
Fringe Analysis of 2–3 Trees with
Lazy Parent Split

ANTIGONI MANOUSAKA AND YANNIS MANOLOPOULOS

Department of Informatics, Aristotle University, Thessaloniki 54006, Greece
Email: manolopo@delab.csd.auth.gr

B-trees with lazy parent split (lps) are B-tree variants, according to which parent splits are
postponed until a future access of the latter node. This way, the number of splits during an
insert is decreased and the number of locks is also decreased. Consequently, better concurrency
is achieved. In this paper 2–3 trees with lps are studied. Fringe analysis is used to obtain bounds
on some performance metrics of 2–3 trees with lps. The performance metrics of 2–3 tree with lps
are compared with those of the classical 2–3 trees. The conclusions are that 2–3 trees with lps have
slightly better performance, more keys in the fringe, larger storage utilization and a slightly shorter

path length from the root to the leaves.

Received 19 May 1998; revised 12 September 2000

1. INTRODUCTION

In a multi-user database environment, a basic task is to
perform concurrent operations on the underlying access
methods. For this reason, locking is used to avoid
inconsistency of data. In the past, several variants and
algorithms have been proposed to support locking for the
structures of the B-trees family, which is the most important
access method used for storing alphanumerical data in any
commercial database management system [1, 2, 3, 4].

A B-tree with lazy parent split (lps) is a B-tree variant
aiming at improving concurrency [5, 6, 7, 8], which is an
important parameter in database management systems and
file organizations for multi-user environments. The lps
technique is used to decrease the number of node splits
during an insert operation; therefore, the number of locks
is decreased and as a consequence enhanced concurrency is
achieved. It has been shown that B-trees with lps achieve
better storage performance [6]. However, a theoretical proof
of this remark was lacking from the literature. On the other
hand, fringe analysis is a tool used to derive expressions for
various tree characteristics [9, 10, 11, 12]. In the present
paper, fringe analysis will be used to study the performance
of 2–3 trees (e.g. B-trees with degreed = 1) with lps.
Generally, an improvement of one parameter of a structure,
such as concurrency, can only be achieved at the cost of other
parameters. We shall prove that in 2–3 trees with lps the gain
in concurrency is accompanied by larger storage utilization,
more keys in the fringe etc.

The rest of this work is organized as follows. In Section 2,
the structure of B-trees with lps is defined, and insertion
examples are given to demonstrate the basic mechanism. In
Section 3 the fringe analysis method is briefly described. In
Section 4 the model of a 2–3 tree with lps suitable for fringe
analysis is formalized and fringe analysis is performed. In
Section 4.2 the lps technique is restricted to the lowest level.

In Section 4.3 the lps technique is used in any level, except
in the case of Theorem 14 where it is assumed that the lps
technique is restricted to the two lowest levels. Finally,
the last section contains a discussion on various issues and
carries out a comparison with standard 2–3 trees.

2. B-TREES WITH LAZY PARENT SPLIT
A B-tree of degreed is a balanced tree with the following
properties:

• every node except the root has at leastd keys and at
most 2d keys,

• the root is either a leaf or has at least one key and at
most 2d keys,

• everyk-key node except the leaves hask + 1 children,
and

• all leaves appear at the same level.

Insertion of a new key into a node containing less than
2d keys is a an easy task. To insert a new key into a 2d-key
node, the latter node is split into twod-key nodes, the middle
key is inserted into the parent and the insertion process is re-
peated one level up. Ford = 1 the B-tree is called a 2–3 tree.

A B-tree with lps of degreed is a balanced tree with the
following properties [5, 6]:

• every node except the root either has at leastd keys and
at most 2d keys or is a double node,

• the root is either a leaf or has at least one key and at
most 2d keys or is a double node,

• a double node consists of two sibling nodes,
• everyk-key node except the leaves hask + 1 children,

where no more than one child can be a double node,
• a node is called a flagged node if one of its children is

a double node, when a flagged node is accessed due to
any operation, a clean-up operation is performed, and

• all leaves appear at the same level.

THE COMPUTER JOURNAL, Vol. 43, No. 5, 2000



FRINGE ANALYSIS OF 2–3 TREES WITHLAZY PARENT SPLIT 421

FIGURE 1. Insertion of key 8 into a 2–3 tree with lps (symbol∗
shows the flagged node).

FIGURE 2. Insertion of keys 13 and 4 into the last instance of
Figure 1.

In [6] insertion and deletion algorithms have been given.
When inserting a new key into a node containing less than
2d keys, it is placed among the other keys. When inserting a
new key into a 2d-key node, the parent is checked first. If the
parent has less than 2d keys, then the node is split into two
d-key nodes and the middle key is placed among the parent
node keys. If the parent has exactly 2d keys, then first the
node is temporarily split into twod-key nodes, and then the
middle key is inserted into the first of the two nodes to form
a double node. In this last case, no new key is posted to the
parent but a flag is set to indicate the child which is a double
node. In Figure 1 a simple insertion example is shown for a
2–3 tree with lps, where sibling nodes are connected with a
horizontal pointer.

