2 11

, , , , , ,

, , , , , ,

�

�

2 7
2 7

=

- +

where C1 is a constant independent of the specific values of
x1 and s1.

PROOF. The hypercubes to cover the incremental volume
(shaded part, in Fig. 4a) are forced to be no more than
one unit in the first dimension, and therefore one unit
in each dimension. The number of hypercubes required
is simply s2  ́s3 ´ ...  ́sn, by following the Unit Obser-

vation. Define C1 to be si
i

n

=

Õ
2

 to complete the proof. �

   
                                (a)                                                   (b)

Fig. 4. Illustration for Lemmas 4-5: The incremental volume (with
darker shade) results in a different number of blocks; however, the
difference does not depend on si (= s1, in this case). The rectangle
ends at (a) an odd x1 coordinate; (b) an even x1 coordinate, which is
not a multiple of 4.

LEMMA 5. If x1 + s1 is even, but not divisible by four, then:

b x s x s x s

b x s x s x s C

n n

n n

1 1 2 2

1 1 2 2 21

, , , , , ,

, , , , , ,

�

�

2 7
2 7

=

- +

where C2 is a constant independent of the specific values of
x1 and s1.

PROOF. Now, some of the hypercubes already used to cover
the hyperrectangle may be merged with the new layer
added into larger blocks, two units on the side, on the
even boundaries. The number of such mergers possi-
ble is determined solely by the size and position in
dimensions 2, ..., n and is independent of x1 and s1.
Call the number of additional blocks required C2. �

Fig. 4b illustrates the situation: The larger rectangle will
need two blocks of dimensions 2 ´ 2 and two blocks of di-
mensions 1 ´ 1, while the smaller rectangle will need five
1 ´ 1 blocks; however, the difference does not depend on
the length s1.

LEMMA 6. If x1 + s1 is divisible by 2j-1 but not by 2j, and s1 ³ 2j-1

then:

b x s x s x s

b x s x s x s C

n n

n n j

1 1 2 2

1 1 2 21

, , , , , ,

, , , , , ,

�

�

2 7
2 7

=

- +

where Cj is a constant independent of the specific val-
ues of x1 and s1.

PROOF. Similar to Lemma 5. The additional condition im-
posing a minimum limit on s1 is required since clearly
no more mergers are possible beyond the length of
the side s1. Yet, the construction in the lemma could
require mergers into blocks up to 2j-1 on the side.      �

LEMMA 7. If x1 + s1 is divisible by 2j and 2m-1 £ s1 < 2m £ 2j, then:

b x s x s x s

b x s x s x s C

n n

n n m

1 1 2 2

1 1 2 21

, , , , , ,

, , , , , ,

�

�

2 7
2 7

=

- +

where Cm is a constant independent of the specific
values of x1 and s1.

PROOF. Similar to Lemma 6. Since s1 is too small, the merger
of blocks cannot continue until a side of 2j is reached.
Instead, it stops at an earlier point, and this point is
determined by the magic points between which s1 lies
but is otherwise independent of s1 and x1.                   �

Now we are in the position to state the main theorems.

THEOREM 1. For an arbitrary hyperrectangle with sides

s s sn1 2, , ,�2 7 , where 2m-1 £ s1 < 2m
- 1, we have:

b s s s b s s s

b s s s b s s s

n n

n n

1 2 1 2

1 2 1 2

1

1

, , , , , ,

, , , , , ,

� �

� �

2 7 2 7
2 7 2 7

- - =

+ -

PROOF. Consider the expected number of hypercube blocks to
cover a hyperrectangle b s s sn1 21- , , ,�2 7 . If s1 - 1 is

increased to s1, then, following the lemmas above, the
increase in the value b2 7 is independent of the specific

value of s1, as long as a magic threshold is not crossed.

