
Efficient Load Balancing in Partitioned Queries
Under Random Perturbations

ANASTASIOS GOUNARIS

Aristotle University of Thessaloniki, Greece

and

CHRISTOS A. YFOULIS

Alexander Technological Educational Institute of Thessaloniki, Greece

and

NORMAN W. PATON

University of Manchester, UK

This work investigates a particular instance of the problem of designing efficient adaptive systems,
under the condition that each adaptation decision incurs some non negligible cost when enacted.
More specifically, we deal with the problem of dynamic, intra-query load balancing in parallel
database queries across heterogeneous nodes in a way that takes into account the inherent cost
of adaptations and thus avoids both over-reacting and deciding when to adapt in a completely
heuristic manner. The latter may lead to serious performance degradation in several cases, such
as periodic and random imbalances. We follow a control theoretical approach to this problem;
more specifically, we propose a multiple-input multiple-output feedback linear quadratic regulation
(LQR) controller, which captures the tradeoff between reaching a balanced state and the cost
inherent in such adaptations. Our approach, apart from benefitting from and being characterized
by a solid theoretical foundation, exhibits better performance than state-of-the-art heuristics in
realistic situations, as verified by thorough evaluation.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems; C.2.4 [Computer-
Communication Networks]: Distributed Systems—Distributed databases

Additional Key Words and Phrases: adaptation cost, load balancing, LQR, partitioned queries,
control theory

1. INTRODUCTION

A broad range of adaptive systems aim at optimizing some objective function while
operating in a rapidly and unpredictably evolving environment. One of the most
challenging issues in that scenario is the planning of adaptations in such a way
that the adaptive system reacts sensibly in the sense that it both avoids unstable
conditions, under which no progress in execution can be made due to continuous
adaptations, and considers the adaptation overhead during planning. The latter
is important when the functions of identifying a response to a change or enacting
such a response incur non-negligible cost. In this work, we deal with a particular
instance of this problem, which is encountered in parallel processing of database
queries using non-dedicated resources.

Parallel processing of a single query, either over static databases or data streams,
involves splitting a query graph into several subgraphs so that these graphs can run
on different machines, e.g., in a pipelined fashion when one subgraph feeds data to
another subgraph. Moreover, each of these subgraphs may be able to be instantiated

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Gounaris, Yfoulis, and Paton

several times, with each of the resulting instances operating on a different subset
of data (or data partition) [DeWitt 1992].

However, to fully exploit the potential of parallelism, work needs to be assigned
to machines in a way that reflects their capabilities. This type of load balancing,
which can be also regarded as a constrained optimization problem, is challenging
in an environment with heterogeneous and potentially autonomous, non-dedicated
resources. Key characteristics of a typical such environment include the following:

—The information about the machine characteristics that describe performance
capacity and loads is typically incomplete and/or inaccurate at compile time;
thus a load balancer with responsibility for efficient work assignment should rely
mostly on runtime feedback.

—There exist unpredictable fluctuations in the load of available machines. A con-
sequence of this fact is that, in the general case, it is not efficient to stick with
any decision on the partitioning of a task until completion.

—The instances of subgraphs may be stateful, i.e., they may need to hold some
state in main memory (or on disk) in order to be able to evaluate the data
assigned to them. This is the case when the subgraphs comprise join and grouping
operators, which are some of the most commonly used operators in real queries.
A consequence of the fact that the instances of subgraphs are stateful is that
part of the state must be moved from one machine to another over the network
every time a workload re-assignment takes place, which entails that the cost of
performing adaptations is not negligible.

The approach presented in this work is novel in the way the combination of the
three afore-mentioned characteristics are tackled, and is founded on applied control
theory; the problem under investigation falls into the broader vision of developing
autonomic, self-managing solutions for data management [Lightstone et al. 2003].
In principle, autonomic computing can benefit a lot from control theory techniques,
which are well-established in engineering fields and are typically accompanied by
theoretical investigations of properties such as stability, accuracy, and settling time
[Hellerstein et al. 2004]. Nevertheless, their application to computing systems is
rendered problematic because of issues such as effective modelling of the system
and its dynamics, and overhead times in enforcing adaptations [Diao et al. 2005].

In control systems, the main part is the controller, which receives system measure-
ments, and provides a system configuration that impacts on system performance.
There are several orthogonal dimensions across which controllers can be charac-
terized and compared. A controller can be either single-input or multiple-input,
and similarly, single-output or multiple-output. The controller inputs (not to be
confused with the feedback collected) are adjustable configurations of key system
parameters, such as proportion of tuples or memory allocated to a machine, whereas
the outputs are measurable properties of the system, such as response time, CPU
utilization, and so on. When the measured outputs impact on the controller input,
then the controller is termed as feedback or closed-loop, otherwise it is called feed-
forward or open-loop. The former does not require the development of accurate
complex models and can tolerate relatively high model inaccuracies, thus it is more
practical for use in volatile environments. The controllers can be either continuous-
time or discrete-time; mostly all controllers of computing systems belong to the
ACM Journal Name, Vol. V, No. N, Month 20YY.