The next time that the flagged node is accessed due to any
operation, a clean-up operation will be performed before any
subsequent operation takes place below the specific point.
More specifically, the double node will become two ordinary
nodes and the insertion process will continue by posting
the middle key (temporarily stored in the left sibling) up
to the parent node. This means that the flagged node, the
left node of its double node child, and perhaps the parent
of the flagged node (if it has less than 2d keys), will be
changed, and thus they have to be locked. This way, the
number of locked nodes is minimized and improvement in
concurrency is achieved, while the clean-up operation is
performed during the top–down traversing towards the leaf
level. The example in Figure 2 demonstrates this case.

FIGURE 3. The closed tree collection of 2–3 trees of height 1.

As a consequence of the lps technique, paths from the
root down to leaves do not have the same length. Every
time a right sibling node is accessed the path length is
increased by one, although a level change is not considered
to be performed. Classical fringe analysis considers only
insertions [11]; some attempts to include deletions in
the analysis have been made for AVL-trees and B-trees.
However, the random model does not apply after deletions,
and a different model must be used [9]. Such a model,
called the ‘ghost’ model, was used in [13]. The term ‘ghost’
has been used for the reason that, although an item may
have been deleted, it destroys randomness and affects the
probability distribution of subsequent insertions. For this
reason, no further explanations are given about how clean-up
is performed in the case of deletions.

3. FRINGE ANALYSIS

Fringe analysis is a method first introduced by Yao in 1978
[12] and formalized by Eisenbarthet al. in 1982 [11]. The
interested reader may find a recent review on fringe analysis
in [9].

A tree with N keys divides all possible key values into
N + 1 intervals. An insertion into the tree is said to
be a random insertion if it has an equal probability of
corresponding to any of theseN+1 intervals. A random tree
is a tree constructed by random insertions into an initially
empty tree. Fringe analysis considers random insertions and
random trees. We call the analysis of the lowest level of a
tree ‘first order analysis’ and, generally, the analysis of thek

lowest levels ‘k-order analysis’. The fringe of a tree during
k-order fringe analysis is obtained by deleting all nodes at a
distance greater thank levels from the leaves.

The isomorphic subtrees of the fringe are considered as
one tree type, so that a tree collectionC consisting of all
possible tree types, which are numbered sequentially, can be
derived. We say that a tree collectionC is ‘closed’ if [11]:

1. for allT in C an insertion intoT always leads to one or
more members ofC, and

2. the effect of an insertion on the composition of
the fringe of a random tree is determined only by
the subtree of the fringe in which the insertion is
performed.

Figure 3 shows the closed tree collection of 2–3 trees with
height equal to 1. Fringe analysis assumes a closed tree
collection. The probability that an insertion into one tree
leads to another tree depends only on the types of the two
trees involved.

The composition of the fringe can be described via the
probability that a randomly chosen leaf of the tree belongs
to each member of the corresponding closed tree collection.

THE COMPUTER JOURNAL, Vol. 43, No. 5, 2000



422 A. MANOUSAKA AND Y. M ANOLOPOULOS

We call a leaf a ‘typei leaf’ if it belongs to a tree of typei.
The probability that a leaf is of typei in anN +1-leaves tree
is

pi(N) = (Expected number of leaves of typei

in a tree withN keys)(N + 1)−1. (1)

Let Ai(N) be the expected number of trees of typei in a
random search tree withN keys. LetLi be the number of
leaves of the typei tree. Equation (1) can be written as

pi(N) = Ai(N)Li

N + 1
. (2)

From [11] it is known that the probability of an
insertion occurring in each of the subtrees of the fringe
can be obtained from the steady-state solution of a matrix
recurrence relation in a Markov chain. Letm be the number
of members of the closed tree collectionC. Let p(N) be
anm component column vector consisting of the probability
valuespk(N) as in Equation (1). Then

p(N) =
(

I + H

N + 1

)
p(N − 1) (3)

whereI is them × m identity matrix andH is anm × m

matrix called the transition matrix of the fringe analysis
problem. The elements in the diagonal ofH represent the
number of leaves lost due to an insertion minus one, and off-
diagonal elements represent the number of leaves obtained
for each type times the probability that each type is reached
in a transition. In general,

hij = 1

Lj

Lj∑
k=1

lij (k) − δij (Lj + 1) (4)

where δij is the Kronecker symbol,Lj is the number of
leaves of aj -type tree andlij (k) is the number of leaves
of typei that will be generated at an insertion into thek leaf
(k ∈ [1, . . . , Lj ]) of a j -type tree.

A fringe analysis is called ‘connected’ if there is anl ∈
[1 . . .m] such that det(Hu) 6= 0, whereHu is matrixH with
the lth column andlth row deleted. Letλ1, . . . , λm be the
eigenvalues ofH . They can be ordered so thatλ1 = 0 and
0 > Reλ2 ≥ Reλ3 ≥ . . . ≥ Reλm.