Since the value of x1 is arbitrary, independent of the

specific value of s1 we have that x1 + s1 is divisible by
two with probability 1/2, by four with probability 1/4,
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and so on. Therefore, the number of additional blocks
required is C1 with probability 1/2, C2 with probability

1/22, and so Cj with probability 1/2j, until Cm with

probability 1/2m and Cm+1 with probability 1/2m. Thus,
all cases are taken in consideration and their respective
probabilities sum to unity. Note, also, that divisibility
by higher powers of 2 does not alter the constant, and
hence we can sum all these terms into a single term.
Call this summation C:

C = C1/2 + C2/4 + ¼ + Cm/2m + Cm+1/2m                       (6)

Exactly the same summation C is obtained if s1 is now
increased to s1 + 1. Thus, the theorem is established. �

In other words, the function b s s sn1 2, , ,�2 7  is piece-wise lin-
ear on its arguments, with “break points” whenever a value
si is a magic number. Theorem 1 can be used to do linear
interpolation, as follows: Let si be the side of the rectangle
on the ith dimension, and let mi and Mi be the magic num-
bers that surround si, that is

mi = 2k - 1 £ si < 2k+1 -1 = Mi                         (7)

Then, we have:

b s s s s b s s m s

M s M m

b s s M s

s m M m

i n i n

i i i i

i n

i i i i

1 2 1 2

1 2

, , , , , , , , , ,

, , , , ,

� � � �

� �

2 7 2 7
2 7 2 7
2 7
2 7 2 7

= *

- - +

*

- - (8)

Based on that, we can compute the value of b2 7 at any
point. The next theorem gives the details.

THEOREM 2. Let R = s1 ´ s2 ... ´ sn be a hyperrectangle; let m1 and

M1 be the magic values that contain s1 (i.e., m1 = 2j 
- 1 £ s1

< 2j+1 
- 1 = M1), with similar definitions for mi and Mi.

There are 2n magic rectangles that we can generate (for

each dimension i, we have two choices: mi and Mi, for a to-

tal of 2n choices). The average number of blocks for R is de-
termined by a linear interpolation among the values of the
above 2n magic rectangles.

PROOF. Consider each dimension in turn and increase the
size from mi to Mi in steps of 1. Each step increases the
average number of blocks by the same amount, on ac-
count of Theorem 1. While Theorem 1 was established
for the first dimension, by arguments of symmetry it
holds for all other dimensions as well. Therefore, the
increase from mi to si is a linear interpolation of the in-
crease from mi to Mi. The order in which the dimen-
sions are considered is immaterial.   �

Table 2 shows the values for b2 7 for the two-
dimensional case, with boldface numbers for the magic
rectangles. Notice that the rest of the numbers can be de-
rived by linear interpolation among the four magic rectan-
gles nearest to the point of interest (e.g., for the b2 7(5, 2),
the corresponding magic rectangles are (3, 1), (3, 3), (7, 1),

(7, 3)). In the next section, we illustrate Theorem 2, deriving
the formulae for b2 7 for two-dimensional and three-
dimensional spaces. We also give some examples of how to
do the interpolation.

5 INTERESTING SPECIAL CASES: TWO- AND THREE-
DIMENSIONAL RECTANGLES

In this section, we illustrate the steps of the lemmas and
theorems of the previous section by deriving closed-form
exact formulae for the average number of blocks a two-
dimensional and a three-dimensional rectangle. Following
the steps of the previous section, we first calculate the num-
ber of blocks for any magic rectangular object, and then we
give exact formulae for any (nonmagic) rectangular object.

5.1 Two-Dimensional Rectangles
This case has been analyzed in [8]. Here, we show how
those results can be derived as special cases of the Theo-
rems and Lemmas of the previous section.

LEMMA 8. The average number of blocks b2 7 that a magic rec-
tangle in two-dimensional space decomposes into is:

b mm m d m d2 1 2 1 2 2 1 2 1 32 2- - = - + -
+,4 9 4 94 9 (9)

PROOF. From (5) we have:

b m m d
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m
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,4 9

4 9 4 9 (10)

It is sufficient to prove that the right hand parts of
relations (9) and (10) are equal. The proof follows by
induction on m. For m = 1 both sides of the equation
are equal to: 2 12 1d +

- . For m = 2 both sides are equal
to: 3 2 2 1

*
+d . We assume that the above relation holds

for m = k:
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We will prove that it holds for m = k + 1:
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It is sufficient to prove that the left-hand part of the
above equation is:

