
A Data Mining Algorithm
for Generalized Web Prefetching

Alexandros Nanopoulos, Dimitrios Katsaros, and

Yannis Manolopoulos, Member, IEEE Computer Society

Abstract—Predictive Web prefetching refers to the mechanism of deducing the forthcoming page accesses of a client based on its

past accesses. In this paper, we present a new context for the interpretation of Web prefetching algorithms as Markov predictors. We

identify the factors that affect the performance of Web prefetching algorithms. We propose a new algorithm called WMo, which is

based on data mining and is proven to be a generalization of existing ones. It was designed to address their specific limitations and its

characteristics include all the above factors. It compares favorably with previously proposed algorithms. Further, the algorithm

efficiently addresses the increased number of candidates. We present a detailed performance evaluation of WMo with synthetic and

real data. The experimental results show that WMo can provide significant improvements over previously proposed Web prefetching

algorithms.

Index Terms—Prefetching, prediction, Web mining, association rules, data mining.

�

1 INTRODUCTION

IN recent years, the Web has become the primary means
for information dissemination. It is being used for

commercial, entertainment, or educational purposes, and,
thus, its popularity resulted in heavy traffic in the Internet.
Since the Internet capacity is not keeping pace, the net effect
of this growth was a significant increase in the user
perceived latency, that is, the time between when a client
issues a request for a document and the time the response
arrives. Potential sources of latency are the Web servers’
heavy load, network congestion, low bandwidth, band-
width underutilization, and propagation delay.

An obvious solution would be to increase the bandwidth.
This does not seem a viable solution since the Web’s
infrastructure (Internet) cannot be easily changed, without
significant economic cost. Apart from this cost, higher
bandwidth would ease users to create more sophisticated
and “heavy” documents, “choking” again the network.
Moreover, propagation delay cannot be reduced beyond a
certain point since it depends on the physical distance
between the communicating end points.

The first solution that was investigated toward the
reduction of latency was the caching of Web documents at
various points in the network (client, proxy, server) [5], [10],
[37]. Caching capitalizes on the temporal locality [23].
Effective client and proxy caches reduce the client perceived
latency, the server load, and the number of traveling
packets, thus increasing the available bandwidth. Several
caching policies have been proposed during the previous
years, especially for proxy servers [5], [10], [37]. Never-
theless, the benefits reaped due to caching can be limited
[25] when Web resources tend to change very frequently,

resources cannot be cached (dynamically generated Web
documents), they contain cookies (this issue matters only
caching proxies), and when request streams do not exhibit
high temporal locality. The negative effects of the first
problem can be partially alleviated by employing some,
though costly, cache consistency mechanism [13]. The
second problem could be addressed by enhancing the
cache with some of the respective server’s query processing
capabilities, so as to perform the necessary processing on
data [16]. The third and fourth problems seem to not be
tackled by caching at all.

As a further improvement in the situation, the technique
of prefetching has been investigated. Prefetching refers to
the process of deducing a client’s future requests for Web
objects and getting those objects into the cache, in the
background, before an explicit request is made for them.
Prefetching capitalizes on the spatial locality, that is,
correlated references for different documents present in
request streams [1], and exploits the client’s idle time, i.e.,
the time between successive requests. The main advantages
of employing prefetching is that it prevents bandwidth
underutilization and hides part of the latency. On the other
hand, an overaggressive scheme may cause excessive
network traffic. Additionally, without a carefully designed
prefetching scheme, several transferred documents may not
be used by the client at all, thus wasting bandwidth.
Nevertheless, an effective prefetching scheme, combined
with a transport rate control mechanism, can shape the
network traffic, reducing significantly its burstiness and,
thus, can improve the network performance [9].

In general, there exist two prefetching approaches.
Either the client will inform the system about its future
requirements [32] or, in a more automated manner and
transparently to the client, the system will make predic-
tions based on the sequence of the client’s past references
[12], [33]. The first approach is characterized as informed
prefetching and concentrates around the ideas developed
as part of the so-called Transparent Informed Prefetching [32],
where the application discloses its exact future requests

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003 1155

. The authors are with the Department of Informatics, Artistotle University,
Thessaloniki, 54124 Greece.
E-mail: {alex, dimitris, manolopo}@delab.csd.auth.gr.

Manuscript received 4 Oct. 2000; revised 4 May 2001; accepted 6 Nov. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 113950.

1041-4347/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

and the system is responsible for bringing the respective
objects into the buffer. In the design of a prefetching
scheme for the Web, its specialties must be taken into
account. Two characteristics seem to heavily affect such a
design: 1) the client server paradigm of computing the Web
implements and 2) its hypertextual nature. Therefore,
informed prefetching seems inapplicable in the Web since
a user does not know in advance its future requirements,
due to the “navigation” from page to page by following the
hypertext links. Source anticipation [38], [24], [18], i.e., the
prefetching of all (or some part thereof) of the embedded
links of the document, may work in some cases, but seems
inappropriate in general, because there is no a priori
information about which of a large set of embedded links
the client is likely to request. On the other hand, the second
approach, called predictive prefetching, is more viable,
especially under the assumption that there is sufficient
spatial locality in client requests because such a prefetching
method could use the history of requests to make
predictions.

Existing predictive prefetching algorithms examined in
database, file systems, and recently on the Web can be
categorized into two families: 1) those that use a graph,
called Dependency Graph (DG), to hold the patterns of
accesses [21], [33] and 2) those that use a scheme adopted
from the text compression domain [12], [19], [34], called
Prediction by Partial Match (PPM). Related work is described
in detail in Section 3.

1.1 Motivation

Existing Web prefetching schemes differ from the corre-
sponding ones proposed in the context of file systems only
because they use techniques for the identification of user
sessions. For the core issue in prefetching, i.e., prediction of
requests, existing algorithms from the context of file-
systems have been utilized. Consequently, existing Web
prefetching algorithms do not recognize the specialized
characteristics of the Web. More precisely, two important
factors (identified in the present work) are:

. The order of dependencies among the documents of
the patterns.

. The interleaving of documents which belong to
patterns, with random visits within user sessions
(i.e., noise).

These factors arise from both the contents of the documents
and the site’s structure (the links among documents) and
are described as follows:

The choice of forthcoming pages can depend, in general,
on a number of previously visited pages (see Section 2.2).
The DG and the 1-order PPM algorithms consider only first
order dependencies. Thus, if several past visits have to be
considered and there exist patterns corresponding to higher
dependencies, these algorithms do not take them into
account in making their predictions. On the other hand,
higher-order PPM algorithms use a constant maximum
value for the considered orders. However, no method for
the determination of the maximum order is provided in
[34], [19]. A choice of a small maximum may have a similar
disadvantage as in the former case, whereas a choice of a
large maximum may lead to unnecessary computational
cost, due to the maintenance of a large number of rules.

A Web user, obeying the navigation model of Section 2.2,

may follow, within a session, links to pages that belong to

one of several patterns. However, during the same session,

the user may also navigate to other pages that do not belong

to this pattern (or that may not belong to any pattern at all).

Hence, a user session can contain both documents belong-

ing to patterns and others that do not, and these documents

are interleaved in the session. However, PPM prefetchers

(of one or higher order) consider only subsequences of

consecutive documents inside sessions. On the other hand,

the DG algorithm does not require the documents, which

comprise patterns, to be consecutive in the sessions.

However, since the order of the DG algorithm is one, only

subsequences with two pages (not necessarily consecutive

in the sessions) are considered.
Consequently, none of the existing algorithms considers

all the previously stated factors. Moreover, they have not

yet been tested comparatively in order to examine the

impact of these factors. This comparison requires the

definition of a formal context for the description of existing

approaches and the development of a new algorithm that

considers all the factors.

1.2 Paper Contribution

In this paper, we focus on predictive prefetching. First, we

identify two factors, i.e., the order of dependencies between

page accesses and the noise which affects the method for

calculating the appearance frequencies of user access

sequences that characterize the performance of predictive

Web prefetching algorithms. According to these factors, we

present a framework which is used to describe prefetching

algorithms in terms of Markov predictors. This framework

allows for the formal examination of existing Web prefetch-

ing algorithms and the identification of equivalences or

differences among them. Additionally, we develop a new

algorithm that is formally proven to be a generalization of

existing ones. An extensive analytical and experimental

comparison of all algorithms, for the first time (the

performance of existing algorithms have been examined

only independently), indicates that the proposed algorithm

outperforms existing ones by combining their advantages

without presenting their deficiencies. Hence, the main

contributions of this paper can be summarized as:

. a novel framework for a formal and unified
description of Web prefetching algorithms,

. a new Web prefetching algorithm that generalizes
existing ones, and

. a detailed (analytical and experimental) comparison
of all algorithms.