Let x1 be the right eigenvector ofH corresponding to
λ1 = 0. Then there is ac such that for every vectorp(N)

|p(N) − cxi| = O(NReλ2) (5)

wherep(N) is defined by Equation (3).
Consider them × m transition matrixH of a connected

fringe analysis case. Equation (5) says thatp(N), the
m-component column vector solution of Equation (3),
converges to the solution of

Hq = 0 asN → ∞ (6)

whereq is also anm-component column vector which is
independent ofN , and

p(N) = ax1 + O(NReλ2) (7)

FIGURE 4. The first three steps.

FIGURE 5. The fourth step.

where x1 is the right eigenvector ofH corresponding to
eigenvalueλ1 = 0, anda is a constant.

In the next section, fringe analysis will be used to examine
the performance characteristics of 2–3 trees with lps.

4. ANALYSIS OF 2–3 TREES WITH LPS

4.1. Notation

In Figure 4 keys are indicated by dots, and the evolution
of an initially empty 2–3 tree with lps, where 3 keys are
inserted, is shown. Evidently, this is the tree collection for
2–3 trees with lps of height 1. If a new key has to be inserted
in the rightmost instance of the latter figure, then according
to the clean-up phase the leftmost instance of Figure 5 is
derived. Afterwards one of the two remaining structures of
the same figure will be produced.

The performance metrics which will be computed are
defined as follows.

1. Letf (N) be the expected number of keys in the fringe
of a tree.

2. Letn(N) be the expected number of ‘equivalent single
nodes’ in a 2–3 tree with lps after the random insertion
of N keys into an initially empty structure. During
computation ofn(N), every double node is counted as
two nodes.

3. Let Pr{0 splits} be the probability that 0 splits occur on
the (N + 1)th random insertion into a structure withN
keys.

4. Leth(N) be the expected path length of a tree withN

keys. The length of a path in a B-tree with lps is the
number of levels plus the number of right sibling nodes
across the path. The length of any path in a B-tree is
the tree height or the number of tree levels.

4.2. Second-order analysis

In second-order analysis the two lowest levels are examined.
The lps technique is restricted to the lowest level to have a
closed tree collection. The total number of 2–3 trees with
lps of height 2 is 24 distinct structures. These 24 trees are
grouped into 11 tree types so that symmetrical structures
(i.e. structures with the same subtrees of level 1) belong
to the same type. Figure 6 shows the two-level closed

THE COMPUTER JOURNAL, Vol. 43, No. 5, 2000



FRINGE ANALYSIS OF 2–3 TREES WITHLAZY PARENT SPLIT 423

FIGURE 6. Closed tree collection 2–3 trees with lps of height 2.

−5 0 0 0 0 0 4 0 20/9 12/5 0
5 −6 0 0 0 0 5 0 40/9 2 5
0 12/5 −7 0 0 0 0 0 4/3 12/5 12/5
0 18/5 0 −7 0 0 0 0 2 0 18/5
0 0 7 7 −8 0 0 0 0 21/5 0
0 0 0 0 32/7 −9 0 0 0 0 0
0 0 0 0 24/7 0 −9 0 0 0 0
0 0 0 0 0 9/4 0 −10 0 0 0
0 0 0 0 0 27/4 0 0 −10 0 0
0 0 0 0 0 0 0 20/3 0 −11 0
0 0 0 0 0 0 0 10/3 0 0 −11

FIGURE 7. Transition matrix for the closed tree collection 2–3 trees with lps of height 2.

FIGURE 8. Insertions in type 10 and type 11 trees.

tree collection, whereas Figure 7 shows the corresponding
11× 11 transition matrix.

Although types 10 and 11 seem symmetrical cases, they
are treated as different because an insertion into any type 10
tree gives different tree types to those produced by an
insertion into a type 11 tree. For instance, as depicted in
Figure 8, any insertion into the left tree belonging to type 10

will produce one type 3 tree and one type 1 tree. On the
other hand, any insertion into the right tree of type 10 will
produce one type 1 and one type 3 tree. However, these tree
types cannot be produced by any insertion into a type 11 tree.

Using Equation (6), Table 1 is obtained. The eigenvalues
of H of Table 1 are

0,−6.55± 6.25i,−7,−9,−9.23± 1.37i,

− 10,−11,−11,−13.44.

According to Equation (7) the asymptotic values ofp(N)

are approximated to O(N−6.55).