2 2 1 2 1 3 1

2 2 1 2 1 3 2 1 2 1

2 2 2 2

1

1 1
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2 2

2

k d

k d k k d

k k d

k
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+

+ + +

+ + +

- + - + =

- + - + - - -

- -

4 94 9 1 6

4 94 9 4 94 9

4 94 9
After some simple algebra, we derive that the above
lemma holds. �
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Table 2 gives the average number of blocks a rectangle is
decomposed into, when its sides s1 and s2 are smaller than
nine. The entries were calculated by exhaustive enumera-
tion, using the definition of (1). Entries corresponding to
magic rectangles are in boldface. The remaining entries can
be derived by a linear interpolation among the appropriate
magic rectangles. Next, we illustrate how the linear inter-
polation is done:

EXAMPLE 1. The entry for s1 = 3, s2 = 4 is computed as fol-

lows: s1 is already a magic number; for s2, the enclos-

ing magic numbers are 3(=22 -1) and 7(=23 - 1). Thus,
we need to interpolate only on the second axis:

b b b3 4 3 3 7 4 7 3 3 7 4 3 7 3

1
7 3 6 3 12 1

7

, , ,

.5

2 7 2 7 0 5 0 5 2 7 0 5 0 5

2 7

= * - - + * - -

=
-

* + *

=

EXAMPLE 2. Consider the entry b 7 4,2 7  (underlined in Table 2).
Again, s1 = 7 is a magic number; the s2 number is sur-
rounded by the magic numbers 3 and 7. Thus, we
need to interpolate only on the second axis:

b b b7 4 7 3 7 4 7 3 7 7 4 3 7 3

1
7 3 12 3 19 1

13 75

, , ,

.

2 7 2 7 0 5 0 5 2 7 0 5 0 5

2 7

= * - - + * - -

=
-

* + *

=

EXAMPLE 3. Consider the entry b 4 4,2 7  (doubly underlined,
in Table 2). The enclosing magic numbers for both
axis are “3” and “7.” The interpolation would give

b b b

b b

4 4 3 3
7 4
7 3

7 4
7 3 3 7

7 4
7 3

4 3
7 3

7 3
4 3
7 3

7 4
7 3 7 7

4 3
7 3

4 3
7 3

1
7 3 7 3

6 3 3 12 3 1

12 1 3 19 1 1

, , ,

, ,

(

)

2 7 2 7 2 7

2 7 2 7

0 5 0 5
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-

-
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-

-
+ *

-

-
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-

+ *
-

-
*

-

-
+ *

-

-
*

-

-

=
- * -

* * + * * +

* * + * *

= + + +

=

1
16 54 36 36 19

9 0625

0 5

.

Equivalently, we could have done a linear interpola-
tion among the values b 3 4,2 7  and b 7 4,2 7 , that we
have already computed in Examples 1 and 2:

b b b4 4 3 4 7 4 7 3 7 4 4 3 7 3

9 0625

, , ,

.
2 7 2 7 0 5 0 5 2 7 0 5 0 5= * - - + * - -

=

Next, we trace the steps of the proof of Theorem 1, giving a
closed formula for the constant C.

LEMMA 9. Given that the rectangle with sides (s1, s2) is magic,
then the average number of blocks for a rectangle with sides
(s1 + 1, s2) is:

b s s b s s m d
1 2 1 2

21 2 3 2 22+ = + - * ++ - -, ,2 7 2 7 max max

where max = ëlog(min(s1 + 1, s2))û, log is the base-2 loga-

rithm and si
m di= -+2 1.

PROOF. See Appendix A. �

It is evident that in a two-dimensional space the constant C
of Theorem 1 is given by:

C m d= - * ++ - -2 3 2 22 2max max

We can rewrite this expression as:

s2
21 2 3 2 2+ * - * +- -2 7 max max                     (11)

from which we can see that this constant C is independent
of x1, s1. We use the symbol C(si) to emphasize the depend-
ency on si: Thus:

C s si i2 7 2 7= + * - * +- -1 2 3 2 22max max              (12)

5.2 Three-Dimensional Rectangles
In this subsection, we examine the case of a parallelepiped
and we derive a formula for the constant C of Theorem 2.