The rest of the paper is organized as follows: Section 2

presents the necessary background information regarding

the technique of prefetching and describes a model that

characterizes the Web user navigation. Section 3 reviews

related work and outlines the motivation of this work.

Section 4 presents a framework for the unified treatment of

all Web prefetching algorithms and Section 5 describes the

proposed algorithm. Section 6 provides the experimental

results and, finally, Section 7 contains the conclusions.

1156 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

2 BACKGROUND

2.1 Mechanism of Predictive Prefetching

Deduction of future references on the basis of predictive
prefetching can be implemented by having an engine
which, after processing the past references, derives the
probability of future access for the documents accessed so
far. The prediction engine can reside either in the client or in
the server side. In the former case, it uses the set of past
references to find correlations and initiates prefetching. No
modifications need to be made to the current Web
infrastructure (e.g., HTTP protocol, Web servers) nor to
Web browsers if the prefetcher module runs as a proxy in
the browser [24]. The main limitation of this approach is
that the clients, in general, lack sufficient information to
discover the correlations between documents since their
requests cover a broad range of Web servers and an even
broader range of documents. On the other hand, Web
servers are in better position to make predictions about
future references since they log a significant1 part of
requests by all Internet clients for the resources they own.

The main drawback of the latter approach is that
additional communication between the server and the
client is needed in order to realize the prefetching scheme.
This scheme can be implemented by either the dissemina-
tion of predicted resources to the client [7] or exchange of
messages between server and clients, having the server
piggybacking information about the predicted resources
onto regular response messages, avoiding establishment of
any new TCP connections [11]. Such a mechanism has been
implemented in [11], [18] and seems the most appropriate
since it requires relatively few enhancements to the current
request-response protocol and no changes to the HTTP 1.1
protocol.

In what follows in this article, we assume that there is a
system implementing a server-based predictive prefetcher,
which piggybacks its predictions as hints to its clients. Fig. 1
illustrates how such an enhanced Web server could
cooperate with a prefetch engine to disseminate hints every
time a client requests a document of the server.

2.2 User Navigation Model

The way users navigate in a Web site depends not only
on their interests, but also on the site structure. More
precisely, a user, who has currently selected document D,
chooses the document to visit next mainly among the set
of the links contained in D [22]. This choice, in general, is
based on the previously visited documents (i.e., D and

any other documents visited before D). Otherwise, the
user is randomly exploring the site, not seeking for
particular information. The former case induces depen-
dencies between the visited documents of the site. If these
dependencies correlate only pairs of documents, then they
are called first order dependencies, otherwise, they are
called higher order dependencies. This model of user
navigation describes a Markovian process over the graph,
whose nodes are the documents of the site and arcs are
the links between the documents.

Users that are not randomly exploring a Web site usually
visit pages according to a pattern. Therefore, a user access
sequence contains pages that belong to one of several
patterns. However, a user may visit other pages, as well,
that do not belong to the pattern. Consequently, a user
access sequence may contain pages which belong to a
pattern and several other pages between them that do not.

The length of user access sequences, the dependencies
between accesses, and the existence of page accesses (inside
the sequences) that do not belong to patterns are parameters
which depend on the type of the Web site. In small sites, the
impact of these parameters may be small due to the limited
navigational alternatives. In contrast, large sites, i.e., with a
large number of documents and fairly high connectivity
(that resemble the traditional hypertext databases), present
navigational alternatives, hence, the impact of these para-
meters is significant. These kind of sites are expected to
become more popular in the years to come when the site
creation and maintenance process will become more
automated by using tools like Araneus [2] and Strudel
[20], that automatically generate sites based on the contents
of underlying databases and find applications in service
providing, like e-commerce. Since the performance require-
ments for this type of Web sites are significantly increased,
prefetching can be very beneficial for them.

3 RELATED WORK

Research on predictive Web prefetching has involved the
important issue of log file processing and the determination
of user transactions (sessions) from it.2 Several approaches
have been proposed toward this direction [14], [15]. Since it
is a necessary step for every Web prefetching method, more
or less similar approaches on transaction formation from
log files have been proposed in [33], [34], [26]. However, the
most important factor of any Web prefetching scheme is the
prediction algorithm, which is used to determine the actual
documents to be prefetched.

The prediction scheme described in [33] uses a
prefetching algorithm proposed for prefetching in the
context of file systems [21]. It constructs a data structure,
called Dependency Graph (DG), which maintains the
pattern of access to different documents stored at the
server. Fig. 2a illustrates an example of a dependency
graph. The graph has a node for each document that has
ever been accessed. There is an arc from node X to node
Y (nodes correspond to documents), if and only if at
some point in time, Y was accessed within w accesses
after X, where w is the lookahead window, and both

NANOPOULOS ET AL.: A DATA MINING ALGORITHM FOR GENERALIZED WEB PREFETCHING 1157

1. They only miss the requests satisfied by browser or proxy caches. 2. This issue is not required for prefetching in the context of file systems.

Fig. 1. Proposed architecture of a prediction-enabled Web server.

accesses were done by the same client. The weight on the
arc is the ratio of the number of accesses from X to Y , to
the number of accesses to X itself. The accuracy of
prefetching is controlled with a user-defined cut-off
threshold for the weights. For a complete description of
the scheme, see [21], [33]. From the above description, it
follows that DG considers only first-order dependencies.

The work described in [7] uses essentially the Dependency
Graph, but makes predictions by computing the transitive
closure of this graph. This method was tested and did not
show significantly better results compared to the Depen-
dency Graph. Moreover, it is very demanding in terms of
computational time cost due to the closure calculation
(which requires complexity of Oðn3Þ, where n is the number
of vertices). This renders the method practically inapplic-
able for Web sites consisting of many pages.

The scheme described in [34], [19] also uses a prefetching
algorithm from the context of file systems [12]. It is based on
the notion of an m-order Prediction-by-Partial-Match (PPM)
predictor. An m-order PPM predictor maintains Markov
predictors of order j, for all 1 � j � m (cf., Section 4.1). This
scheme is also called All-m-Order Markov model [17]. A
j-order Markov predictor uses the preceding j “events” to
calculate the probability of the next one to come. Fig. 2b
illustrates a 2-order PPM predictor, where paths emanate
from the tree root with maximum length equal to
mþ 1ð¼ 3Þ. Each root emanating path or subpath corre-
sponds to a distinct sequence of requests seen so far. Each
node of a path corresponds to a document of the server. The
number associated with each node depicts the number of
times this node was requested, after all nodes before it in
the path, were requested. A user-defined cut-off threshold
controls the documents that will be prefetched, with respect
to the numbers in the corresponding nodes. More particu-
larly, the approach in [19] is applied in the context of
modem links, where prefetching is exploited only during
idle modem time, in a more aggressive manner. For a
complete description of the scheme, see [12], [34], [19]. Since
PPM predictors use the preceding document accesses, they
consider subsequences of consecutive documents within
request streams. Hence, the way that the probability of
patterns is counted by PPM is based on the assumption that
they consist of documents which form consecutive sub-
sequences within the pattern.

Recently, several algorithms have been proposed for
mining patterns from Web logs [15], [8], [14], [31], [29].
Although these patterns can be characterized as descriptive
since they indicate regularities discovered from user access
information, algorithms for Web log mining and for
predictive Web prefetching share the common objective of
determining statistically significant user access sequences,
i.e., access patterns. The Web prefetching strategy proposed
in [26] develops a specialized association rule mining
algorithm to discover the prefetched documents. It dis-
covers dependencies between pairs of documents (associa-
tion rules with one item in the head and one item in the
body). The counting of support is done differently than in
[3] since the ordering of documents is considered. Only
consecutive subsequences (of length two) inside a user
transaction are supported. For instance, the user transaction
ABCACBD supports the subsequences: AB, BC, CA, AC,
CB, and BD. Moreover, this algorithm uses support and
confidence pruning criteria and maintains only rules with
the highest confidence, for each rule head.3 For the purpose
of rule activation, i.e., the determination of prefetched
documents after a given document request, the algorithm in
[26] invokes a search to the rules that have been discovered.
More particularly, in case document Di is requested and
there exists a rule Di) Dj, then Dj is prefetched.
Additionally, if a rule Dj) Dk exists, then Dk can be also
prefetched. The depth to which this search is continued
during the activation of rules is specified by a user-defined
parameter (called pushed-length [26]). However, this recur-
sive activation presents an increase in the network traffic, as
the experimental results in [26] illustrate. In [26], differently
from other prefetching algorithms, rather high traffic
increases are considered. Nevertheless, as described, the
main aspect of any prefetching scheme is the rule discovery
procedure. Therefore, recursive rule activation can be
applied to any Web prefetching scheme. For this reason, the
theoretical comparison of all schemes in this work is done
with respect to rulediscovery.However, experimental results
(cf., Section 6) evaluate the use of recursive activation. As it
will be described in the following sections, the algorithm in
[26] can be classified in the context of 1-order PPM

1158 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

3. In [26], an equivalent criterion is also proposed which considers the
sizes of the documents.

Fig. 2. (a) Dependency graph (lookahead window 2) for two request streams ABCACBD and CCABCBCA. (b) PPM predictor of 2-order for two

request streams ABCACBD and CCABCBCA.

prefetchers. Thus, it considers only first-order dependencies
and assumes that patterns appear as subsequences of
consecutive documents inside user transactions.