THEOREM 1. The expected number of keys in the fringe
of a 2–3 tree with lps containingN keys is

f (N) = (N + 1)
514,927

615,307
+ O(N−6.55). (8)

Proof. Let Ki be the number of keys of the typei tree as
depicted in the closed tree collection of Figure 6. From

THE COMPUTER JOURNAL, Vol. 43, No. 5, 2000



424 A. MANOUSAKA AND Y. M ANOLOPOULOS

TABLE 1. Probability valuesp(N) for a random 2–3 tree with lps
of height 2.

p1 = 8496/87,901 ' 0.09665
p2 = 17,880/87,901 ' 0.20341
p3 = 55,152/615,307 ' 0.08963
p4 = 7128/55,937 ' 0.12743
p5 = 1575/7991 ' 0.19710
p6 = 800/7991 ' 0.10011
p7 = 600/7991 ' 0.07508
p8 = 180/7991 ' 0.02253
p9 = 540/7991 ' 0.06758
p10 = 1200/87,901 ' 0.01365
p11 = 600/87,901 ' 0.00683

Figure 6 it is noted thatKi = Li − 1 for all trees. From
Equation (2) one obtains

Ai(N) = (N + 1)
pi(N)

Li

⇒

f (N) =
∑

i

Ai(N)Ki =
11∑
1

(N + 1)piKi

Li

= (N + 1)

11∑
1

pi(Li − 1)

Li

= (N + 1)

(
1 −

11∑
1

pi

Li

)
.

From Table 1 and Figure 6 one obtains

f (N) = (N + 1)
514,927

615,307
+ O(N−6.55)

' 0.83686(N + 1). 2

THEOREM 2. The expected number of ‘equivalent single
nodes’ in a random 2–3 tree with lps containingN keys is
bounded by

414,273

615,307
N − 213,239

1,230,614
+ O(N−6.55)

≤ n(N) ≤ 464,463

615,307
N − 150,844

615,307
+ O(N−6.55)

or, to five decimal places, by

0.67328N + 0.17328≤ n(N) ≤ 0.75485N − 0.24515.

Proof. Let nf be the number of equivalent single nodes in
the fringe. Letna be the number of nodes above the fringe.
Let Ni be the number of nodes of a tree of typei. Then

n(N) = nf + na.

The tree above the fringe is a 2–3 tree. Therefore, based on
the 2–3 tree definition, it easily follows that

nl − 1

2
≤ na ≤ nl − 1

wherenl is the number of leaves of the tree above the fringe
(or, equivalently, the number of the trees of the fringe),

nl =
11∑
1

(N + 1)pi

Li

,

nf =
11∑
1

(N + 1)piNi

Li

.

Then

1

2

11∑
1

(N + 1)pi

Li

+
11∑
1

(N + 1)piNi

Li

− 1

2

≤ n(N) ≤
11∑
1

(N + 1)pi

Li

+
11∑
1

(N + 1)piNi

Li

− 1.

This inequality, Table 1 and Figure 6 lead to the theorem.2

THEOREM 3. The probability that no split occurs on
the (N + 1)th random insertion into a 2–3 tree with lps
containingN keys is:

Pr{0 splits} = 272,644

615,307
+ O(N−6.55).

Proof. An insertion into the type 1 tree shown in Figure 6
causes no split, an insertion into the type 2 tree causes
no split two-fifths of the time, and so on. The following
expression is obtained by observing Figure 6:

Pr{0 splits} = P1 + 2

5
P2 + P4 + 4

7
P5 + 2

8
P6

= 272,644

615,307
+ O(N−6.55) ' 0.44310. 2

THEOREM 4. The expected path length of a 2–3 tree with
lps containingN keys is upper bounded by

h(N) ≤ log2(N + 1) − 0.57795.

Proof. Let ka indicate the number of keys above the fringe.
The heightha of the classic 2–3 tree above the fringe is
bounded by

dlog3(ka + 1)e ≤ ha ≤ blog2(ka + 1)c
where the lower and the upper bound on the height are
obtained when each node of the 2–3 tree contains 2 keys
and 1 key respectively. Lethf indicate the path length of the
fringe. The following expression is obtained by observing
Figure 6:

hf = 2(p1 + p2 + p3 + p4 + p5 + p6 + p8)

+
(

2
6

8
+ 3

2

8

)
p7 +

(
2

7

9
+ 3

2

9

)
p9

+
(

2
8

10
+ 3

2

10

)
(p10 + p11)

⇒ hf = 179,132

87,901
+ O(N−6.55) ' 2.03788.

THE COMPUTER JOURNAL, Vol. 43, No. 5, 2000



FRINGE ANALYSIS OF 2–3 TREES WITHLAZY PARENT SPLIT 425

Then

h ≤ E[blog2(ka + 1)c + hf ] ≤ E[log2(ka + 1) + hf ].
Using Jensen’s inequality one obtains

h ≤ log2(E[ka + 1]) + hf . (9)

But
E[ka] = N − f (N).

From Theorem 1 it is known that

f (N) = (N + 1)
514,927

615,307

and

E[ka] + 1 = (N + 1)
100,380

615,307
.

Then

h ≤ log2

(
(N + 1)

100,380

615,307

)
+ 179,132

87,901

≤ log2(N + 1) − 0.57795. 2

THEOREM 5. Let ti be the probability that a tree of the
fringe is of typei in an (N + 1)-leaves tree. Then

ti = pi

Li

1∑
j (pj/Lj )

wherej ranges from 1 to the number of tree types.

