SHORT NOTES

Table 1. Performance comparison of systolic arrays for LU-decomposition

Diagonal
Fig. # PE I connection Preloading Execution Draining
1 n® 1 No n 3n—2 n—1
2 n(n+1)/2 1 No 0 3n-2 n—1
3 P+ (n—1)* 1 Yes 0 3n-2 1
4 n® 3 Yes n—1 3n—2 1
5 n(n+1)/2 2 No 0 3n-2 1

Hence it needs more hardware cost. But there
is no need for preloading time of 4, hence
this design has the minimum computation
time.

The array size of Fig. 4 is equal to »%, but
there is no need for processor reprogramming.
The function of PEs are fixed all the time, i.e.
the first column PESs perform division, the first
two PEs only pass data, and the inner PEs
perform the multiply-and-add operation. Its
disadvantage is that the pipelining period is
equal to 3.

The function of each PE in Fig. 5 may
change at one given moment and its pipelining
period is equal to 2. But it needs only
n*(n+1)/2 PEs and there is no need for
preloading time; it also has the advantage of
diagonal connection.

6. Conclusion

Conventional design of systolic arrays is based
on the mapping of an algorithm onto an

interconnection of processing elements. This
mapping is done in an ad hoc manner. In this
paper we present a notation of the generating
function which is a mathematical formal
approach to represent systolic arrays. With
the properties of linear algebra, it supports the
transformation between various equivalent
systolic designs.

Y-C. HOU* and J-C. TSAY

Department of Computer Science and In-
formation Engineering, National Chiao Tung
University, Hsinchu, Taiwan, 30050, R.O.C.

* To whom correspondence should be
addressed.

References

1. M. C. Chen, Synthesizing systolic designs,
International Symposium on VLSI Tech-
nology, System and Applications, pp. 209-
215 (1985).

2. Y.C. Hou and J. C. Ysay, An algebraic
model for representing equivalent designs
of systolic arrays. Proc ISMM Inter-
national Symposium, Florida, pp. 163~166
(1988).

3. K. Hwang and Y. H. Cheng, VLSI com-
puting structures for solving large scale
linear system of equations, Proc. Parallel
Processing Conference, pp. 217-227
(1980).

4. H. T. Kung, Highly concurrent systems,
Introduction to VLSI System, edited C. A.
Mead and L. A. Conway, Reading, MA ;
Addison-Wesley (1980).

5. S8.Y. Kung, On supercomputing with sys-
tolic wavefront array processors, Proc.
IEEE, 72 (7), 867-884 (1984).

6. S.Y.Kung, VLSI Array Processors.
Prentice-Hall (1988).

7. G.J. Li and B. W. Wah, The design of
optimal systolic arrays. IEEE Trans. on
Computers, C-34, 66-77 (1985).

8. D. 1 Moldovan, On the design of algo-
rithms for VLSI systems. Proc. IEEE, 71
(1),m 113-120 (1983).

9. J.C.Tsay and Y.C.Hou, Generating
function and equivalent transformation
for systolic arrays, to appear in Parallel
computing, North-Holland.

10. S. Yuan, 4n Aigebraic Notation for the
Design and Verification of Systolic Arrays,
M.S. Thesis, National Chiao Tung Uni-
versity, Hsinchu, R.O.C. (1987).

Reverse Chaining for Answering Temporal
Logical Queries

A possible structure for the past data of a
partitioned temporal database is reverse field
chaining. Under this technique field versions are
chained by descending time. Exact analysis
derives the expected number of block accesses
when logical queries against a partitioned
temporal database with reverse chaining are
satisfied. Numerical results are given.

Received November 1989, revised November
1990

1. Reverse chaining

A very efficient structure for answering queries
based on secondary key values against a
temporal database is reverse chaining, ac-
cording to which field versions are chained by
decreasing time. The motivation of the present
work is a previous effort on the performance
analysis of such systems, where a formula was
given deriving the cost of answering logical
queries by using reverse chaining. However, the
analysis was approximate and resulted in a
pessimistic evaluation. Here, we give an im-
proved mechanism for traversing many reverse
chains by using some sort of parallelism instead
of a one-a-time chain processing.

Suppose that the original layout of a record
from a personel file of a conventional database
is:

EMP(empno,name,position,salary).