Other related work includes [27], which describes a
prefetching algorithm that is also based on association rule
mining. Similar to [26], rules with one document in both the
head and the body are considered. However, the subject of
that paper is Web-server caching and, more particularly, the
prefetching of documents from the Web server’s disk to its
main memory. This approach differs from the Web
prefetching, which concerns the prefetching of documents
from the server into the client’s cache. Besides prefetching
based on association patterns, other types of Web log
mining patterns can be used as well. For instance, path
traversals [15] can be adapted to produce rules that can be
used for Web prefetching. It will be shown (cf., Section 4)
that the resulting scheme can be classified in the context of
m-order PPM. The improvement in the efficiency of PPM is
examined in [17] (which uses the name All-mth-Order
Markov model for PPM). Three pruning criteria are
proposed: 1) support-pruning, 2) confidence-pruning, and
3) error-pruning. The subject of [17] is mainly the efficiency,
whereas its experimental results do not indicate significant
improvement in the effectiveness of PPM prefetching.
Nevertheless, support-pruning is a specialization of PPM,
that is also examined in [26], [27] and in this paper as well.
The other two criteria are used in a postprocessing step, on
the set of discovered rules, and can be applied to any
prefetching scheme, thus they are orthogonal issues to the
subject examined in this paper. Finally, two variations of the
PPM prefetcher are described in [35], [36]. The first one is a
subset of the PPM, whereas in the second one, the selection
of prefetching rules to activate is determined by “weights”
assigned on them.

4 A COMMON CONTEXT FOR PREDICTIVE WEB

PREFETCHING

4.1 Markov Predictors

If S ¼ hp1; . . . ; pni is a sequence of accesses (called a
transaction) made by a user, then the conditional prob-
ability that the next access will be pnþ1 is P ðpnþ1jp1; . . . ; pnÞ.
Therefore, given a set of user transactions, rules of the form

p1; . . . ; pn) pnþ1 ð1Þ

can be derived, where P ðpnþ1jp1; . . . ; pnÞ is equal to or larger
than a user-defined cut-off value Tc. The left part of the rule
is called head and the right part is called body. The body of
the rule can also be of any length larger than one. Thus,
rules of the form:

p1; . . . ; pn) pnþ1; . . . ; pnþm ð2Þ

can be formed. In this case, P ðpnþ1; . . . ; pnþmjp1; . . . ; pnÞ has
to be larger than Tc.

The dependency of forthcoming accesses on past
accesses defines a Markov chain. The number of past
accesses considered in each rule for the calculation of the
corresponding conditional probability is called the order of
the rule. For instance, the order of the rule A;B) C is 2.

Definition 1. An n-order Markov predictor is defined to be a
scheme for the calculation of conditional probabilities

P ðpnþ1; . . . ; pnþmjp1; . . . ; pnÞ

between document accesses and the determination of rules of
the form (2). The head of each rule has a size equal to n and the
body has a maximum size equal to m.

A predictive prefetching algorithm can be defined as a
collection of 1; 2; . . . ; n-order Markov predictors (if several
orders are considered). Additionally, an activation mechan-
ism for finding the prefetched pages from the correspond-
ing rules is required. Thus, the objectives of a predictive
Web prefetching algorithm can be summarized as:

. the calculation of conditional probabilities based on
user accesses,

. the determination of rules of the form (2), and

. the activation of rules for which their head contains
the accesses a user has done up to a time point and
the prefetching of pages which are in the body of the
rules.

We present below how existing algorithms are described in
this common context.

The Dependency Graph (DG) algorithm uses a first order
(1-order) Markov predictor. It calculates conditional prob-
abilities P ðpijpjÞ. It maintains a set of rules of the form
pi) pj. For a user who has accessed the sequence of
documents S ¼ hp1; . . . ; pni, DG searches all rules with head
pn and prefetches all documents pnþ1 for which there exists
a rule pn) pnþ1.

The k-order PPM algorithm uses 1; 2; . . . ; k-order Markov
predictors (k is a constant). These Markov predictors
calculate conditional probabilities of the form

P ðpnþ1jpnÞ; P ðpnþ1jpn; pn�1Þ; . . . ; P ðpnþ1jpn; . . . ; pn�kþ1Þ

and determine the corresponding rules, which have head
sizes equal to 1; 2; . . . ; k. Since rules of several orders are
activated from one user sequence, the same documents can
appear in the body of different rules, hence duplicate
elimination is performed.

The prefetching scheme in [26] uses a 1-order Markov
predictor. The rules are of the form pi) pj. This is
analogous to DG and 1-order PPM. The scheme in [26]
uses two constraints: 1) support-based pruning and 2) only
rules with the maximum conditional probability (confi-
dence) are selected for each document which serves as head
of a rule. These constraints do not affect the consideration of
[26] as a Markov predictor.

Finally, path traversals [15], from sequences of the form
hp1; . . . ; pni, derive rules of the form p1; . . . ; pk) pkþ1; . . . ; pn,
by considering conditional probabilities

P ðpkþ1; . . . ; pnjp1; . . . ; pkÞ:

It is easy to see that path-traversals can use a set of
1; 2; . . . ; k-order Markov predictors and are equivalent to
k-order PPM (see also Section 4.2).

4.2 Calculation of Conditional Probabilities

For rules of the form (2), the probability

NANOPOULOS ET AL.: A DATA MINING ALGORITHM FOR GENERALIZED WEB PREFETCHING 1159

P ðpnþ1; . . . ; pnþmjpn; . . . ; p1Þ

is equal to P ðhp1;...;pnþmiÞ
P ðhp1;...;pniÞ . Given a collection of user transac-

tions, the probability P ðp1; . . . ; pnÞ of an access sequence

S ¼ hp1; . . . ; pni is the normalized number of occurrences

of S inside the collection of transactions. Thus, P ðSÞ is equal
to frðSÞ divided by the total number of transactions, where

frðSÞ denotes the number of occurrences of S, i.e., its

frequency. We present next how each specific algorithm

forms the transactions and counts the occurrence frequen-

cies of accesses sequences.

4.2.1 Formation of User Transactions

The determination of user transactions first requires the
identification of user sessions from the log file. This issue is
handled in [14] and elsewhere, where accesses of each user
are grouped into sessions according to their closeness in
time. Then, user sessions can be further processed with the
method proposed in [15]. Thus, user sessions are decom-
posed into a number of maximal forward references, using
algorithm MF [15]. This filters out the effect of backward
references (usually made by the use of the “Back” button in
a browser), which are done only for navigation purposes.
The cleansed user sessions constitute the user transactions.
It is important to notice that, by this processing, the
transactions contain only distinct pages. It can be assumed
that a document initially duplicated in a user session (i.e.,
before processing with MF) will probably be contained in
the local (client) cache after its first appearance. Thus, even
if it was not removed by MF, there would be no need to
prefetch it more than once.

The definition of user sessions has the objective of
separating independent accesses made by different users or
by the same user at distant points in time. Thus, false
correlations during the calculation of conditional probabil-
ities between page accesses are avoided. The concept of a
user session is defined in all existing Web prefetching
algorithms. In [34], it is called browsing session, whereas in
[7], it is called stride. Although [33] uses the concept of user
session with respect to separating accesses by different
users, it does not explicitly separate accesses of the same
user which have large time difference.4 However, without
loss of generality, we assume that the DG algorithm is based
on user sessions which consider time differences as well.
Throughout this paper, we use the term transaction, adopted
from [14]. Thus, we assume that the information about user
accesses is represented in a uniform way for all algorithms.