Efficient Load Balancing in Partitioned Queries Under Random Perturbations · 3

latter category due to the nature of computing systems. Finally, controllers can be
adaptive themselves in the case where runtime measurements can lead to changes
in their own design [Åström and Wittenmark 1995; Dumont and Huzmezan 2002].

To address the problem of balancing the load of a partitioned query across mul-
tiple heterogeneous machines, we must employ an adaptivity mechanism that is
aware of the potentially significant costs incurred by the adaptations. Otherwise,
these overheads may outweigh any benefits. To this end, we employ an adaptive
multiple-input, multiple-output (MIMO), discrete-time, feedback linear quadratic
regulation (LQR) controller. In general, LQR controllers can encapsulate the cost
to enforce a response (i.e., the cost to move state from one machine to another
in our load balancing problem) along with the cost of deviations from the ideal
state, in a unified cost function. This property allows LQR controllers to avoid
continuous, non-beneficial adaptations. In this work, the focus is on presenting
how such a controller can be applied to parallel database queries and examining its
behavior, rather than on the control theoretical technical details of the controller’s
design, which have appeared in [Gounaris et al. 2009]. We also believe that this
work is of broader interest since, both the load balancing problem for database
queries is representative of load balancing problems in other areas, and the issues
encountered with respect to the adaptation cost exist in several other autonomic
data management scenarios.

The contributions of this work are summarized as follows:

—it discusses the applicability and the configuration methodology of a control the-
oretical approach to load balancing in (stateful) parallel database queries based
on LQR, which is inherently suitable for adaptations that incur some cost;

—it provides evidence that the resulting mechanism is stable, effective and capable
of reaching a balanced state in short times; and

—it compares its performance against state-of-the art load balancing proposals.
More specifically, our solution is thoroughly evaluated against the adaptive load
balancing methodology of Flux [Shah et al. 2003], and its overhead is investigated.

The remainder of this article is structured as follows. Section 2 discusses related
work. The presentation of our technique, along with a more detailed problem
description and a brief introduction to control theory, is in Section 3. In Sections 4
and 5, we investigate the stability of the approach proposed and its efficiency and
effectiveness, respectively. Finally, Section 6 concludes the article. The technical
details and the theoretical proofs of the controllability (i.e., the system’s capability
of reaching any desirable state with the appropriate input within a bounded time
period) and stabilizability of the system, which are essential for those interested in
the blending of control theory and autonomic computing systems, are presented in
the appendix.

2. RELATED WORK

Typically, load balancing in databases is either addressed just before execution
(e.g., [Rahm and Marek 1995; Mehta and DeWitt 1995]) or, for specific operators,
at a single point during execution (e.g., [Wolf et al. 1993; Lu and Tan 1992]).
More adaptive solutions fall into the area of adaptive query processing [Deshpande

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Gounaris, Yfoulis, and Paton

et al. 2007], which is a relatively new field dealing with self-optimizing execution of
queries. However, most of the proposals in this area so far do not consider parallel
or distributed execution, thus overlooking runtime load balancing problems.

One of the most notable examples, which tries to address the challenges that
have motivated our work, is the Flux approach [Shah et al. 2003]. Flux introduces
a new query operator that monitors the execution speed and the idle time of each
participating machine at runtime, and adjusts the workload allocation accordingly,
with a view to equalizing machine utilization. Additional heuristics are applied
to smooth the workload allocation changes. In the Flux operator, state typically
consists of several state partitions defined by a hash function, and each node is
allowed to either transmit or receive a single state partition during the same bal-
ancing step so that over-reacting is avoided. In addition, Flux tries to guarantee
that the time spent enforcing adaptivity decisions (i.e., moving state from one ma-
chine to another as a result of a workload reallocation) does not exceed the time of
query processing; this is done by keeping the same workload allocation for a period
that is at least equal to the time spent carrying out the adaptation that brought it
about. Note that this does not guarantee that the overall time will be reduced by
adaptive balancing; in other words, execution is not improved in all cases. Indeed,
Flux, apart from time being rather sensitive to its parameters, such as the size of
the window used for collecting execution statistics, may adapt in a non-beneficial
manner in response to transient and periodic imbalances, as it may keep shifting
the state partitions.

Several attempts have been made to improve the behavior in these situations.
In [Paton et al. 2009], some extensions to the Flux approach are described. More
specifically, a change to the Flux algorithm is proposed, to carry out replication
during the probe phase in operators involving hash tables. In other words, the
adaptivity decisions are taken in the same way but the operator state is not moved
as in Flux, rather it is replicated at the expense of higher memory usage. This
may reduce the number of future state movements, and, consequently, it performs
significantly better when many adaptations are needed during execution, assuming
that there are no memory limitations. As such, it may be quite successful in
some cases, but is suboptimal where the build phase is long compared with the
probe phase, or where memory is not abundant. Another proposal is the use of
a dynamic hash table approach in which all hash table inserts and probes take
place twice. However, this seems not to be a winner, since it is characterized by
a significant response time overhead where no load balancing is required, and by
creating considerable amounts of extra work that reduces throughput in a loaded
environment.