This file in database applications with time
support should have a different layout. If field
version chaining is applied and the user queries

concern the fields ‘ position’ and ‘salary’ then
the previous layout should be:

EMP(empno,name,position, p_chain,
salary,s_chain,time)

Figure 1 is a graphical representation of this
layout. .

Suppose that the following logical query is
posed in this file form: ‘Retrieve the salaries
and the positions of empno = x for the past
three years’. This logical query is decomposed
in two simple queries as: ¢ Retrieve the salaries
of empno = x for the past three years’ and
‘Retrieve the positions of empno = x for the
past three years’.

In the absence of any indexes for accessing
history data the relevant records should be
retrieved by following the two chains. In Ref.
I it was assumed that the two chains are
followed independently from each other.
Therefore the total cost was considered to be
the sum of the costs for answering each single
query, where the cost of each single query is
given by the ubiquitous formula by Yao?® for
the expected number of block accesses when a
number of fixed length file records is randomly
selected.

The two chains of records may pass through
the same blocks. If great buffer space is
available then block accesses may be saved by
navigating simultaneously through the chains
instead of searching the chains one after the

other. These savings are possible because the
past data file, in essence, may be considered as
a sequential heap with the attribute ‘time’,
standing for ‘valid time from’ or ‘transaction
time’, as the primary key record.

The term simultaneous navigation needs
some explanation. Every block appended to
the heap file has greater address than the
predecessor blocks ones’. This block, also,
contains records with ‘time’ field values
greater than the corresponding values of the
previous blocks. The search in one chain is
performed by following the pointer to the next
version in the chain (previous in time). The
chain to be processed next will be chosen by
following the rule: pick the chain pointing to
a block with address greater than the address
pointed by the other chain. Evidently, it is not
certain that any two consecutive searches do
correspond to the same chain. If the block to
be fetched resides already in main memory,
because it belongs to the other chain too, then
no I/O cost is paid. Instead, negligible CPU
cost is paid to examine the records of the
specific block, read the two chain pointers and
decide which one to follow. This method is
similar to the traversing of multilist files in
parallel as reported by Claybrook?®. In addition
if the cost has to be computed in advance for
taking decisions on query optimization, then
the cost of independent chain search should be
replaced by the cost of simultaneous chain
search. This is the contribution of our work.

empno [name | position

p_chain { salary

s_chain | time

Figure 1. Temporal database record layout.

666 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

£T0Z ‘92 A2\ Uo ABojouyoa] Jo safs|jo) JeybiH e /Bio'sfeuinolp.io)xo’ julwody/:dny woly pspeojumod

http://comjnl.oxfordjournals.org/

In Figure 2 the first (second) chain connects
versions of the field ‘position”’ (‘salary’). The
first pointer of the first (second) chain points
to block A (B). Block A instead of block B is
retrieved since its address is greater. The
second pointer of the first chain points to
block C. Therefore, block B is retrieved since
its address is greater than the address of block
C. The second pointer of the second chain
points to block C; block C is accessed.
Searching will be continued by following again
the first chain because the appropriate pointer
points to block D with address greater than
the address of block E pointed by the pointer
of the second chain. Thus block D is retrieved.
Then block E is retrieved as pointed by the
pointer of the second chain and the method
continues in this way.

2. Analysis for reverse chaining

Suppose that the past data consist of R fixed
length records which occupy B blocks. The
block capacity is bc = R/B. First, consider
that the logical query may be decomposed in
two simple ones. Suppose, also, that each
simple query is satisfied by r, records (1 <i
< 2). These r, records reside in b, blocks in
optical storage. The expected number of block
accesses is equal to Ref. 3:

b= B [l _comb (R~ bc, r,)]

comb(R,r)

where comb(a,b) is the a-choose-b combi-
nation.

However, to the author’s knowledge, deri-
vation of the probability distribution of the
number of block accesses for retrieving a
specific number of records lacks in literature.
This distribution is:

comb (B, b)) b

——3 II comb(bc, n,).
comb(R,r) .,

Zngmr,

n,#o

P(b,) =

This formula is explained as follows. The r,
records are distributed in b, blocks, where b,
ranges from 1 to r,. The product [T consists of
b, combinations. Each combination represents
the number of ways that n, records may be
selected out of the bc records of the block. The
constraint n,+ 0 assures that the r, records are
selected from b, blocks exactly and not less
than b,. The condition X n, = r, ensures that
all the possible selections ofZ the r, records will
be selected out. The summation of the
products multiplied by the number of ways
that b, blocks may be selected out of the B file
blocks, which is comb (B, b,), gives the total
number of ways that the b, blocks with r,
records may be selected out of the B file
blocks. This number is divided by the number
of possible selection of the r, records out of R
file records. The probability distribution
follows.