4.2.2 Frequency Counting

The calculation of conditional probabilities with respect to
P ðhpn;...;pnþmiÞ
P ðhp1;...;pniÞ requires counting the frequency of the corre-
sponding access sequences, i.e., frðhp1; . . . ; pnþmiÞ and
frðhp1; . . . ; pniÞ. Given a set of user transactions, the
frequency of an access sequence S, is equal to the number
of transactions T , for which S is contained in T or,
equivalently, S is a subsequence of T .5 An abstract scheme

for the frequency counting can be described as follows:

Each transaction is read and the frequency of every

contained subsequence is increased by one. After having

read every transaction, the frequencies of the subsequences

have been counted, thus the calculation of the correspond-

ing probabilities and the formation of the rules (those

having conditional probability larger than Tc) can be

accomplished. The difference of each Web prefetching

algorithm stems from the way the subsequence containment

is defined. Therefore, for each transaction, each algorithm

updates (i.e., increases by one) the frequencies of different

subsequences. Notice that, although the algorithms for

purposes of efficiency, may process transactions differently

(e.g., in several passes [26], [15]), the result is equivalent to

that produced by the abstract scheme. Thus, the reason for

adopting it is that we focus on the results of the algorithms

since it is more convenient to compare them in the sequel.
For each transaction T ¼ hp1; . . . ; pni, DG increases by

one all frequencies frðhpiiÞ and frðhpi; pjiÞ, for 1 � i < j � n

and j� i � minfw; ng, where w is the lookahead window size.

Thus, DG calculates conditional probabilities as:

P ðpjjpiÞ ¼ frðhpi; pjiÞ
frðhpiiÞ

: ð3Þ

For a transaction T ¼ hp1; . . . ; pni, the k-order PPM

updates the frequencies

frðhpiiÞ; frðhpi; piþ1iÞ; . . . ; frðhpi; . . . ; piþjiÞ;

for each 1 � i � n, and iþ j � n and 1 � j � k. Thus, PPM

calculates conditional probabilities as:

P ðpiþjjpi; . . . ; piþj�1Þ ¼
frðhpi; . . . ; piþj�1; piþjiÞ

frðhpi; . . . ; piþj�1iÞ
: ð4Þ

Notice that, although both 1-order PPM and DG form

rules with one document in the head and one in the body,

they are not equivalent. 1-order PPM (as PPM of all orders)

requires that subsequences contain documents that are

consecutive in the transaction, but the same does not hold

for DG.
According to [26], a sequence S ¼ hpi; pji is contained in a

transaction T , if pi is immediately followed by pj in T [26],

i.e., the frequency of all subsequences with two consecutive

documents are updated. The rules in [26] have one document

in the head and the corresponding conditional probabilities

are of the form (4), with k equal to one. Since both schemes

calculate the same frequencies and determine the same

conditional probabilities, they produce identical rules.

Therefore, the scheme in [26] is equivalent to 1-order PPM.
For path-traversal patterns, the frequency of an access

sequence S, is updated by a transaction T , if S is a

consecutive subsequence in T [15], i.e., it updates the

frequency of each subsequence that contains consecutive

documents in a transaction. This is equivalent to the

procedure followed by the k-order PPM. Therefore, a

scheme based on path-traversal patterns can be categorized

in the family of k-order PPM algorithms.

1160 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

4. Accesses of the same user in [33] are contained in a ring buffer and
each new entry replaces the oldest one in case the buffer is full.

5. Using data mining terminology, the frequency corresponds to the
notion of support.

5 GENERALIZED ALGORITHM

5.1 Overview of the Proposed Method

As it is evident from the framework in the previous section,
a prefetching scheme that considers higher order depen-
dencies requires the use of Markov predictors of higher
orders, additionally to that of first order. Therefore, it
should allow for rules with head sizes larger than one (and
possibly for rules with body sizes larger than one).
However, the maximum order depends on the way users
navigate and on the site characteristics, thus it should vary
and not be restricted to a constant value. Hence, a
prefetching scheme should be able to adaptively select the
appropriate maximum value for the order.

To take into account the existence of random accesses

to documents within the transactions, the counting

procedure of occurrence frequencies has to be able to

neglect them. More particularly, given a transaction T ,

the frequency counting procedure should consider an

access sequence S, which consists of documents that all

belong to T , to be contained in T , even if it is not a

subsequence of T with all the documents being con-

secutive in T . For example, S ¼ hA;Bi can be considered

as being contained in T ¼ hA;X;B;Ci, although A and B

are not consecutive in T . Therefore, random accesses,

like X, can be bypassed.

As it will be described in the following, the above

requirements designate a scheme which corresponds to the

discovery of associations among user accesses. However,

the required scheme cannot be based on association rules of

the form defined in [3] since the ordering,6 these schemes

correspond to the 1-order PPM algorithm.
The particular specifications described above present

differences from existing approaches and call for the
development of a new effective prefetching scheme.
Additionally, the involved computational complexity re-
quires the design of an efficient mining algorithm.

5.2 Proposed Type of Rules

Associations consider rules of several orders [3], and not of

one only. The maximum order is derived from the data and

it does not have to be specified as an arbitrary constant

value [3]. For the frequency counting, a transaction T ,

supports sequences that do not necessarily contain con-

secutive documents in T . More specifically, an access

sequence S is considered as a set of accesses and is

contained in a transaction T , if it is a subset of it, that is, if

S � T [3]. Therefore, the use of Web log mining methods for

the discovery of association rules among user accesses

(denoted as WM method) seems to present the required

specifications, which have been described previously.
However, it is clear that the ordering of document

accesses inside a transaction is important for the purpose of
prefetching. The problem of finding association rules was
initially stated for basket data. Although each transaction
contains the accessed documents in the right ordering, i.e.,

they are ordered with respect to their access time (due to the
processing of transactions by MF algorithm), association
rule discovery algorithms represent candidates as sets of
documents, which do not consider this ordering.

For instance, let A and B be frequent documents (i.e.,
large, according to the terminology in [3]). From these
documents, the candidate c1 ¼ fA;Bg will be produced, but
the candidate c2 ¼ hB;Ai will not since the consideration of
candidates as sets does not distinguish between c1 and c2.

7

Moreover, the containment is defined by the subset operator,
which also does not take the ordering of documents into
account, thus, for a transaction T ¼ hB;C;A;Di, it holds
that c1 � T , although B precedes A in T . Since the
frequency of c1 is updated by such transactions, an
association A) B can be formed. According to this rule,
when document A is requested, then a document B can be
prefetched, although it is possible that, in the majority of
transactions, B precedes A. Nevertheless, the rule A) B
does not reflect this fact and causes the incorrect prefetching
of B. A large number of such incorrect rules introduces
bandwidth waste. On the other hand, if there is a pattern
such that the request of B induces the request of A, then the
corresponding rule B) A will be missed because it could
be formed by c2 (which is not considered). The same
reasoning can be applied for candidates with larger length.

The required approach involves a new definition of the
candidategenerationprocedureandthe containmentcriterion.
At the kth phase, the candidates are derived from the self-join
Lk�1 ffl Lk�1 [3]. However, in order to take the ordering of
documents intoaccount, the joining isdoneas follows:Let two
access sequences, S1 ¼ hp1; . . . ; pk�1i and S2 ¼ hq1; . . . ; qk�1i,
both be in Lk�1. If p1 ¼ q1; . . . ; pk�2 ¼ qk�2, then they are
combined to form two candidate sequences, which are: c1 ¼
hp1; . . . ; pk�2; pk�1; qk�1i and c2 ¼ hp1; . . . ; pk�2; qk�1; pk�1i. For
instance, sequences hA;B;Ci and hA;B;Di are combined to
produce hA;B;C;Di and hA;B;D;Ci. The same holds for the
second phase (k ¼ 2). For instance, from hAi and hBi, hA;Bi
and hB;Ai are produced. The containment criterion is defined
as follows:

Definition 2. If T ¼ hp1; . . . ; pni is a transaction, an access
sequence S ¼ hp01; . . . ; p0mi is contained by T iff:

. there exist integers 1 � i1 < . . . < im � n such that
p0k ¼ pik , for all k, where 1 � k � m.

A sequence S of documents contained in a transaction T
with respect to the previous condition is called a subsequence
of T and the containment is denoted as S � T . In the sequel,
the Web prefetching scheme that is based on the proposed
type of rules is denoted as WMo (o stands for ordering).

With respect to the framework presented in Section 4,
WMo algorithm uses a collection of 1; 2; . . . ; k-order Markov
predictors and produces rules of the form (2). This is done
by calculating the respective conditional probabilities.
Similar to [3], the maximum order does not have to be a
prespecified maximum value. Moreover, WMo differs from
the k-order PPM in the calculation of conditional probabil-
ities and, more specifically, in the counting of frequencies
according to Definition 2.