In addition, an enhancement of the Flux decision making criterion is investigated
in [Paton et al. 2009], in which, Flux enacts adaptations only when the accumulated
delay due to the use of the current workload allocation strategy is greater than the
cost of changing to the strategy that would have been best over some period. This
improves slightly on the snapshot-based original Flux in unstable environments,
and, in essence, behaves like an integral controller, in that it adapts in a way that
takes account of the average error over a period. However, the efficiency relies
heavily on the window size chosen.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Efficient Load Balancing in Partitioned Queries Under Random Perturbations · 5

Typically, the load balancing problem in a single query environment is trans-
formed to the problem of making the execution times of parallel subtasks equal, as
their maximum defines the overall execution time. The spirit of Flux is the same,
although the adaptivity steps are not based on a corresponding balancing function,
but on a heuristic, as mentioned previously. Such approaches essentially adopt a
definition of balanced execution, which does not take into account the inherent over-
head for enforcing the balancing decisions. This limitation, which is particularly
felt in unpredictably volatile imbalances, is addressed in this work.

Several other dynamic flavors of the load balancing problem in database queries
have been examined, as well. For example, in [Balazinska et al. 2004], each node
acts selfishly and autonomously based on bilateral contracts, whereas in [Xing et al.
2005], load balancing is achieved through the redistribution of operators rather
than redistribution of data. In a multi-query environment, the problem changes
significantly and load balancing can be performed at the granularity of individual
queries (e.g., [Gedik and Liu 2003]).

In investigating the use of techniques from control theory for directing decisions
in adaptive load balancing for stateful database operators, the results in this article
can be related to recent and ongoing research on decision making in autonomic
systems, decision making in adaptive query processing and applications of control
theory to computer systems.

In terms of decision making in autonomic systems, the autonomic computing
community investigates techniques for supporting self-configuration, self-optimizati-
on, self-healing and self-protection [Kephart and Chess 2003]. All such activities
involve control loops in which the behaviour of an autonomic system is changed
at runtime in the light of feedback. A recent classification identifies control loops
that are directed by action, goal and utility policies [Kephart and Das 2007]: an
action policy typically takes the form if Condition then Action, and thus makes
explicit how a system should respond to a given state; a goal policy has a fixed
objective, and it is the role of the controller to identify an action that moves the
system towards a desirable state; and a utility policy provides a function (a utility
function) that computes the relative values of alternative states, and a collection of
actions that can change the state of a system – it is then an optimization problem to
identify which actions yield the greatest utility. In this work, we can be considered
to be implementing a goal policy; the goal is to balance load, and control theoretic
techniques determine the action that is taken to meet the goal.

Typically, decision making in adaptive query processing has involved the use of
action policies. As such, an adaptive system monitors some aspect(s) of the pro-
gress of a query, the condition diagnoses a problem with the current evaluation
strategy, and the action revises some aspect of query evaluation. As an example,
POP [Markl et al. 2004] monitors operator cardinalities, and the condition checks
whether the cardinalities encountered at runtime are within the range for which the
current plan was considered by the optimizer to be optimal. If not, then the Action
calls the optimizer to generate a new plan given the runtime statistics and mate-
rialized intermediate results. In several adaptive query processors, action policies
are implemented explicitly using a trigger-style syntax [Ives et al. 1999; Ng et al.
1999], although for the most part condition testing and action implementation are

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Gounaris, Yfoulis, and Paton

implemented through changes to the query evaluator (for example, in POP, con-
ditions are monitored in a CHECK operator inserted in the execution plan that
itself initializes reoptimization if required [Markl et al. 2004]). Action policies have
also been deployed for adaptive load balancing. For example, in DITN [Raman
et al. 2005], a query consists of a collection of parallel fragments, fi ∈ Q, and the
condition is a test to establish if the completion time of any fi is more than twice
the completion time of the first completed fragment. If so, the action creates and
executes a redundant clone f ′i of fi that is in a race with fi to generate data that
can contribute to the answer of the query. As already mentioned, in Flux [Shah
et al. 2003], the condition is to establish the presence of load imbalance, and the
action updates the distribution policy and relocates hash table state in a way that
reflects the new distribution policy. However, action policies often embed heuris-
tics that influence what adaptations can take place and when. For example, Flux
employs heuristics that constrain the maximum and minimum changes that can be
made to a distribution policy during an adaptation, and the frequency with which
adaptations can take place. This reflects the fact that writing action policies is of-
ten quite involved, and that heuristics and thresholds can have a significant impact
on the behavior of an algorithm. This work seeks to provide a firm foundation for
decision making based on control theory.