1t is clear that the following relations hold:

S Py = |

b1

and

s b‘P(b,)=Bt[l

bl

comb(R—bc,r,)
comb(R,r) |

SHORT NOTES

Table 1. Cost examples for answering two logical queries

ity 53 54 55 10,3

Cost A 7.44 8.36 9.22 11.20
Cost B 6.82 7.50 8.15 10.01

10,4 10,5
12.08 1293
10.52 11.02

Table 2. Cost example for answering three logical queries

rs 8 9 10 8,9 8,9,10
Cost A 6.94 7.65 8.32 14.58 2291
CostB — — — 11.93 15.29

Consider again that each simple query
retrieves b, blocks. Some of the b, and b,
blocks may be identical. In the sequel by v, we
denote the number of blocks selected out of
the b, blocks which do not overlap with some
of the b, records. Apparently v, may range
from 0 to b,. The expected number of block
accesses to satisfy the two simple queries is
given by the following relation:

bZ
2 (by+uy)

v,=0

costy = ——————
comb (B, b,)

x comb (B—b,,v,)comb (b, b,~v,).

The combinations of the summation give the
number of ways that the v, out of the b, blocks
do not hit blocks selected by the first query,
while b, —v, blocks coincide with some of the
b, blocks. The corresponding cost is (b, +v,)

Magnetic storage

! !

block accesses. Finally, the denominator gives
the number of ways that the b, blocks may be
selected out of the B file blocks.

Therefore, the total cost for answering a
logical query decomposed in two simple
queries is:

Totcost, = Zl) Zz] P(b,) P(b,) cost,.

b1 byl

If the logical query may be decomposed in
three simple queries then the total cost is:

Totcosty= 5 % 5 P(b,) P(by) P(by) cost,,

0,701 byl byl

where a more complicated approach is necess-
ary for deriving a new formula for cost,. This
cost is:

Optical storage

j Block A

I
Llll«f?d l\\:Lll/lf[Jll
| \ iT'meL 4 I
AN f I / IBlockB
\ .
\{ A I 7Y
/=
/ I
/ (/l jBIOCkC
\ Ny I w—i
\ : e :
~C T Bl 1T]
: / :
T |
////i jBIOCkD
N I 73 W 1
(e i

Figure 2. Partitioned database and two reverse chains.

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 667

£T0Z ‘92 A2\ Uo ABojouyoa] Jo safs|jo) JeybiH e /Bio'sfeuinolp.io)xo’ julwody/:dny woly pspeojumod

http://comjnl.oxfordjournals.org/

1 be

)
comb (B, b,)comb (B, ;) ,,

coSty =

b.
x 3 (by+v,+0;)comb (B—b,,0;)
vy~0
x comb (b,, b, —v,)comb (B—b, —v,, v,)
x comb (b, +v,, b;—v,).
After applying the binomial coefficient proper-
ties it is derived that:

b, by

cost, = cOSty+——— L L
N *" comb (B, b,) . g 4.0

x vycomb (B—b, —v,,v;)
x comb (b, +v,, by —vy).
Therefore, finally the total cost for a logical
query decomposable in n simple ones is:

Totcost, = ¥ ... T Il P(b)cost,,

b=l bp=1{=1

where cost,, is a recursive function of the form:

SHORT NOTES

b2 bil
cost,=cost, ,+———— % ... X
" comb (B, b0 o0
xv,comb(B—f,—1,v,)comb(f, —1,0,).

The quantity f,_, gives the number of blocks
which have been already accessed by the
previous (n—1) queries and is defined as:

fo=b+Z 0.
=2
3. Numerical results

The following tables depict some simple
numerical results. It is assumed that R = 100
records and B = 20 blocks; therefore, the
block capacity is b¢c = 5. Cost A is the mean
cost for answering the two queries indepen-
dently of each other, while Cost Bis the mean
cost if the two queries are answered by using
the method described in the second section.
Table 1 concerns two logical user queries. As
expected, greater are the query sizes greater is
the gain. Table 2 gives a simple example to
show that, as expected again, the gain is
greater for greater number of logical queries.