NANOPOULOS ET AL.: A DATA MINING ALGORITHM FOR GENERALIZED WEB PREFETCHING 1161

6. The term ordering refers to the arrangement of documents in
transactions and should not be confused with the term order of Markov-
predictors.

7. Curly brackets denote sets (unordered) and angular brackets denote
sequences (ordered).

5.3 Algorithm

The different candidate generation procedure of WMo, due
to the preservation of ordering (see Section 5.2), impacts the
number of candidates. For instance, for two “large”
documents hAi and hBi, both candidates hA;Bi and hB;Ai
will be generated in the second phase. Differently, a priori
(and any other algorithm for association rules among basket
data) would produce only one candidate, i.e., fA;Bg.
Following similar reasoning, the same argument can be
stated for candidates with larger length, for each of which
the number of different permutations is large. Nevertheless,
ordering has to be preserved to provide correct prefetching.
The work described in [4], [28] examines the problem of
mining sequential patterns which consider ordering, as
well. However, they do not take into account that user
navigation is performed in a site which has a structure
determined by its linkage. By not considering this factor,
[4], [28] do not address the problem of dramatic increase in
the number of candidates. Moreover, the work in [28] seeks
patterns in a single large sequence of events using a sliding
window over this sequence and, thus, it does not consider
user sessions as is our case.

In order to reduce the number of candidates, pruning can
be applied according to the site’s structure [29], [30]. This
type of pruning is based on the model of user navigation,
presented in Section 2.2. The model assumes that navigation
is performed following the hypertext links of the site, which
form a directed graph. Therefore, an access sequence and,
thus, a candidate, has to correspond to a path in this graph.

The determination of large paths can be performed in a
level-wise manner, as in the a priori algorithm [3]. In each
path of the algorithm, the database is scanned and the
support of all candidates is counted. For each phase, all
candidates have the same length. At the end of each pass,
all candidates that become large are determined and they
are used for the computation of the candidates for the next
pass. The structure of the algorithm is given in [30], [3].

Candidates are stored in a trie structure. Each transaction
that is read from the database is decomposed into the paths
it contains and each one of them is examined against the
trie, thus updating the frequency of the candidates.
Candidate generation is performed by using a technique
which extends candidates according to their outgoing edges
in the graph, thus with respect to the site structure.
Consequently, the ordering is preserved and, moreover,
only paths in the graph are considered. Additionally, the
support pruning criterion (if Ts > 0) of [3] has to be
modified since, for a given candidate, only its subpaths
have to be tested (i.e., subsets which correspond to a path in
the graph) and not any arbitrary subset of documents, as it
is designated for basket data [3]. Candidate generation is
depicted in Fig. 3, where Lk denotes the set of all large paths
of length k and G is the site graph.

The execution time required for the frequency counting
procedure is significantly affected by the number of
candidates [3], hence its efficiency is improved by this
pruning criterion. Although several heuristics have been
proposed for the reduction of the number of candidates for
the Apriori algorithm, they involve basket data. The
pruning with respect to the site structure is required for
the particular problem, due to the ordering preservation
and the large increase in the number of candidates. The

effectiveness of pruning is verified by experimental results

in Section 6. Details about the proposed algorithm can be

found in [30], where extensive experimental results demon-

strate its efficiency with respect to several parameters.

5.4 Proof of Generalization

This section presents proofs that WMo is a generalization of

existing predictive Web prefetching algorithms, according

to the framework presented in Section 4. The notion of

generalization is based on showing that WMo can be

“reduced” to existing algorithms, whereas the inverse is not

true. More precisely, for each case, it is shown that by

applying a set of constraints, WMo becomes equivalent to

existing algorithms. Thus, existing algorithms are con-

strained instances of WMo.

Proposition 1. WMo is a generalization of DG.

Proof. We constrain WMo to use only a 1-order Markov

predictor. Let w be the length of the lookahead window.
Case 1. If w ¼ 1, for each transaction T ¼ hp1; . . . ; pni,

WMo will increase by one each frðpiÞ and frðhpi; pjiÞ,
where 1 � i < j � n. These are exactly the frequencies
that will be increased by DG also. Therefore, both WMo

and DG find the same values for conditional probabilities
P ðpjjpiÞ ¼ frðhpi;pjiÞ

frðhpiiÞ . It follows that DG and WMo will
produce the same rules, hence they become equivalent.

Case 2. Ifw < 1 forDG, the sameslidingwindowcanbe

applied forWMo also. This presents another constraint for

WMo, compared to the case where w ¼ 1. For each

transaction T ¼ hp1; . . . ; pni, WMo will increase by one

each frðpiÞ and frðhpi; pjiÞ, where 1 � i < j � n and

j� i � minfw; ng. Again, the same rules are produced,

hence, the algorithms become equivalent. tu
Proposition 2. WMo is a generalization of PPM.

Proof. We constrain WMo to consider only subsequences

with consecutive documents for frequency counting

(notice that, if all documents of a subsequence S are

consecutive in a transaction T , then S � T). Let k be the

order of PPM. Let also that WMo is constrained to use

the same maximum constant k for the order of rules it

derives. In case rules of a higher order than k exist, if

WMo was not constrained, it would have found them.

1162 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

Fig. 3. Candidate generation procedure.

With these constraints, for each transaction

T ¼ hp1; . . . ; pni;

WMo will update the frequencies frðhpiiÞ,

frðhpi; piþ1iÞ . . . ; frðhpi; . . . ; piþjiÞ;

for each 1 � i � n and iþ j � n and 1 � j � k. These are
exactly the same frequencies that will be increased by k-
PPM also (see Section 4.2.2). Consequently, they both
find the same conditional probabilities, the same rules
are produced, and the algorithms become equivalent. tu
Regarding DG and PPM, none of them is a generalization

of the other. DG uses maximum order equal to one, whereas
the k-order PPM is equal to k � 1. On the other hand, inside a
transaction, DG updates frequencies of sequences which do
not necessarily have documents consecutive in the transac-
tion. Differently, PPM requires that documents should be
consecutive.However, there is a special case, given in thenext
corollary, where DG and PPM can be compared.

Corollary 1. The 1-order PPM and the DG algorithm with
sliding window size equal to one (w ¼ 1) are equivalent.WMo

is a generalization of both these cases.

Corollary 1 includes the scheme proposed in [26], which
is categorized to the family of 1-order PPM (Section 4). The
set of selected rules of [26] is a subset of the ones in the case
where the highest confidence constraint is applied [26]. This
constraint can also be applied to WMo so as to become
equivalent. The same reasoning can be followed for the
support constraint [26].

6 PERFORMANCE RESULTS

This section presents the experimental results on the
performance of predictive Web prefetching algorithms.
We focus on DG, PPM, WM, and WMo algorithms. Both
synthetic and real data were used. The performance
measures used are the following (their description can be
found also in [34]):

. Usefulness (also called Recall or Coverage): the
fraction of requests provided by the prefetcher.

. Accuracy (also called Precision): the fraction of the
prefetched requests offered to the client that were
actually used.

. Network traffic: the number of documents that the
clients get when prefetching is used divided by the
one when prefetching is not used.

First, we briefly describe the synthetic data generator. Then,
we present the results and, finally, we provide a discussion.

6.1 Generation of Synthetic Workloads

In order to evaluate the performance of the algorithms over
a large range of data characteristics, we generated synthetic
workloads. Each workload is a set of transactions. Our data
generator implements a model for the documents and the
linkage of the Web site, as well as a model for user
transactions.

According to the requirements about Web sites pre-
sented in Section 2.2, we choose so that all site documents

have links to other documents, that is, they correspond to
HTML documents. The fanout of each node, that is, the
number of its outgoing links to other nodes of the same site,
is a random variable uniformly distributed in the interval
[1...NFanout], where NFanout is a parameter for the model.
The target nodes of these links are uniformly selected from
the site nodes. If some nodes have no incoming links after
the termination of the procedure, then they are linked to the
node with the greatest fanout. With respect to document
sizes, following the model proposed in [6], we set the
maximum size equal to 133KB and assign sizes drawn from
a lognormal distribution8 with mean value equal to 9.357KB
and variance equal to 1.318KB.