In terms of applications of control theory to computer systems, a nice overview of
existing proposals and a summary of techniques appears in [Hellerstein et al. 2004].
Control theoretical solutions with a view to achieving self-managing behavior have
been incorporated into commercial systems [Lightstone et al. 2007], although it is
acknowledged that factors such as volatile loads and the difficulty in constructing
realistic models that also capture the cost of adaptations, are prohibitive for the
application of control theory to database systems. The usage of LQR in a database
environment has been proposed in [Diao et al. 2004; Diao et al. 2005] with the aim
of adjusting the sizes of memory pools in a database system. At a higher level,
our work adopts a similar framework; however it differs from [Diao et al. 2004]
by not relying on offline profiling for the controller configuration, which results
in a completely different mode of operation, according to which the controller is
continuously readjusted. In contrast with our work, in [Diao et al. 2004], the
controller is non-adaptive, and operates in a less volatile setting; moreover, in [Diao
et al. 2005], it is assumed that each memory pool can be balanced independently,
which is not the case in workload balancing.

To the best of our knowledge there is no prior control theoretic work that deals
with balancing the execution of partitioned query tasks in volatile settings; however
an interesting approach to enforcing desired utilization set points under a range
of dynamic workloads with the help of a controller appears in [Fu et al. 2006],
where the methodology adopted is based on diffusive load balancing. In a different
setting, cost-aware load balancing has been investigated in [Birdwell et al. 2006], as
well. In this work, the existence of a detailed mathematical model of the system is
assumed, and the main contribution is, when deciding on the workload distribution,
to take into consideration the number of in-transit tasks due to previous adaptivity
actions. In our environment, all data transfers are completed before resuming
query execution. Finally, control theory has recently been employed to optimize
ACM Journal Name, Vol. V, No. N, Month 20YY.

Efficient Load Balancing in Partitioned Queries Under Random Perturbations · 7

Fig. 1. An example of balancing stateful operators.

data transmission from service-based databases [Gounaris et al. 2008b; 2008a].

3. THE LQR CONTROLLER

3.1 Description of the Load Balancing Problem

Consider two relations with two attributes each, A(X,Y) and B(Y,Z), which are
joined remotely using a hash join; the hash table is built on A.Y. The hash table
must be temporarily stored as query state on each participating machine, and
subsequently, is probed by tuples from B one by one. A complete query graph
includes also scan operators that are responsible for extracting the data from the
stored relations, and exchange operators that are responsible for distributing data
to the participating nodes. Let us assume that the hash join operator is parallelised
over two physical nodes, and that these two nodes are capable of processing tuples
from B at the same speed. Then, in a balanced execution, the two nodes should
receive and process the same amount of workload measured in tuples. However,
if, during execution, the first machine becomes three times as fast as the second
machine, then the workload distribution should change to reflect that. This involves
two things: firstly, the B tuples are not distributed equally to the two joins from
that point on, and secondly, the corresponding A tuples from the hash table on
the second machine must move to the first one. State movements can be enabled
through simple extensions to the operator interface (e.g., as in [Shah et al. 2003]);
also, note that during such movements the execution is suspended to avoid the
generation of erroneous results.

A trivial solution to workload distribution that is proportional to the nodes’ exe-
cution speed can yield the lowest response times only if the operators are stateless.
In stateful operators, like hash joins, which create internal state in the form of hash
tables, any workload re-allocation triggers state movements, which incur some cost
(see Fig. 1, where the numbers next to the hash tables denote the proportion of the
assigned workload). Consequently, a more efficient load balancer should take into
account this cost when deciding on workload re-allocations with a view to reducing
the query execution time, especially when the load conditions change frequently.

The role of the dynamic load balancer is, at the end of each adaptivity step, to
re-distribute the workload in such a way that the following is minimized:

max(yi(k + 1) + ci(k + 1)), i = 1 . . . P (1)
ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Gounaris, Yfoulis, and Paton

where P is the number of nodes participating in query execution, yi(k) defines
the expected value for the completion time of the ith node given the workload
allocation in the kth step, and ci(k + 1) denotes the cost (overhead) to reach a
correct state regarding the decisions in the kth step. The constraint is that the
workload proportions assigned must be non-negative numbers, no greater than 1,
and their sum must be 1.

To the best of our knowledge, there is no practical methodology to solve Eq.
(1) analytically. However, it can be proved that the workload allocation is always
optimal if no further workload re-allocation is needed, i.e., y1(k) = y2(k) = . . . =
yP (k). This condition can be also written as yi(k) = 1

P

∑P
i=1 yi(k).

3.2 Control theory basics

Before proceeding to the description of our solution, we briefly explain the required
control theory concepts, terms, models and design techniques; more details can be
found in textbooks such as [Hellerstein et al. 2004; Franklin et al. 1998].

The main task in control theory is to achieve desired goals related to the per-
formance of a target system, which are referred to as the control objectives. A
typical case is regulating the main characteristics of interest (such as response time
or CPU utilization) to desired values. The key idea in feedback control is to use
measurements of the quantities to be regulated (which have to be measurable and
are termed measured outputs) to determine the control inputs, which are adjustable
configurations of key system parameters, such as the proportion of tuples or mem-
ory allocated to a machine. The fact that the measured outputs are used to adjust
the control inputs which then influence the outputs, results in a circular flow of
information suggesting the term feedback or closed-loop control.