Acknowledgement

Many thanks are due to Antonis and Christos
Aletras for their help in experimentation.

Y. MANOLOPOULOS

Division of Electronics and Computer Eng.,
Department of Electrical Eng., Aristotelian
University of Thessaloniki, 54006
Thessaloniki, Greece

References

[. I. Ahn and R. Snodgrass, Partitioned
Storage for Temporal Databases, Infor-
mation Systems, Vol. 13, No. 4, pp.
369-391 (1988).

2. B. G. Claybrook, File Management Tech-
nigues, John Wiley (1983).

3. S. B. Yao, Approximating Block Accesses
in Database Organizations, Com-
munications of ACM, 20, (4), 260-261
(1977).

Book Review

JaMES W. Hooper and ROWENA O. CHESTER,
Software Reuse Guidelines and Methods,
Plenum Press, New York and London, 1991
$45.00. ISBN 0-306-43918-2

The idea of reusing software has its origins in
the very earliest days of computing when
subroutine libraries were first introduced, but
its conscious development as a technique with
the potential for substantially reducing soft-
ware development costs is much more recent.
Although the concept of reducing costs
through extensive software reuse seems at first
to be simple and obvious enough, formidable
practical obstacles have to be surmounted.
These range from purely technical issues such
as ways of generalising subroutine interfaces
to significant managerial and organisational
issues such as the best way of organising a
large software production operation to take
maximum advantage of any potential for
reuse.

These issues have been addressed in a large
number of research projects addressing

different aspects of the problem of encouraging
the introduction of widespread software reuse,
but reuse involves so many widely different
issues that it is often hard to interrelate the
different aspects of the overall problem. With
the present book, a general picture of the
whole field emerges, and it is hard to over-
estimate the importance of this for further
progress in making widespread reuse a reality.
The book arises from a research project
sponsored by the US Army: it comprises a
very detailed and well-structured commentary
on the technical literature on reuse, with
accounts of case studies and recommended
guidelines for future practice added at ap-
propriate points.

After an introductory chapter, separate
chapters deal with managerial and with tech-
nical guidelines for the introduction of soft-
ware reuse, concluding with a brief chapter on
‘Getting Started’. The accounts of relevant
technical literature are very perceptively writ-
ten, and many sections conclude with recom-
mended guidelines for future practice — all the

guidelines are collected together in a Ap-
pendix, with guidelines for reusable Ada code
given separately. An extremely comprehensive
range of references is given: somewhat con-
fusingly references are given both at the ends of
the chapters and in an integrated bibliography
at the end of the book.

Anyone who thinks seriously about the
problems of software reuse will realise that
this is a complicated problem involving both
technical and managerial issues, and that
different contributions to the subject are often
hard to relate even to one another. With this
book, there is at last a unifying overview of the
whole range of problems relating to software
reuse that are carefully and perceptively
related to each other and distilled into a series
of detailed guidelines for future practice. As
an overall tutorial introduction to software
reuse and its problems coupled with its guide-
lines for future practice, the book deserves a
wide readership.

PETER WALLIS
Bath

Announcement

1-5 MARcH 1993

CAIA-93, the Ninth IEEE Conference on
Artificial Intelligence for Applications,
Disneyworld Hilton — Orlando, Florida

The conference is devoted to advancing the
application of artificial intelligence techniques
to real world problems. This conference

provides a forum for synergy between applic-
ations and AT techniques. Emphasis at this
year’s conference will be on new Al paradigms
that can have or have had an impact on
applications.

Partial list of invited speakers: Patrick
Winston, MIT and Ascent Technology,
‘Learning and Database Mining’; Wendy
Lehnert, University of Massachusetis, ‘ What
we've learned from the DARPA Natural
Language Initiative’.

668 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

@ 1-2 March 1993: Conference tutorial pro-
gramme

® 3-5 March 1993: Conference technical
programme

For registration and additional conference
information, contact:

CAIA-93, IEEE Computer Society, 1730
Massachusetts Avenue, NW, Washington, DC
20036-1903. Phone: 202-371-1013.

£T0Z ‘92 A2\ Uo ABojouyoa] Jo safs|jo) JeybiH e /Bio'sfeuinolp.io)xo’ julwody/:dny woly pspeojumod

http://comjnl.oxfordjournals.org/