In simulating user transactions, we generated a pool of
P paths (“pattern paths,” in the sequel). Each path is a
sequence of links in the site and pairwise distinct Web
server documents, and will be used as “seeds” for
generating the transactions. Each of these paths is com-
prised of four nodes (documents), simulating the minimum
length of a transaction. The paths are created in groups.
Each group comprises a tree. The paths are actually the full
length paths found in these trees. The fanout of the internal
tree nodes is controlled by the parameter bf . Varying this
parameter, we are able to control the “interweaving” of the
paths. The nodes of these trees are selected using either the
80-20 fractal law or from the nodes that were used in the
trees created so far. The percentage of these nodes is
controlled by the parameter order, which determines the
percentage of node dependencies that are nonfirst order
dependencies. For example, 60 percent order means that
60 percent of the dependencies are nonfirst order depen-
dencies. Thus, varying this parameter, we can control the
order of the dependencies between the nodes in the path.
The use of the fractal law results in some nodes being
selected more frequently than others. This fact reflects the
different popularity of the site documents, creating the so-
called “hot” documents.

In order to create the transactions, we first associate a
weight with each path in the pool. This weight
corresponds to the probability that this path will be
picked as the “seed” for a transaction. This weight is
picked from an exponential distribution with unit mean,
and is then normalized so that the sum of the weights for
all the paths equals 1. A transaction is created as follows:
First, we pick a path, say hA;B;C; xi, tossing a P-sided
weighted coin, where the weight for a side is the
probability of picking the associated path. Then, starting
from node A, we try to find a path leading to node B or
with probability corProb to node C, whose length is
determined by a random variable, following a lognormal
distribution, whose mean and variance are parameters of
the model. This procedure is repeated for every node of
the initial path except from those that, with probability
corProb, were excluded from the path. The mean and
variance of the lognormal distribution determine the
“noise” inserted in each transaction. Low values for
mean and variance leave the transaction practically
unchanged with respect to its pattern path, whereas

NANOPOULOS ET AL.: A DATA MINING ALGORITHM FOR GENERALIZED WEB PREFETCHING 1163

8. Without loss of generality, we assume that HTML files are small files.
Thus, according to [6], their sizes follow a lognormal distribution.

larger values increase its length with respect to the
pattern path. Table 1 summarizes the parameters of the
generator.

6.2 Comparison of PPM Schemes

To simplify the comparison of all algorithms (and to clarify
the illustrated charts), we separately examined the perfor-
mance of PPM algorithms. Recall that the scheme proposed
in [26] is categorized as 1-order PPM. We also examined
the characteristics proposed in [26] (support pruning,
selection of rules with the highest confidence for each
document in the head, recursive activation), compared to
the higher order PPM algorithm [34], [19]. Table 2 depicts
the results. The synthetic data set that is used has the
following values for the parameters: N ¼ 1; 000, P ¼ 1; 000,
and 35,000 transactions were used for training, whereas
65,000 were used for evaluation. The order parameter was
set to 50 percent. We examined two cases, one with low
noise, i.e., when meanNoise ¼ 1:0 (left part of Table 2), and
one with high noise, i.e., when meanNoise ¼ 2:5 (right part
of Table 2). For both cases, noiseVar was set to 1:15. The
order of (higher-order) PPM was set to five.

The names in the columns of Table 2 denote the
following: C is the confidence value, A is the accuracy, U
is the usefulness, and T is the network traffic. The
confidence values for [26] are set according to the values
in that paper (support threshold was set to 1 percent and
push-length to 3). However, the corresponding confidence
values for 5-order PPM are selected so that both schemes
achieve the same network traffic (for the purpose of clarity
in comparison). As it is shown, the scheme in [26] is less
affected by increasing noise (when confidence equals 0.2),
whereas 5-order PPM is significantly affected. (The best
accuracy, i.e., 0.64, for the case of low noise is reduced to
0.21 for higher noise. Similarly, usefulness drops from 0.2 to
0.07.) Nevertheless, as it is illustrated, higher-order PPM
clearly outperforms the scheme in [26] in all cases. Similar
results, not shown here due to space restrictions, were
obtained for other ranges of parameters and for real data
sets. For the above reasons, in the sequel we use higher-
order PPM as a representative of this category.

6.3 Comparison of all Algorithms

In order to carry out the experiments, we generated a
number of workloads. Each workload consisted of T ¼
100; 000 transactions. From these, 35,000 transactions were
used to train the algorithms and the rest to evaluate their
performance. The number of documents of the site for all
workloads was fixed to N ¼ 1; 000 and the maximum
fanout to NFanout ¼ 100, so as to simulate a dense site.

The branching factor was set to bf ¼ 4 to simulate
relatively low correlation between the paths. The number
of paths of the pool for all workloads was fixed to
P ¼ 1; 000. With several experiments, not shown in this
report, it was found that varying the values of the
parameters P and N does affect the relative performance
of the considered algorithms. For all the experiments
presented here, the order of the PPM algorithm was set
equal to 5, so as to capture both low and higher order
dependencies. For the experiments, the lookahead window
of the DG algorithm was set equal to the length of the
processed transaction, in order to be fair with respect to
the other three algorithms. Also, in order to decouple the
performance of the algorithms from the interference of
the cache, we flushed it after the completion of each
transaction. Each measurement in the figures that follow
is the average of five different runs. At this point, we
must note that the used performance measures are not
independent. For example, there is a strong dependence
between usefulness and network traffic. An increase in
the former cannot be achieved without an analogous
increase in the latter. This characteristic is very important
for the interpretation of the figures to be presented in the
sequel. In order to make safe judgments about the
relative performance of the algorithms, we must always
examine the two measures, while keeping fixed the value
of the third metric, usually the network traffic, for all the
considered algorithms.

In the first set of experiments, we tested the algorithms
aiming at evaluating their performance when the con-
fidence varies, as well as aiming at tuning them up. For

1164 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

TABLE 1
The Parameters for the Generator

TABLE 2
Comparison of PPM Algorithms

Left: meanNoise ¼ 1:0. Right: meanNoise ¼ 2:5.

this set of experiments, we kept the noise relatively low,

with a mean equal to 2.0 and variance equal to 0.8. This

combination of values does not change the transactions

with respect to their pattern paths very much, simulating
a “neutral environment” for all algorithms. Keeping the

noise low, we examined the algorithms for two different

values of order, namely, 0.60 and 0.95. The results of this

set of experiments are reported in Fig. 4. From these
figures, as expected, it can be seen that usefulness and

network traffic decrease with increasing confidence,

whereas accuracy steadily increases. The decreasing

usefulness asymptotically approaches a lowest value,

which corresponds to the documents that are very

accurately predicted and are always prefetched. The low

network traffic corresponding to this value indicates that

the number of these documents is rather small. The

striking characteristic of these diagrams is the low

performance the DG achieves. Regarding the rest of the

algorithms, we can see that WMo clearly outperforms the

other two in terms of accuracy, and also in terms of

usefulness for lower values of order.

NANOPOULOS ET AL.: A DATA MINING ALGORITHM FOR GENERALIZED WEB PREFETCHING 1165

Fig. 4. Performance as a function of confidence for order ¼ 60% (left) and order ¼ 95% (right).

The second set of experiments assessed the impact of

noise on the performance of the prediction schemes. For this

set of experiments, we selected a confidence value such that

each scheme incurred about 50 percent overhead in net-
work traffic. The confidence value for DG was set equal to

0.10, for PPM equal to 0.25 and for the other two methods

equal to 0.275. The results of this set of experiments are

reported in the left part of Fig. 5. From these figures, it can
be seen that WMo clearly outperforms all algorithms in

terms of accuracy and usefulness for the same network

traffic. It is better than PPM by as much as 40 percent and

than DG by as much as 100 percent, in terms of accuracy.

PPM is better than WMo for small values of noise, but it

achieves this in expense of larger network traffic. It can also

be seen that the accuracy of WMo is not affected by the
increasing noise at all, implying that WMo makes correct

predictions even at the presence of high noise. The

usefulness for all algorithms drops with noise. In particular,

the usefulness of PPM drops more steeply for noise mean
values of up to 2.3. Beyond this value, usefulness for PPM

seems to be stabilized, but this is achieved at the expense of

higher network traffic.

1166 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

Fig. 5. Performance as a (left) function of noise and (right) order.

The third set of experiments evaluated the impact of the
varying order on the performance of the methods. For this
set of experiments, the confidence value for each method
was the same as in the last set, whereas the mean value and
variance of noise was set to 2.15 and 0.8, respectively. The
results of this set of experiments are reported in the right
part of Fig. 5. The general result is that only DG is affected
from the varying order, since in order to keep its usefulness
and accuracy in the same values, it increases its network
traffic. The rest of the algorithms seem insensitive to the
varying order with WMo performing the best among them,
in terms of both accuracy and usefulness.