LEMMA 10. The average number of blocks that a magic parallele-
piped decomposes into is:

TABLE 2
 NUMBER OF BLOCKS FOR TWO-DIMENSIONAL RECTANGLES

s2 1 2 3 4 5 6 7 8

s1

1 1 2 3 4 5 6 7 8

2 2 3.25 4.5 5.75 7 8.25 9.5 10.75

3 3 4.5 6 7.5 9 10.5 12 13.5

4 4 5.75 7.5 9.0625  10.625 12.1875 13.75 15.3125

5 5 7 9 10.625 12.25 13.875 15.5 17.125

6 6 8.25 10.5 12.1875 13.875 15.5625 17.25 18.9375

7 7 9.5 12 13.75 15.5 17.25 19 20.75

8 8 10.75 13.5 15.3125 17.125 18.9375 20.75 22.515625

Notes: Magic rectangles are in boldface. The underlined entries are examined in the examples.
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PROOF. By induction on m.                                                       �

LEMMA 11. Given that three-dimensional parallelepiped with

sides (s1, s2, s3) is magic, then the average number of blocks

for a parallelepiped with sides (s1 + 1, s2, s3) is:

b s s s b s s s m d d

m d d

1 2 3 1 2 3
2 3

1 2

2

8
7
3 2 2 2 2 2

7
9 2

7
6

2
9

2 3

2 3

+ = + +

- + - + -
�
��

�
��

+

+ + -

+ - -

1, , , ,2 7 2 7

4 9 4 9

max

max max max max

where max = ëlog(min(s1 + 1, s2, s3))û and, as before,

s ii
m di= - =+2 1 1 2 3, ,2 7.

PROOF. See Appendix B. �

From Lemma 11, we understand why the constant C of
Theorem 1 is a quantity independent of s1. However, we
observe that it depends on the other two sides s2 and s3.
This is the reason why for the case of a three-dimensional
space we have to denote this quantity as C(si, sj), where:

C s s s s s si j i j i j,4 9 2 7 4 9 4 9

4 9

= + * + * + + + *

- +
�
��

�
��

- + +

-

- + -

1 1 2 2

7
9 2

7
6

2
9

7
3 2 2 8

3

2 1

max

max max maxmax (13)

Table 3 gives the average number of blocks a parallelepiped
is composed of, when its sides are smaller than 6. Entries in
boldface correspond to magic parallelepipeds. All the en-
tries have been computed using exhaustive enumeration,
from the definition of (1).

6 DISCUSSION AND CONCLUSIONS

We have examined the problem of determining the number
of quadtree blocks that an n-dimensional rectangle will be
decomposed into on the average. There are two interesting
observations:

• Our approach (Theorem 2 and (5)) generalizes all the
older approaches on two-dimensional rectangles [6],
[8], [20]. For n = 2 dimensions, our formula reduces to
the corresponding formula of [8], which was shown
to include the formulas in [6], [20] for the average
number of blocks.

• It generalizes the observation of Hunter and Steiglitz
[13] that the expected number of quadtree blocks is
proportional to the perimeter of the polygon. Our for-
mula shows that, for two-dimensional rectangles, the
expected number of quadtree blocks is approximately
the perimeter of the rectangle, while for higher dimen-
sionalities n @ 1, it is roughly half of the hypersurface.

The contributions of this paper are both practical and
theoretical. From the practical point of view, the number of
quadtree blocks of a decomposition is important, because it
determines the number of nodes that a main-memory-
based quadtree will require; the number of entries in a lin-
ear quadtree that will be required; also, the number of
pieces that a range query will be decomposed into (which
will be proportional to the response time for this query).

From the theoretical point of view, it proposes a methodol-
ogy which we believe will be useful in the analysis of other
quadtree-related methods (e.g., methods using space-filling
curves, such as the z-ordering [17], Gray codes [7], or the Hil-
bert curve [10]). The methodology consists of two steps:

Step 1 Solve the problem for the “magic” rectangles
(which is easy)
Step 2 Show that the formula for an arbitrary rectan-
gle can be derived by linear interpolation from suit-
able “magic” rectangles.

Future work includes the extension of this method for
the analysis of rectilinear polygons (including concave
ones), as well as the analysis for space filling curves for
two-dimensional and n-dimensional spaces.