Proof. Let S be the number of trees of the fringe. The
number of leaves of typei is tiSLi or, equivalently,pi(N +
1). Then

tiLiS

pi(N + 1)
= 1 ⇒ ti

pi/Li

= 1∑
j (pj/Lj )

.

Thus the theorem follows. Table 2a gives the probability
values that a tree of the fringe is of typei in an (N + 1)-
leaves tree for the case examined. 2

THEOREM 6. Letnpi be the probability that a node of the
fringe belongs to a tree of typei in an (N + 1)-leaves tree.
Then

npi = Nipi

Li

1∑
j Nj (pj/Lj )

(10)

wherej ranges from 1 to the number of tree types.

Proof. Similar to that of Theorem 5. Table 2b gives the
probability values that a node of the fringe of a random 2–3
tree with lps is of typei, for the case examined. 2

THEOREM 7. Let ‘space utilization’,su, be the ratio of
the total number of keys to the number of keys if all nodes
were full. The expected value of space utilization of the
fringe of a 2–3 tree with lps of height 2 computed to five
decimal places is

su = 0.70716.

TABLE 2. Random 2–3 trees with lps of height 2. (a) probability
that a tree of the fringe is of typei, (b) probability that a node of
the fringe belongs to a tree of typei.

(a) (b)

t1 ' 0.14812 np1 ' 0.12251
t2 ' 0.24937 np2 ' 0.20626
t3 ' 0.09157 np3 ' 0.07574
t4 ' 0.13019 np4 ' 0.14357
t5 ' 0.17259 np5 ' 0.19034
t6 ' 0.07671 np6 ' 0.08456
t7 ' 0.05753 np7 ' 0.07931
t8 ' 0.01534 np8 ' 0.01692
t9 ' 0.04603 np9 ' 0.06345
t10 ' 0.00837 np10 ' 0.01154
t11 ' 0.00418 np11 ' 0.00577

Proof. The space utilization of a node of typei is Ki/2Ni .
According to Theorem 6 the probability that a fringe node is
of typei is

npi = Nipi

Li

1∑
j Nj (pj /Lj )

.

The expected value of the space utilization is

su =
11∑
1

npi
Ki

2Ni

= C

2

(
1 −

11∑
1

pi

Li

)

where

C = 1∑11
1 Nj (pj/Lj )

.

Table 1 and Figure 6 lead to the theorem. 2

THEOREM 8. Let n(N)/(N/2) be the storage used by a
2–3 tree. Then

1.34656+ 0.34656N−1 + O(N−6.55)

≤ n(N)

N/2
≤ 1.50970− 0.49030N−1 + O(N−6.55)

where N/2 represents the number of nodes when all the
nodes of the tree contain 2 keys exactly.

Proof. From Theorem 2 it follows that

414,273

615,307
N − 213,239

1,230,614
+ O(N−6.55)

≤ n(N) ≤ 464,463

615,307
N − 150,844

615,307
+ O(N−6.55).

Thus the theorem follows. 2

4.3. An alternative approach

In this section, the aim is a two-level analysis of 2–3 trees
with lps, where double nodes may appear in the two lowest
levels. The difficulties of such an analysis will be shown and
bounds will be derived.

THE COMPUTER JOURNAL, Vol. 43, No. 5, 2000



426 A. MANOUSAKA AND Y. M ANOLOPOULOS

FIGURE 9. Collection of 2–3 trees of height 2 with lps and a double node as root.

FIGURE 10. (a) A tree with a double node as root; (b) and (c) the
two trees that will be produced just before a key insertion in (a).

The collection of trees consists of those presented in
Figure 6 and Figure 9. The insertion of a new key into any
of the trees of type 7, 9, 10 or 11 of Figure 6 will cause
the creation of either two separate trees or one tree with a
double node as root, depending on the parent node one level
up. It is clear that the second necessary condition for a tree
collection to be closed1 is not satisfied. Therefore, a closed
tree collection that is required by fringe analysis has to be
achieved.

Here, we are going to transform the original tree
collection to a closed one. It is known that a key insertion
into any of the trees of Figure 9 will change the double root
node to two separate nodes before the new key is inserted
into the appropriate leaf. Figure 10 shows a tree with a
double node as root, and the two separate trees that will be
produced just before a key insertion. This first step before
a key insertion allows us to break the double root node into
two nodes and to use the two new trees instead of the original
one to form a closed tree collection. The right trees are
already members of the tree collection of Figure 6. The left

1As mentioned in Section 3, the effect of an insertion on the composition
of the fringe of a random tree is determined only by the subtree of the fringe
in which the insertion is performed.

trees, shown in Figure 11, are new trees that will be added to
the tree collection of Figure 6. The type these trees belong to
is also shown in Figure 11. We choose to group the left part
of the original tree in the same tree type with the separate
tree produced by an insertion to the right part of the original
tree. A key insertion in the right part of a tree of Figure 9 will
cause the left part of the tree to be changed. The left part of
the original tree and the separate left tree produced by the
key insertion belong to the same tree type. Therefore, the
change that occurs does not affect fringe analysis. Figure 12
shows a tree with a double node as root and the two trees
that are used in fringe analysis instead of it. An insertion in
the tree (c) of Figure 12 will cause the tree (b) of Figure 12
to be changed to the tree (b) of Figure 10.