Next, we evaluated the benefits of the prefetching
algorithms for an LRU cache and compared it with the
performance of the same cache with no prefetching at all.
For this experiment, the range of cache size was selected to
be in the range of a few hundred KBytes, to simulate the fact
that not all, but only a small part of the Web client cache is
“dedicated” to the Web server documents. The results of
this experiment are reported in Fig. 6. From this figure, it is
clear that prefetching is beneficial, helping a cache to
improve its hit ratio by as much as 50 percent. The figure
shows that the hit ratio increases steadily. This is due to the
fact that, when the cache size becomes large enough to hold
all the site documents, then any future reference will be
satisfied by the cache and its hit ratio will approach
100 percent. The same figure shows that interference due
to cache does not “blur” the relative performance of the
prefetching algorithms. Therefore, WMo outperforms all
other algorithms. The performance gap would be wider in
environments with a higher noise and higher order of
dependencies between the accesses. For small cache sizes,
WMo, PPM, and DG have similar performance because for
these sizes, the cache is not large enough to hold all
prefetched documents and, thus, many of them are replaced
before they can be used. On the other hand, for very large
cache sizes, the performance of all algorithms converges
since almost all the site documents are cached, as explained
before.

6.4 Real Data Sets

We conclude the evaluation of the prefetching algorithms
by reporting on some experiments conducted using real
Web server traces. In the following, due to space
limitations, we present only the results obtained from
one server trace, namely, the ClarkNet, available from the

site http://ita.ee.lbl.gov/html/traces.html. We used the
first week of requests and we cleansed the log (e.g., by
removing CGI scripts, staled requests, etc.). The user
session time was set to six hours and 75 percent of the
resulted transactions were used for training. The average
transaction length was seven, with the majority of the
transactions having length smaller than five, so we set the
order of the PPM prefetcher to five and the lookahead
window of the DG prefetcher to five. For WMo, we
turned off the structure-based pruning criterion since the
site structure for this data set is not provided (however,
for a real case application, the site structure is easily
obtainable).

Table 3 presents the results from this experiment. The
measurements were made so that the network traffic
incurred was the same for all algorithms. As it is illustrated,
WMo achieves better performance than all the other
algorithms, in all cases, in terms of accuracy and usefulness.
This also verifies the performance results obtained from
synthetic data.

6.5 Efficiency of WMo

Finally, we examined the effectiveness of the pruning
criterion, that is described in Section 5.3. We use a synthetic
data set with the same characteristics as the ones used in the
experiments of Section 6.3. This experiment compares the
proposed WMo algorithm with a version that does not use
pruning with respect to the site structure, and is denoted as
WMo=wp (WMo without pruning). Moreover, we examined
WM algorithm (Apriori algorithm for basket data), in order
to provide a comparative evaluation of the result. Fig. 7
illustrates the number of candidates for these methods with
respect to the support threshold (given as a percentage). As
it is depicted, WMo significantly outperforms both WMo=wp

andWM for lower support thresholds, where the number of
candidates is larger. For larger support thresholds, WMo

still outperforms WMo=wp and presents a comparative
number of candidates with those produced by WM.
Nevertheless, as shown by the previous experiments, the
performance of WM for the overall prefetching purpose is
significantly lower than that of WMo.

The number of candidates significantly impacts the
performance of this type of algorithms. This is in accor-
dance with related work on association rule mining [3].
Therefore, the efficiency of WMo is improved by the
proposed pruning. Moreover, pruning is efficiently applied
by considering the site structure in every step of the rule
discovery algorithm (see Section 5.3). However, due to

NANOPOULOS ET AL.: A DATA MINING ALGORITHM FOR GENERALIZED WEB PREFETCHING 1167

Fig. 6. Cache hits as a function of the cache size.

TABLE 3
Comparison of Prefetchers with Real Data

space restrictions, a detailed description of this subject and
extensive experimental results on the execution time of this
procedure can be found in [30].

6.6 Discussion

From the experimental results, it is evident that WMo,
which is proposed as a generalization of existing algo-
rithms, clearly presents the best performance. More
precisely, WMo prefetches more documents correctly than
PPM and DG (i.e., shows better usefulness and accuracy)
and this is achieved without additional cost in the network
traffic. In the few cases where PPM performs slightly better,
this happens at the cost of network traffic. At the same time,
the accuracy of prefetching is constantly higher for WMo

compared to the other algorithms. In general, algorithm
WM presents the worst performance because it does not
consider the ordering of accesses and for this reason, it is
not commented any further.

With respect to the two factors, order and noise,
experiments indicate that PPM is affected by noise, whereas
DG and WMo are not. The increased noise significantly
reduces the accuracy of PPM. On the other hand, its
usefulness is also reduced and, at the same time, an increase
in the network traffic is observed (which prevents a higher
deterioration in usefulness). DG is sensitive to the factor of
order, whereas PPM and WMo are not. Additionally, the
measurement of network traffic with respect to the factor of
order verifies that the PPM algorithm uses a constant
maximum value for its rules whereas, the WMo algorithm
dynamically adjusts the order of the rules, according to the
order in the data. Thus, PPM requires a constant network
traffic overhead with respect to the values of order (see
Fig. 5). Additionally, experiments with real traces verify the
previously described conclusions.

7 CONCLUSIONS

We considered the problem of predictive Web prefetching,
that is, deriving users’ future requests for Web documents
based on their previous requests. Predictive prefetching
suits the Web’s hypertextual nature and significantly
reduces the perceived latency.

We presented a new context for the interpretation of Web
prefetching algorithms as Markov predictors. This context

revealed the important factors that affect the performance of
Web prefetching algorithms. The first factor is the order of
dependencies between Web document accesses. The second
is the interleaving of requests belonging to patterns with
random ones within user transactions and the third one is
the ordering of requests. None of the existing approaches
has considered the aforementioned factors altogether.

We proposed a new algorithm called WMo, which has
proven to be a generalization of existing ones. It was
designed to address their specific limitations and its
characteristics include all the above factors. It compares
favorably with previously proposed algorithms, like PPM,
DG, and existing approaches from the application of Web
log mining to Web prefetching. Further, the algorithm
efficiently addresses the increased number of candidates.

Using a synthetic data generator, the performance of
WMo was compared against that of PPM and DG. Our
experiments showed that, for a variety of order and noise
distributions, WMo clearly outperforms the existing algo-
rithms. In fact, for many workloads WMo achieved large
accuracy in prediction with quite low overhead in network
traffic. Additionally, WMo proved to be very efficient in
terms of reducing the number of candidates. These results
were validated with experiments using real Web traces. In
summary, WMo is an effective and efficient predictive Web
prefetching algorithm.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for suggesting
several important improvements and, in particular, the first
reviewer for his helpful comments. Intermediate results of
this work were presented at the WebKDD ’01 workshop
(“Mining Log Data Across All Customer TouchPoints”).
Work was supported by a national PABE project and an
INTAS project (OPEN 97-11106).

REFERENCES

[1] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira,
“Characterizing Reference Locality in the WWW,” Proc. IEEE Conf.
Parallel and Distributed Information Systems (IEEE PDIS ’96), pp. 92-
103, Dec. 1996.

[2] P. Atzeni, G. Mecca, and P. Merialdo, “To Weave the Web,” Proc.
23rd Conf. Very Large Data Bases (VLDB ’97), pp. 206-215, Aug.
1997.

[3] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. 20th Conf. Very Large Data Bases (VLDB
’94), pp. 487-499, Sept. 1994.

[4] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc.
IEEE Conf. Data Eng. (IEEE ICDE ’95), pp. 3-14, Mar. 1995.

[5] C. Aggarwal, J. Wolf, and P. S. Yu, “Caching on the World Wide
Web,” IEEE Trans. Knowledge and Data Eng., vol. 11, no. 1, pp. 95-
107, Jan./Feb. 1999.

[6] P. Barford and M. Crovella, “Generating Representative Web
Workloads for Network and Server Performance Evaluation,”
Proc. ACM Conf. Measurement and Modeling of Computer Systems,
(ACM SIGMETRICS ’98), pp. 151-160, June 1998.

[7] A. Bestavros, “Speculative Data Dissemination and Service to
Reduce Server Load, Network Traffic and Service Time,” Proc.
IEEE Conf. Data Eng. (IEEE ICDE ’96), pp. 180-189, Feb. 1996.

[8] B. Berendt and M. Spiliopoulou, “Analysis of Navigation Behavior
in Web Sites Integrating Multiple Information Systems,” The
VLDB J., vol. 9, no. 1, pp. 56-75, May 2000.