A typical feedback control system consisting of a single feedback loop is shown
in Figure 2. For illustration purposes, a single input-single output (termed SISO)
control system is shown, although in general multiple input-multiple output (MIMO
or multivariable) systems are commonly found, especially in computing systems.
The block diagram in Figure 2 is a standard tool for showing all the key elements of
a feedback control system and their input-output relationships, as well as the main
signals of interest and the flow of information. The target system is the computing
system to be controlled (e.g. the parallel query processing system in our work). The
reference input (sometimes also termed the desired output or the setpoint) is the
desired value of a system’s measured output (e.g. expected completion times for a
node in our setting). The transducer (also usually termed sensor) captures effects
such as unit conversions and delays, and transforms the measured output so that
it can be compared with the reference input. The difference between the reference
input and the measured output is the control error. The controller adjusts the
setting of a control input to the target system with a view to causing its measured
output to become equal to the reference input. The controller computes values of
the control input based on current and past values of the control error.

The systematic construction of a controller requires a model of the input-output
relationship of the target system, usually termed the system model. The main
reason for the success of automatic (feedback) control is that the aforementioned
problem of regulating a system’s output to a desired value specified by the refer-
ACM Journal Name, Vol. V, No. N, Month 20YY.

Efficient Load Balancing in Partitioned Queries Under Random Perturbations · 9

Controller

Transducer

Target
system

Disturbance
input

Noise
 input

Measured
output

Reference
input

Control
error

Control
input

Transduced
output

+

-

Fig. 2. Block diagram of a feedback control system.

ence input can be solved by a properly designed controller, even in the presence
of disturbances and limited knowledge of the target system’s behavior (model un-
certainties). This is attributed to the use of feedback. An alternative is open-loop
or feedforward control where the controller uses the reference input (or sometimes
even the disturbance input, when it is measurable) to adjust the control input.
Measurements of the control output are avoided and design complexity is reduced.
However, such a scheme is rarely used in practice as it can be successful only in un-
changing or predictable operating environments where an accurate system model
can be built. This is not the case in computing systems due to the volatility of
the environments, which impose serious difficulties to the development of accurate
complex models.

To model a system, a transfer function describing how the input is transformed
into the output may be used. An alternative to the transfer function models is
to use state-space models for describing system dynamics. System dynamics can
be described in terms of variables other than the control inputs and the measured
outputs. These need not be measurable, but they are internal variables that allow
a complete description of a system. The set of variables used in a state-space model
is called the state vector. Transfer function models are effective at modeling SISO
systems, while state-space models provide a scalable approach to modeling MIMO
systems.

The design problem is to select the feedback gains that yield the desired controller
properties. There are two main design techniques for state-space models, i.e. pole
placement and linear quadratic regulation (LQR). The first determines the poles
needed to achieve the desired closed-loop properties and then computes the feedback
gains required. The second approach, LQR, employs an optimization technique that
parameterizes the trade-off between control errors and control effort, and as such,
is more suitable for our problem.

3.3 Design methodology of the LQR controller

The load balancing objective defined in Eq. (1) includes a trade-off between (a)
reaching the optimal workload allocation, in which the expected completion times
are equalized across all participating nodes, and (b) the cost for reaching such an
allocation, which is mainly due to state movements. To meet such an objective,
we employ a state space model, on top of which we implement a state feedback
controller, which is designed with the help of a linear quadratic regulator (LQR).
Our LQR controller is capable of accurately finding the controller settings that

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Gounaris, Yfoulis, and Paton

minimize a cost function, which can capture both the deviations from the optimal
state and the cost to reach such a state. In essence, we do not try to postpone
adaptations due to the cost they are expected to incur but to modify the response
actions so that any adaptations applied are beneficial. Full technical details are
given in the appendix and in [Gounaris et al. 2009].

The first stage in the application of an LQR-based adaptivity technique is to
build a state-space model, which involves the definition of the control inputs, system
variables and measured outputs. In our setting, the output values are the expected
completion times for each node and the inputs, i.e. our manipulated variables, are
the workload allocations at each step. The state variables contain the control error
of each machine, which is the difference between the current measured output of
a machine and the average measured output between all machines. Due to the
unpredictability of machine load and the time-varying average measured output,
the state variables also contain the accumulated error to this point for each machine.
The accumulated error contains the sum of the values of the errors in all steps. To
simplify the design, we assume that the expected completion time depends solely
on the control input, i.e., the workload allocation, and the machine load. Also we
assume that the expected completion time of one machine does not depend on the
processing speed of another. The actual processing speed of each machine can be
monitored at runtime.