The types of trees studied in this subsection are the
same as those of the previous one, although more trees are
included in types 1, 2, 3, 4 and 5. All the trees of the
same tree type have the same number of leaves2 and the
same number of nodes, but may differ in the number of keys
and/or in the mean path length. The transition matrix is that
of Figure 7, whereas the probability values of Table 1 are
also valid.

THEOREM 9. The probability ps that a tree is not a
separate tree connected to a parent node one level up, but the
right part of a tree whose root is a double node, is bounded
by

0 ≤ ps ≤ 0.39592.

Proof. The probability that a tree of Figure 6 or Figure 11
belongs to a tree of Figure 9 is less than or equal to the sum
of the probabilities of the tree types that compose these trees

2It is a necessary condition to apply fringe analysis.

THE COMPUTER JOURNAL, Vol. 43, No. 5, 2000



FRINGE ANALYSIS OF 2–3 TREES WITHLAZY PARENT SPLIT 427

FIGURE 11. Left part of trees with double node as root.

FIGURE 12. (a) a tree with a double node as root; (b) and (c) the
two trees we study in fringe analysis instead of (a).

(types 1, 2, 3, 4 and 5). The probability of being a right
or a left part is equal. According to Table 2a it holds that
ps ≤ 0.39592. 2

THEOREM 10.The expected number of keys in the fringe
of a 2–3 tree with lps containingN keys is bounded by

0.83686(N + 1) ≤ f (N) ≤ 0.90145(N + 1).

Proof. The number of keys in the fringe is the number
of keys if ps is 0, plus one key per right part of the tree.
According to Theorem 1, in the case that whenps = 0, the
number of keys in the fringe is 0.83686 (N +1). The number
of trees of the fringe when counting every tree with a double
node root as two trees is

∑
i

Ai(N) =
11∑
1

(N + 1)pi

Li

' 0.16314(N + 1).

The number of trees that are a right part of the tree is 0.16314
(N + 1) ps . The number of keys in the fringe is

f (N) = 0.83686(N + 1) + 0.16314(N + 1)ps. (11)

From Theorem 9 one finds that

0.83686(N + 1) ≤ f (N) ≤ 0.90145(N + 1). 2

THEOREM 11.The expected number of ‘equivalent single
nodes’ in a random 2–3 tree with lps containingN keys is
bounded by

0.64099N + 0.14099≤ n(N) ≤ 0.75485N − 0.24515.

Proof. The proof is similar to that of Theorem 2. Letnf and
na be the number of equivalent single nodes in the fringe and
the number of nodes above the fringe, respectively. Then

n(N) = nf + na,

nl − 1

2
≤ na ≤ nl − 1,

wherenl is the number of leaves of the tree above the fringe
(or, equivalently, the number of the trees of the fringe). It
holds that

nl = (1 − ps)

11∑
1

(N + 1)pi

Li

,

nf =
11∑
1

(N + 1)piNi

Li

.

Then

1 − ps

2

11∑
1

(N + 1)pi

Li

+
11∑
1

(N + 1)piNi

Li

− 1

2
≤ n(N)

and

n(N) ≤ (1 − ps)

11∑
1

(N + 1)pi

Li

+
11∑
1

(N + 1)piNi

Li

− 1.

These inequalities, Table 1, Figure 6 and Theorem 9 lead to
Theorem 11. 2

THEOREM 12.The storagen(N)/(N/2) used by a 2–3
tree is bounded by

1.28198+ 0.28198N−1 + O(N−6.55)

≤ n(N)

N/2
≤ 1.50970− 0.49030N−1 + O(N−6.55).

Proof. By dividing the inequalities of Theorem 11 byN /2,
the above inequalities are obtained. 2

THEOREM 13.The expected value of space utilizationsu

of the fringe of a 2–3 tree with lps of height 2 is bounded by

0.70716≤ su ≤ 0.81632.

Proof. The space utilization of a node of typei (where
6 ≤ i ≤ 11) is Ki/2Ni . The space utilization of a node
of type i (where 1≤ i ≤ 5) is greater than or equal to the
space utilization computed for a node of the trees of type
i of Figure 6 and less than or equal to the space utilization
computed for the nodes of the trees of typei of Figure 11.
According to Theorem 6 the probability that a fringe node is
of typei is

npi = Nipi

Li

1∑
j Nj (pj /Lj )

.