APPENDIX A
LEMMA FOR THE TWO-DIMENSIONAL CASE

LEMMA 9. Given that the rectangle with sides (s1, s2) is magic,
then the average number of blocks for a rectangle with sides
(s1 + 1, s2) is:

b s s b s s m d
1 2 1 2

21 2 3 2 22+ = + - * ++ - -, ,2 7 2 7 max max

TABLE 3
NUMBER OF BLOCKS

FOR THREE-DIMENSIONAL PARALLELEPIPEDS

s2 1 2 3 4 5

s1
s3

1 2 3 4 5 1
2 4 6 8 10 2

1 3 6 9 12 15 3
4 8 12 16 20 4
5 10 15 20 25 5
2 4 6 8 10 1
4 7.125 10.25 13.375 16.5 2

2 6 10.25 14.5 18.75 23 3
8 13.375 18.75 24.125 29.5 4
4 16.5 23 29.5 36 5
3 6 9 12 15 1
6 10.25 14.5 18.75 23 2

3 9 14.5 20 25.5 31 3
12 18.75 25.5 32.25 39 4
15 23 31 39 47 5
4 8 12 16 20 1
8 13.375 18.75 24.125 29.5 2

4 12 18.75 25.5 32.25 39 3
16 24.125 32.25 40.265625 48.28125 4
20 29.5 39 48.28125 57.5625 5
5 10 15 20 25 1
10 16.5 23 29.5 36 2

5 15 23 31 39 47 3
20 29.5 39 48.28125 57.5625 4
25 36 47 57.5625 68.125 5

Magic parallelepipeds are in boldface.



FALOUTSOS ET AL.: ANALYSIS OF THE N-DIMENSIONAL QUADTREE DECOMPOSITION FOR ARBITRARY HYPERRECTANGLES 381

where max = ëlog(min(s1 + 1, s2))û.

PROOF. First, let’s assume that the rectangle does not wrap
around the edges (x1 + s1, x2 + s2 £ K). With probability
1/2 we have: (x1 + s1 + 1) mod 2 ¹ 0 (the end point in
the first dimension is an odd number). Then, accord-
ing to the Slicing and Unit Observations, the new
number of blocks is:

b x s x s b s s s( , + , , ) =  1 1 2 2 1 2 21 ,2 7 +

With probability equal to 1/4 we have: (x1 + s1 + 1) mod
2 = 0 but (x1 + s1 + 1) mod 4 ¹ 0. Then:

b x s x s b s s s

x s x

1 1 2 2 1 2 2

2 2 2 1 1

1

2 2 2 2 1
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+ -

2 7 2 7

4 9 (14)

The product in the previous relation stands for the
number of blocks we have to subtract because merg-
ings have been performed. The first two terms in the
second parenthesis respectively stand for the number
of pixels of the original magic rectangle (21) and for
the number of the pixels of the additional slice (21)
that merge in one 2 ´ 2 block. Thus, the third term in
the parenthesis (i.e., -1) stands for the greater formed
block we have to take into account. The first paren-
thesis of the product gives the number of greater
blocks that may be formed.

Since s2 is an odd integer (of the form 2 12m d+ - ), it
is easily verifiable that:
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Thus, relation (14) becomes:
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With probability equal to 1/8 we have: (x1 + s1 + 1) mod
4 = 0 but (x1 + s1 + 1) mod 8 ¹ 0. Then:
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Since: 2 2 2 1
1

j i
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å 4 9 , the above relation becomes:
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Suppose that: 8 £ min(s1 + 1, s2) < 16. Then, with prob-
ability equal to 1/8, we have: (x1 + s1 + 1) mod 4 = 0
and (x1 + s1 + 1) mod 8 = 0. Thus:
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Following this reasoning, similar expressions can be
derived for large values of s1, s2 and such that K/2 <
min(s1 + 1, s2) £ K, "K = 2k.
Secondly, suppose that the rectangle wraps around in
one dimension only (i.e., x2 + s2 > K). Then, expres-
sion (14) should be rewritten as:
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However, the latter expression may be reduced to (15).
This way, the set of equations derived by assuming
that the rectangle wraps around only one edge re-
duces to the set of equations produced to describe the
no-wrapping rectangle. The same result holds even if
the rectangle wraps around both edges.