There are two main approaches to meeting the constraint regarding the workload
proportion, which directly impacts on the number of nodes for which the workload
allocation is explicitly decided by the controller: (a) to normalize the controller
decisions so that the constraint is met; or (b) to allow the controller to specify the
workload allocation only for P − 1 nodes, and the allocation of the last node to be
the difference between 1 and the sum of the P − 1 workload allocations. The first
approach results in a nonlinear control system which is difficult to analyze and to
assure stability, convergence and robustness properties; however it is included in
the present work for completeness. The second approach to constraint satisfaction
is much more amenable to rigorous analysis, and it can be shown that the system
is fully controllable. Furthermore, the dynamic state feedback strategy adopted
assures zero steady state errors and disturbance rejection properties due to the
addition of integral action. This holds not only for the first P − 1 states which are
directly controlled, but also for the last P -th state; proofs for these properties are
delegated to the appendix.

By designing an appropriate stabilizing controller using the state space model
described, which has disturbance rejection properties due to the accumulated er-
ror state variables (integrators), we can guarantee that the errors of all P states
converge to zero. In addition to load disturbances and reference trajectory dis-
turbances (the reference point of each output is the average of all outputs), the
controller can also tolerate modeling inaccuracies.

In such a state model, the control input vector (denoted as u(k)) is a linear
function of the system’s state, i.e., the workload decisions are linearly related to
error states:

u(k) = −Kx(k) , x(k) =
[

e(k)
eI(k)

]
(2)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Efficient Load Balancing in Partitioned Queries Under Random Perturbations · 11

where x(k) is the state vector, which consists of the error vector e(k) and the accu-
mulated error vector eI(k). The LQR framework is responsible for the specification
of the K matrix, and more importantly, for ensuring that this matrix efficiently
implements the tradeoff between quick convergence to the optimal workload allo-
cation and the penalty for this convergence. To enable that, the cost function (to
be minimized) employed by LQR is in the following form

J =
1
2

∞∑

k=1

[
xT(k)Qx(k) + uT(k)Ru(k)

]
(3)

where, in our controller, the matrices Q and R are set in a way that the requirement
for quick convergence is quantified by the square of state variables multiplied by the
weights in the Q matrix, and the convergence penalty is quantified by the square
of the control input multiplied by the weights in the R matrix.

The dimensions of the Q and R matrices are 2N × 2N and N ×N , respectively.
N denotes the number of controlled nodes, and depends on the way the constraint
is enforced; when the first approach to constraint satisfaction is employed, it is
equal to P , whereas, when the second one is preferred, it is equal to P − 1.

To summarize, the problem of developing a load balancer that considers the
overhead of its decisions, has been now transformed to the problem of defining the
(potentially time-varying) Q and R matrices. The former captures the requirement
for quick convergence to the optimal state, whereas the latter captures the overhead
of such a convergence, in line with the objective of Eq. (1).

An important step in the configuration is to define the weights for the price to
pay when some nodes are expected to complete execution later than others, i.e.,
when they exhibit non-zero error, and to find the weights for the price to pay on
the grounds of the accumulated error for some nodes, which can capture periodic
phenomena. These weights are stored in the Q matrix. For simplicity, we make the
assumption that the errors are independent of each other, and in this case, Q is in
the following form

Q =
[

a IN,N 0N,N

0N,N b IN,N

]
, a, b ≥ 0 (4)

The ratio of a and b defines the relative significance of the error and the accu-
mulated error. When a/b = 1, then they are equally taken into account.

Finally, we have to specify the (normalized) weights for the price to pay to enforce
a response. This price depends on the size of the state to be transferred. The
weights of this step are stored in the R matrix, and, as previously, we can assume
that they are independent of each other, which entails that this matrix is diagonal,
too. The diagonal elements of R, ri, i = 1 . . . N, are of a scalar value c, which is a
tuning parameter; the higher its value, the more a change in the workload allocation
is penalized.

As mentioned previously, the new workload allocation in each step (i.e., the
control input) is found by multiplying K with the state vector (see Eq. (2)). It
is outside the scope of this work to present how K can be specified analytically.
Further details can be found in any control theory textbook, see e.g., [Franklin et al.
1998]. In practice, toolkits, such as the Control System Toolbox of MATLABTM ,

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Gounaris, Yfoulis, and Paton

provide an automated technique for its estimation. However, it should be noted
that our controller has adaptive features, since, at each step, the LQR problem
is solved and new gains K(k) in Eq. (2) are specified, in light of the updated
processing speeds of the participating nodes.

In this work, we consider only weighting matrices that remain fixed throughout
the query execution, as is the typical case with LQR controllers. In Sections 4
and 5.2.1, we further discuss how the value of their elements can be defined fol-
lowing some simple heuristics. An interesting extension of the adaptive properties
of our scheme would be the transition to a fully dynamically configured controller,
where the weighting matrices of the cost function become time-varying R(k),Q(k),
and modified at each adaptivity step. E.g. a dynamically updated matrix R(k)
could capture the accurate cost of transferring the state which reflects the current
conditions. This could be done through runtime analysis and the design of a switch-
ing controller. However, this is a highly non-trivial task which requires stability
guarantees, rigorous analysis, and careful consideration of the associated increased
overhead, and is left for future work.