Letui be the space utilization of a node of tree of typei. The
expected value of the space utilization of the fringe is

su =
11∑
1

npiui.

Table 1, Figure 6 and Figure 11 lead to the theorem. 2

THE COMPUTER JOURNAL, Vol. 43, No. 5, 2000



428 A. MANOUSAKA AND Y. M ANOLOPOULOS

THEOREM 14.The expected path length of a 2–3 tree
with lps to the two lowest levels, containingN keys, is
bounded by

h(N) ≤ log2(N + 1) − 0.57795.

Proof. The proof is similar to that of Theorem 4. The
notation is also the same. To estimate the height of the
tree above the fringe it is assumed that the lps technique
is restricted to the two lowest levels. Lettli indicate the
probability that a tree of the fringe is a left sibling tree of
typei, andtri indicate the probability that a tree of the fringe
is a right sibling tree of typei. Letpli be the probability that
a leaf belongs to a left sibling tree of typei, andpri be the
probability that a leaf belongs to a right sibling tree. Ifpr

indicates the probability that a leaf belongs to a right sibling
tree thenpr = pr1+pr2+pr3+pr4+pr5. From Theorem 9,
ps indicates the probability that a tree of the fringe is a right
sibling tree. This is equal to the probability that a tree of the
fringe is a left sibling tree.

The expected path lengthhf of the fringe is computed by
the path length of the trees of the fringe increased by the
probability that a leaf belongs to the right part of a tree with
a double node as root. The following expression is obtained
by observing Figure 6 and Figure 11:

hf = 2(p1+p2+p3+(p4−pl4)+(p5−pl5)+p6+p8)

+
(

2
6

8
+ 3

2

8

)
p7 +

(
2

7

9
+ 3

2

9

)
p9

+
(

2
8

10
+ 3

2

10

)
(p10 + p11) +

(
2

4

6
+ 3

2

6

)
pl4

+
(

2
5

7
+ 3

2

7

)
pl5 + pr

or

hf ' 2.03788+ 2

6
pl4 + 2

7
pl5 + pr . (12)

In proportion to Theorem 5

tli = pli

Li

1∑11
j=1(pj/Lj )

.

It is known that
∑5

i=1 tli = ps . Therefore

5∑
i=1

pli

Li

= ps

11∑
j=1

pj

Lj

then
pl4

6
+ pl5

7
≤ ps

11∑
j=1

pj

Lj

.

In the same way,

5∑
i=1

pri

Li

= ps

11∑
j=1

pj

Lj

whereas sinceL5 ≥ Li (where 1≤ i ≤ 5) and

5∑
i=1

pri = pr,

it follows that

pr ≤ L5

5∑
i=1

pri

Li

= L5ps

11∑
j=1

pj

Lj

.

One level above the fringe the number of full nodes is greater
than or equal to the number of right sibling trees, which is
0.16314 (N + 1) ps . To calculate the maximum heightha of
the classic 2–3 tree above the fringe we use the number of
keyska where

E[ka] = N − f (N) − 0.16314(N + 1)ps ⇒
E[ka] + 1 = 0.16314(N + 1)(1 − 2ps).

Using Equation (11) and Inequality (9) one finds that

h ≤ log2(0.16314(N+1)(1−2ps))+2.03788+1.46824ps.

The sum log2(1 − 2ps) + 1.46824ps, where 0 ≤ ps ≤
0.39592, is negative or 0. Then

h ≤ log2(N + 1) − 0.57795.

5. CONCLUSIONS

In this paper, a second-order fringe analysis is presented for
a 2–3 tree variation, which uses a lazy parent split technique
to enhance concurrency; bounds on some performance
metrics of 2–3 trees with lps have been achieved. Table 3
summarizes the derived expressions for a random 2–3
tree with lps restricted to the lowest level, and depicts a
comparison of these performance metrics to those of the
classical 2–3 tree, as derived in [11], where the results
are approximated to O(N−6.55) for N → ∞. As easily
extracted from the table, in the fringe of 2–3 trees with lps
in comparison to the fringe of the classical 2–3 trees, the
expected number of keys in the fringe is 2.3% larger, the
upper and lower bounds of the expected number of nodes
are 5% and 4% lower respectively, the storage utilization is
6% larger and the expected path length is slightly shorter.
The results derived for a random 2–3 tree with lps restricted
to the lowest level are bounds to the random 2–3 tree with
lps as Table 4 presents.

In conclusion a 2–3 tree with lps has a better performance
than a 2–3 tree with respect to space utilization. This,
along with the improvement in concurrency, makes the 2–3
tree with lps a useful and noteworthy B-tree variant. Note
also that since fringe analysis does not consider deletions,
details on how B-trees with lps manage deletions have been
omitted. However, during deletions clean-up takes place
and, consequently, in practice the lps technique makes this
B-tree variant even more compact (i.e. smaller height and
fewer nodes).