Thus, by considering all the positions possibly
taken by the end point in the 1st dimension, we con-
clude to the following expression:
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which is averaged and independent of the anchor
point (x1, x2). Since: s m d

2 2 12= -+ , the floor functions
are simplified to unity and after some algebra on
geometric series the lemma is proved. Notice, also,
that if d2 > 0 then max = log(s1 + 1) = m, whereas if d2 = 0
then max = log(s2) = m - 1. �

APPENDIX B
LEMMA FOR THE THREE-DIMENSIONAL CASE

LEMMA 11. Given that three-dimensional parallelepiped with
sides (s1, s2, s3) is magic, then the average number of blocks
for a parallelepiped with sides (s1 + 1, s2, s3) is:



382 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  9,  NO.  3,  MAY/JUNE  1997
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where max = ëlog(min(s1 + 1, s2, s3))û and, as before,

s ii
m di= - =+2 1 1 2 3, ,2 7 .

PROOF. We follow the same reasoning as for the case of
Lemma 9. If (x1 + s1+ 1) mod 2 ¹ 0 (which may happen
with probability 1/2), then according to the Slicing
and Unit Observations we calculate the new number
of blocks to be:
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If (x1 + s1 + 1) mod 2 = 0 but (x1 +s1 + 1) mod 4 ¹ 0,
then with probability equal to 1/4 we have:
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In an analogous manner, with probability equal to
1/8 (for the case (x1 + s1 + 1) mod 4 = 0 but (x1 + s1 + 1)
mod 8 ¹ 0), we have:
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Thus, by generalizing and considering all the posi-
tions possibly taken by the end point in the first di-
mension, we conclude to the following expression:
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which is averaged and independent of the anchor
point (x1, x2, x3). After some algebra the expression of
the lemma follows. �

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees,
and especially referees #4 and #7, for their extremely careful
review of the paper and their perceptive feedback. The
work of Christos Faloutsos was partially supported by the
National Science Foundation (IRI-8958546 and IRI-9205273),
with matching funds from EMPRESS Software Inc. and

Thinking Machines Inc. The work of Yannis Manolopoulos
was performed with the Dept. of Computer Science and the
Inst. for Systems Research (ISR) at the University of Mary-
land, College Park, MD.

REFERENCES

[1] W.G. Aref and H. Samet, “Optimization Strategies for Spatial
Query Processing,” Proc. VLDB (Very Large Date Bases), pp. 81-90,
Sept. 1991.

[2] M. Arya, W. Cody, C. Faloutsos, J. Richardson, and A. Toga,
“Qbism: Extending a dbms to Support 3d Medical Images,” Proc.
10th Int’l Conf. Data Eng. (ICDE), pp. 314-325, Feb. 1994.

[3] D. Ballard and C. Brown, Computer Vision. Prentice Hall, 1982.
[4] J.L. Bentley, “Multidimensional Binary Search Trees Used for Asso-

ciative Searching,” Comm. ACM, vol. 18, no. 9, pp. 509-517, Sept.
1975.

[5] Mathematical Committee on Physical and NSF Engineering Sci-
ences, Grand Challenges: High Performance Computing and Commu-
nications, National Science Foundation, 1992. The FY 1992 U.S. Re-
search and Development Program.

[6] C.R. Dyer, “The Space Efficiency of Quadtrees,” Computer Graph-
ics and Image Processing, vol. 19, no. 4, pp. 335-348, Aug. 1982.

[7] C. Faloutsos, “Gray Codes for Partial Match and Range Queries,”
IEEE Trans. Software Eng., vol. 14, no. 10, pp. 1,381-1,392, Oct.
1988. Early version available as UMIACS-TR-87-4, also CS-TR-
1796.

[8] C. Faloutsos, “Analytical Results on the Quadtree Decomposition
of Arbitrary Rectangles,” Pattern Recognition Letters, vol. 13, no. 1,
pp. 31-40, Jan. 1992.

[9] C. Faloutsos and Y. Rong, “Dot: A Spatial Access Method Using
Fractals,” Proc. IEEE Conf. Data Eng., pp. 152-159, Kobe, Japan,
Apr. 1991. Early version available as UMIACS-TR-89-31, CS-TR-
2214.

[10] C. Faloutsos and S. Roseman, “Fractals for Secondary Key Re-
trieval, Proc. Eighth ACM SIGACT-SIGMOD-SIGART Symp. Prin-
ciples of Database Systems (PODS), pp. 247-252, Mar. 1989. Also
available as UMIACS-TR-89-47 and CS-TR-2242.