4. STABILITY AND CONVERGENCE PROPERTIES

In this section, the effectiveness of our proposal is investigated. We examine the
properties of stability, accuracy, convergence speed, and overshoot [Diao et al. 2005]
with regard to the way the constraints are satisfied and the number of nodes that are
directly controlled, and the values of the Q and R matrices. Note that we evaluate
the efficiency of the system in terms of performance and the capability to take
adaptation cost into account in the next section, which includes the comparison
of our approach with other proposals. This section also aims at providing clear
insights into how the LQR controller operates and hints for the parametrization
of Q and R, with the help of two simple examples, simulated in MATLABTM .
The theoretical discussion of the system controllability and stabilizability, which is
closely related to the way the constraints are satisfied, is deferred to the Appendix.

4.1 Example with just two machines

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4
machine load

time steps

machine 1
machine 2

5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tuple allocation

time steps

machine 1
machine 2
aggregate

Fig. 3. Left: the (static) load of the two machines. Right: the controller’s tuple allocation
decisions when the controller decides on the workload allocation of all nodes explicitly.

In the first example, there are two machines that evaluate two instances of the
same partitioned operator. The two machines have equal computational capacity,
but their CPU load during execution differs (e.g., due to external jobs running).
ACM Journal Name, Vol. V, No. N, Month 20YY.

Efficient Load Balancing in Partitioned Queries Under Random Perturbations · 13

Unfortunately, in this setting, stability cannot always be guaranteed. Consider
for example Fig. 3, where the initial allocation regards the two machines as of
equal capacity but in reality, one is more loaded that the other. When the first
approach to the fulfillment of the workload constraint is adopted, according to
which the controller decides on the workload allocation of all nodes explicitly, the
system oscillates between the upper and lower limits in an unstable manner. This
behavior is observed regardless of the choice of the weighting matrices Q,R. This
experiment suggests that this type of controller is inappropriate for our problem.

5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tuple allocation

time steps

machine 1
machine 2
aggregate

5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tuple allocation

time steps

machine 1
machine 2
aggregate

5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tuple allocation

time steps

machine 1
machine 2
aggregate

5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tuple allocation

time steps

machine 1
machine 2
aggregate

Fig. 4. The tuple allocation decisions when Q = diag([1, 1]) and the R matrix is (from top right
to bottom left): a) R = [10]; b) R = [5]; c) R = [3]; d) R = [0.1].

A remedy is to use the second controller proposed in the previous section, where
the constraint is enforced by specifying the workload proportion of the last node
indirectly. When the second approach to constraint satisfaction is employed, the
behavior of the system is as expected (Fig. 4). The parameters of the Q and R

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
machine load

time steps

machine 1
machine 2

5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tuple allocation

time steps

machine 1
machine 2
aggregate

Fig. 5. Left: the (periodic) load of the two machines. Right: the tuple allocation when Q =
diag([1, 1], R = [3].

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Gounaris, Yfoulis, and Paton

5 10 15 20 25
0

1

2

3

4

5

6
machine load

time steps

machine 1
machine 2
machine 3

5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

tuple distribution

time steps

machine 1
machine 2
machine 3
aggregate

5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

tuple distribution

time steps

machine 1
machine 2
machine 3
aggregate

(a) (b) (c)

5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

tuple distribution

time steps

machine 1
machine 2
machine 3
aggregate

5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

tuple distribution

time steps

machine 1
machine 2
machine 3
aggregate

5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

tuple distribution

time steps

machine 1
machine 2
machine 3
aggregate

(d) (e) (f)

Fig. 6. (a): the (static) load of three machines. (b-f): the tuple allocation decisions
when Q = diag([1, 1, 1, 1] and the R matrix is: b) R = [100, 100]; c) R = [10, 10]);
d) R = [3, 3]; e) R = [2, 2]; f) R = [1, 1].

5 10 15 20 25
0

1

2

3

4

5

6
machine load

time steps

machine 1
machine 2
machine 3

5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

tuple distribution

time steps

machine 1
machine 2
machine 3
aggregate

5 10 15 20 25
0

1

2

3

4
expected completion times

time steps

machine 1
machine 2
machine 3

Fig. 7. Left: the (periodic) load of three machines. Middle: the tuple allocation when Q =
diag([1, 1, 1, 1]),R = diag([10, 10]). Right: the expected completion times.

matrices have a significant impact on the speed of convergence and the behavior of
the controller, as shown in the figure. If Q is kept constant, the speed of convergence
is inversely proportional to the value of R; i.e., it decreases with a larger value for
R, which penalizes the control input more. For small values of R more aggressive
control action is allowed, which induces oscillations due to the initial controller’s
overreaction. When R = [3] the system exhibits the best performance: it accurately
converges in just 2 steps and enters a totally steady phase after the 3rd step.
Another typical adjustment is to apply different weights to the control errors and the
accumulated control errors. When the accumulated control errors are more heavily
weighted, e.g., when Q = diag([0.1, 1]), a more aggressive controller with larger
gains is obtained (not shown in the figure). The opposite happens when smaller
weights for the accumulated errors are selected, i.e., a less aggressive controller is
obtained leading to a transient response with larger settling time and reduced (or
no) oscillations.