The analysis presented above examines the two lowest
levels of 2–3 trees with lps. An effort towards performing

THE COMPUTER JOURNAL, Vol. 43, No. 5, 2000



FRINGE ANALYSIS OF 2–3 TREES WITHLAZY PARENT SPLIT 429

TABLE 3. Comparison between 2–3 trees with lps restricted to the lowest level and 2–3 trees.

2–3 tree with lps to the lowest level 2–3 tree

f (N) 0.83686 (N + 1) 0.81792 (N + 1)
Pr{0 splits} 0.44310 0.57143
h(N) log2(N + 1) − 0.57795 log2(N + 1) − 0.45736
su of the fringe 0.70716 0.66971
n(N) [0.67328N + 0.17328, 0.75485N − 0.24515] [0.70169N + 0.20169, 0.79273N − 0.20727]
n(N)

N/2
[1.34656+ 0.34656N−1, [1.40338+ 0.40338N−1,

1.50970− 0.49030N−1] 1.58546− 0.41454N−1]

TABLE 4. Summary of second-order fringe analysis results for random 2–3 tree with lps.

2–3 tree with lps

f (N) [0.83686(N + 1), 0.90145(N + 1)]
h(N) <log2(N + 1) − 0.57795
su of the fringe [0.70716, 0.81632]
n(N) [0.64099N + 0.14099, 0.75485N − 0.24515]
n(N)

N/2
[1.28198+ 0.28198N−1, 1.50970− 0.49030N−1]

a third-order analysis for 2–3 trees with lps has been made.
The lps technique has been restricted to the two lowest
levels to establish a closed tree collection and make the
analysis feasible. The major problem in performing such
an analysis is the large amount of tree types and the size
of the corresponding transition matrix. Open, also, is the
problem to perform a fringe analysis for B-trees with lps
of degreed greater than 1. Finally, fringe analysis for
other B-tree variants (for example, see [14, 15, 16]) might
help in deriving globally concrete comparative results on the
performances of B-trees.

REFERENCES

[1] Biliris, A. (1989) Operation specific locking in balanced
structures.Inf. Sci., 48, 27–51.

[2] Fu, A. and Kameda, T. (1989) Concurrency control of nested
transactions accessing B-trees. InProc. 8th ACM PODS
Conf., Philadelphia, PA, March 29–31, pp. 270–285. ACM
Press.

[3] Johnson, T. and Shasha, D. (1993) The performance of
concurrent B-tree algorithms.ACM Trans. Database Syst., 18,
51–101.

[4] Mond, Y. and Raz, Y. (1985) Concurrency control in B+trees
databases using preparatory operations. InProc. 11th VLDB
Conf., Stockholm, Sweden, August 21–23, pp. 331–334.
Morgan Kaufmann.

[5] Keller, A. M. and Wiederhold, G. (1988) Concurrent use of
B-trees with variable length entries.ACM SIGMOD Record,
17, 89–90.

[6] Manolopoulos, Y. (1994) B-trees with lazy parent split.Inf.
Sci., 79, 73–88.

[7] Nurmi, O., Soisalon-Soininen, E. and Wood, D. (1987)
Concurrency control in database structures with relaxed
balance. InProc. 6th PODS Conf., San Diego, CA, March
24–26, pp. 170–176. ACM Press.

[8] Sagiv, Y. (1985) Concurrent operations on B-trees with
overtaking. InProc. 4th ACM PODS Conf., Portland, OR,
March 25–27, pp. 28–37. ACM Press.

[9] Baeza-Yates, R. A. (1995) Fringe analysis revisited.ACM
Computing Surveys, 27, 109–119.

[10] Baeza-Yates, R. A. and Poblete, P. V. (1995) Higher-order
analysis of 2–3 trees.Int. J. Foundations Comp. Sci., 6, 1–10.

[11] Eisenbarth, B., Ziviani, N., Gonnet, G., Mehlhorn, K. and
Wood, D. (1982) The theory of fringe analysis and its
applications to 2–3 trees and B-trees.Inf. Control, 55, 125–
174.

[12] Yao, A. C. C. (1978) On random 2–3 trees.Acta Informatica,
9, 159–170.

[13] Johnson, T. and Shasha, D. (1989) Utilization of B-trees with
inserts, deletes and modifies. InProc. 8th ACM PODS Conf.,
Philadelphia, PA, March 29–31, pp. 235–246. ACM Press.

[14] Matsliach, G. (1991) Using multi-bucket data leaves with
overflow chains—performance analysis.Inf. Sys., 16, 497–
508.

[15] Prabhakar, T. V. and Sahasrabuddhe, H. V. (1984) Towards an
optimal data-structure: CB-trees. InProc. 10th VLDB Conf.,
Singapore, August 27–31, pp. 235–244. Morgan Kaufmann.

[16] Srinivasan, B. (1991) An adaptive overflow technique to defer
splitting in b-trees.Comp. J., 34, 416–425.

THE COMPUTER JOURNAL, Vol. 43, No. 5, 2000