[11] R.A. Finkel and J.L. Bentley, “Quadtrees: A Data Structure for
Retrieval on Composite Keys,” ACTA Information, vol. 4, no. 1,
pp. 1-9, 1974.

[12] K. Hinrichs and J. Nievergelt, “The Grid File: A Data Structure to
Support Proximity Queries on Spatial Objects,” Proc. WG’83 (Int’l
Workshop Graph Theoretic Concepts in Computer Science), pp. 110-
113, 1983.

[13] G.M. Hunter and K. Steiglitz, “Operations on Images Using Quad
Trees,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 1,
no. 2, pp. 145-153, Apr. 1979.

[14] H.V. Jagadish, “Linear Clustering of Objects with Multiple At-
tributes,” Proc. ACM SIGMOD Conf., pp. 332-342, May 1990.

[15] H.V. Jagadish, “Spatial Search with Polyhedra,” Proc. Sixth IEEE
Int’l Conf. Data Eng., Feb. 1990.

[16] C.P. Kolovson and M. Stonebraker, “Segment Indexes: Dynamic
Indexing Techniques for Multi-Diminsional Interval Data,” Proc.
ACM SIGMOD, pp. 138-147, May, 1991.

[17] J. Orenstein, “Spatial Query Processing in an Object-Oriented
Database System,” Proc. ACM SIGMOD, pp. 326-336, May 1986.

[18] J.A. Orenstein and F.A. Manola, “Probe Spatial Data Modeling
and Query Processing in an Image Database Application,” IEEE
Trans. Software Eng., vol. 14, no. 5, pp. 611-629, May 1988.

[19] Y. Rong and C. Faloutsos, “Analysis of the Clustering Property of
Peano Curves,” Technical Report CS-TR-2792, UMIACS-TR-91-
151, Univ. of Maryland, Dec. 1991.

[20] C.A. Shaffer, “A Formula for Computing the Number of Quadtree
Node Fragments Created by a Shift,” Pattern Recognition Letters,
vol. 7, no. 1, pp. 45-49, Jan. 1988.

[21] C.A. Shaffer, H. Samet, and R.C. Nelson, “Quilt: A Geographic
Information System Based on Quadtrees,” Technical Report CS-
TR-1885.1, Univ. of Maryland, Dept. of Computer Science, July
1987.

[22] M. White, “N-Trees: Large Ordered Indexes for Multi-
Dimensional Space,” Application Mathematics Research Staff,
Statistical Research Div., U.S. Bureau of the Census, Dec. 1981.



FALOUTSOS ET AL.: ANALYSIS OF THE N-DIMENSIONAL QUADTREE DECOMPOSITION FOR ARBITRARY HYPERRECTANGLES 383

Christos Faloutsos  received the BSc degree in
electrical engineering (1981) from the National
Technical University of Athens, Greece, and the
MSc and PhD degrees in computer science from
the University of Toronto, Canada. He is an asso-
ciate professor in the Department of Computer
Science at the University of Maryland, College
Park. In 1989, he received the Presidential Young
Investigator Award from the National Science
Foundation. His research interests include physi-
cal database design, searching methods for text,

geographic information systems, and indexing methods for medical
and multimedia databases. He is a member of the IEEE.

H.V. Jagadish  received his PhD from Stanford
University in 1985, and since then, has been with
the Computing Systems Research laboratory at
AT&T Bell Laboratories in Murray Hill, New Jer-
sey. His research interests include the manage-
ment of multimedia information and the use of
database technology for communications net-
works. He is a member of the IEEE.

Yannis Manolopoulos  received his five-year
diploma in electrical engineering and his PhD
degree in computer engineering from the Aris-
totle University in Thessaloniki, Greece, in
1981 and 1986, respectively. He has been on
the academic staff at Aristotle University since
1987 and is currently an associate professor
with the Department of Informatics. He spent
two sabbatical years at the University of To-
ronto, Canada, and the University of Maryland
at College Park. He is co-author of more than

50 articles in refereed journals and conference proceedings. He is
also the author of two textbooks (in Greek) on data structures and
file structures which are recommended in the vast majority of Com-
puter Science/Engineering departments in Greece. His research
interests include multimedia, spatial, temporal, and text databases.
He is a member of the ACM, IEEE Computer Society, Greek Com-
puter Society, and Technical Chamber of Greece.