[9] M. Crovella and P. Barford, “The Network Effects of Prefetching,”
Proc. IEEE Conf. Computer Comm. (IEEE INFOCOM ’98), pp. 1232-
1240, Mar. 1998.

1168 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

Fig. 7. Number of candidates with regard to support threshold.

[10] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching
Algorithms,” Proc. 1997 USENIX Symp. Internet Technologies and
Systems (USITS ’97), pp. 193-206, Jan. 1997.

[11] E. Cohen, B. Krishnamurthy, and J. Rexford, “Improving End-to-
End Performance of the Web Using Server Volumes and Proxy
Filters,” Proc. ACM Conf. Applications, Technologies, Architectures
and Protocols for Computer Comm. (ACM SIGCOMM ’98), pp. 241-
253, Aug. 1998.

[12] K.M. Curewitz, P. Krishnan, and J.S. Vitter, “Practical Prefetching
via Data Compression,” Proc. ACM Conf. Management of Data
(ACM SIGMOD ’93), pp. 257-266, June 1993.

[13] P. Cao and C. Liu, “Maintaining Strong Cache Consistency in the
World Wide Web,” IEEE Trans. Computers, vol. 47, no. 4, pp. 445-
457, Apr. 1998.

[14] R. Cooley, B. Mobasher, and J. Srivastava, “Data Preparation for
Mining World Wide Web Browsing Patterns,” Knowledge and
Information Systems (KAIS), vol. 1, no. 1, pp. 5-32, Feb. 1999.

[15] M.S. Chen, J.S. Park, and P.S. Yu, “Efficient Data Mining for Path
Traversal Patterns,” IEEE Trans. Knowledge and Data Eng., vol. 10,
no. 2, pp. 209-221, Apr. 1998.

[16] P. Cao, J. Zhang, and K. Beach, “Active Cache: Caching Dynamic
Contents on the Web,” Proc. IFIP Conf. Distributed Systems
Platforms and Open Distributed Processing (Middleware ’98), pp 373-
388, Sept. 1998.

[17] M. Deshpande and G. Karypis, “Selective Markov Models for
Predicting Web-Page Accesses,” Proc. SIAM Int’l Conf. Data
Mining (SDM ’01), Apr. 2001.

[18] D. Duchamp, “Prefetching Hyperlinks,” Proc. USENIX Symp.
Internet Technologies and Systems (USITS ’99), Oct. 1999.

[19] L. Fan, P. Cao, W. Lin, and Q. Jacobson, “Web Prefetching
Between Low-Bandwidth Clients and Proxies: Potential and
Performance,” Proc. ACM Conf. Measurement and Modeling of
Computer Systems, (ACM SIGMETRICS ’99), pp. 178-187, June 1999.

[20] M.F. Fernandez, D. Florescu, A.Y. Levy, and D. Suciu, “Declara-
tive Specification of Web Sites with Strudel,” The VLDB J., vol. 9,
no. 1, pp. 38-55, May 2000.

[21] J. Griffioen and R. Appleton, “Reducing File System Latency
Using a Predictive Approach,” Proc. 1994 USENIX Ann. Technical
Conf. (USENIX ’95), pp. 197-207, Jan. 1995.

[22] B. Huberman, P. Pirolli, J. Pitkow, and R. Lukose, “Strong
Regularities in World Wide Web Surfing,” Science, vol. 280,
pp. 95-97, Apr. 1998.

[23] S. Jin and A. Bestavros, “Sources and Characteristics of Web
Temporal Locality,” Proc. IEEE/ACM Symp. Modeling, Analysis and
Simulation of Computer and Telecomm. Systems (MASCOTS ’2000),
Aug. 2000.

[24] R. Klemm, “WebCompanion: A Friendly Client-Side Web Pre-
fetching Agent,” IEEE Trans. Knowledge and Data Eng., vol. 11,
no. 4, pp. 577-594, July/Aug. 1999.

[25] T. Kroeger, D.E. Long, and J. Mogul, “Exploring the Bounds of
Web Latency Reduction from Caching and Prefetching,” Proc.
USENIX Symp. Internet Technologies and Systems (USITS ’97), pp. 13-
22, Jan. 1997.

[26] B. Lan, S. Bressan, B.C. Ooi, and Y. Tay, “Making Web Servers
Pushier,” Proc. Workshop Web Usage Analysis and User Profiling
(WEBKDD ’99), Aug. 1999.

[27] B. Lan, S. Bressan, B.C. Ooi, and K. Tan, “Rule-Assisted
Prefetching in Web-Server Caching,” Proc. ACM Int’l Conf.
Information and Knowledge Management (ACM CIKM ’00), pp. 504-
511, Nov. 2000.

[28] H. Mannila, H. Toivonen, and I. Verkamo, “Discovery of Frequent
Episodes in Event Sequences,” Data Mining and Knowledge
Discovery (DMKD), vol. 1, no. 3, pp. 259-289, Sept. 1997.

[29] A. Nanopoulos and Y. Manolopoulos, “Finding Generalized Path
Patterns for Web Log Data Mining,” Proc. East European Conf.
Advances in Databases and Information Systems (ADBIS ’00), pp. 215-
228, Sept. 2000.

[30] A. Nanopoulos and Y. Manolopoulos, “Mining Patterns from
Graph Traversals,” Data and Knowledge Eng. (DKE), vol. 37, no. 3,
pp. 243-266, June 2001.

[31] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu, “Mining Access
Patterns Efficiently from Web Logs,” Proc. Pacific-Asia Conf.
Knowledge Discovery and Data Mining (PAKDD ’00), Apr. 2000.

[32] H. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka,
“Informed Prefetching and Caching,” Proc. ACM Symp. Operating
Systems Principles (ACM SOSP ’95), pp. 79-95, Dec. 1995.

[33] V. Padmanabhan and J. Mogul, “Using Predictive Prefetching to
Improve World Wide Web Latency,” ACM SIGCOMM Computer
Comm. Rev., vol. 26, no. 3, July 1996.

[34] T. Palpanas and A. Mendelzon, “Web Prefetching Using Partial
Match Prediction,” Proc. Fourth Web Caching Workshop (WCW ’99),
Mar. 1999.

[35] J. Pitkow and P. Pirolli, “Mining Longest Repeating Subsequences
to Predict World Wide Web Surfing,” Proc. USENIX Symp. Internet
Technologies and Systems (USITS ’99), Oct. 1999.

[36] R. Sarukkai, “Link Prediction and Path Analysis Using Markov
Chains,” Computer Networks, vol. 33, nos. 1-6, pp. 377-386, June
2000.

[37] J. Shim, P. Scheuermann, and R. Vingralek, “Proxy Cache
Algorithms: Design, Implementation, and Performance,” IEEE
Trans. Knowledge and Data Eng., vol. 11, no. 4, pp. 549-562, Aug.
1999.

[38] Z. Wang and J. Crowcroft, “Prefetching in World Wide Web,”
Proc. IEEE Global Internet Conf., pp. 28-32, Nov. 1996.

Alexandros Nanopoulos received the ba-
chelor’s degree in computer science from the
Aristotle University of Thessaloniki, Greece
(1996). Currently, he is a PhD candidate in
the Computer Science Department at Aris-
totle University. His research interests include
data mining, databases for Web, and spatial
databases.

Dimitrios Katsaros received the BSc degree in
computer science from the Aristotle University of
Thessaloniki, Greece (1997). He was a visiting
researcher in the Department of Pure and
Applied Mathematics at the University of L’Aqui-
la, Italy. Currently, he is a PhD candidate in the
Computer Science Department at Aristotle Uni-
versity. His research interests include Web
databases, semistructured data, and mobile
data management.

Yannis Manolopoulos received the BEng
degree (1981) in electrical engineering and the
PhD degree (1986) in computer engineering
both from the Aristotle University of Thessaloni-
ki. Currently, he is a professor in the Department
of Informatics at Aristotle University. He has
been with the Department of Computer Science
at the University of Toronto, the Department of
Computer Science at the Univertsity of Maryland
at College Park, and the University of Cyprus.

He has published more than 100 papers in refereed scientific journals
and conference proceedings. He is a coauthor of a book entitled
Advanced Database Indexing by Kluwer. He is also the author of two
textbooks on data structures and file structures, which are recom-
mended in the vast majority of the computer science/engineering
departments in Greece. His research interests include spatiotemporal
databases, data mining, databases for Web, and performance evalua-
tion of storage subsystems. He is a member of the IEEE Computer
Society.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

NANOPOULOS ET AL.: A DATA MINING ALGORITHM FOR GENERALIZED WEB PREFETCHING 1169

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