LQR controllers can yield nice results in the case of periodic loads, as shown in
Fig. 5. In this example the duration of a unit increase of load is 5 steps. The
system can converge in 2 steps (and 1 step after it has been informed about the
load change). As such, in the example, the system is perfectly balanced 60% of
the time. Finally, note that, in all configurations, there is an oscillation in the first
few steps; this is due to the initial conditions and, typically, the controller decisions
ACM Journal Name, Vol. V, No. N, Month 20YY.

Efficient Load Balancing in Partitioned Queries Under Random Perturbations · 15

during these steps are not considered. In the experiments in next section, LQR
starts enforcing adaptations only after the third step.

4.2 Example with more machines

When three machines participate in the evaluation, the behavior is similar. Con-
sider the example of a static imbalance in Fig. 6. Again, the parameters of the
Q and R matrices seem to have a significant impact on the speed of convergence
and the behavior of the controller, as shown in Fig. 6 for varying R. The less
the control inputs are penalized, the more aggressive the response becomes, since
larger control gains are returned by the LQR routine. Hence, it is likely at some
point to saturate to the upper (=1) or lower (=0) bounds of our inputs. Hard limit
constraints have to be included in our implementation to keep the control inputs
inside the designated bounds. Limit cycles are then naturally expected and the
unity sum constraint may also be violated. This problematic behavior is shown in
the bottom graphs of Fig. 6.

The problem mentioned above can be avoided by careful selection of the Q and R
matrices. This is clearly an application-specific issue that is also dependent on the
range of the output values, the machines load, etc. However, what really matters
is the relative values of the two parts in the LQR cost function in Eq. (3), i.e., the
square of the state variables multiplied by the elements in Q, and the square of
the workload assignments, multiplied by the elements in R. If the first part, which
prompts the controller for quick responses, is of the same order of magnitude as
the second, which associates a cost to the responses, then the controller is stable,
and converges accurately but slowly, as in Fig. 6c,d. However, the speed of conver-
gence increases significantly if the first part is an order of magnitude larger (Fig.
6b). When it becomes even larger (e.g., two orders of magnitude), it may enter
instability.

For periodic imbalances, the behavior remains efficient, as shown in Fig. 7 for the
choice that yields the best results for a static imbalance in Fig. 6. It is interesting
to note that runtime changes of the load of one machine cause significant differences
in the expected completion times between machines just for a single step, i.e., the
duration of the transient, imbalanced phase is one step (see Fig. 7(middle)). For
an arbitrary number of machines, the behavior is similar.

5. EVALUATION

This section compares the performance of the LQR controller described in Section 3
with heuristic control, based on Flux [Shah et al. 2003] and on techniques described
in [Paton et al. 2009], using simulations of query performance under time-varying
imbalance conditions. More specifically, different experiments are designed so that
concrete insights into the intrinsic characteristics and the behavior of the balancing
approaches are provided when attributes such as the size of the relations partici-
pating in the join, the number of joins, the load level, the number of the perturbed
machines, and the communication bandwidth vary. In addition, the overhead of
deploying an LQR controller on a real computer is examined. More importantly,
before discussing the experiments, useful tips as to how to configure the LQR con-
troller are presented.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Gounaris, Yfoulis, and Paton

Description Value Unit

Time to probe hash table 1e-7 s
Time to insert into hash table 1e-5 s
Time to add a value to buffer 1e-6 s
Time to map a tuple to/from 1e-6 s
disk/network format
CPU time to send/receive network 1e-5 s
message
Size of a disk page 2048 bytes
Seek time/Latency of a disk 5e-3 s
Transfer time of a disk page 1e-4 s
Size of a network packet 1024 bytes
Network latency 7e-6 s
Network bandwidth 1000 Mb/s
Size of the caches on exchange operator 50000 tuples
Size of the disk cache for workloads 50 Mb

Table I. Cost model parameters.

5.1 Simulation Model

The simulation uses a cost model consisting of a collection of parameterised cost
functions based on those validated in [Sampaio et al. 2006]; the parameters were
obtained from the execution of micro-benchmark queries, and are given in Table
I. The simulator, which extends that used in [Paton et al. 2009], emulates an
iterator-based query evaluator [Graefe 1996]; more details of the simulation model
are provided in [Paton et al. 2009].

The following operators are used in the experiments: scan simulates the reading
of data from the disk and the creation of data structures representing the data read;
hash join simulates a main-memory hash join; and exchange simulates the move-
ment of tuples between operators on different nodes [Graefe 1990]. The exchange
departs to an extent from the pull-based approach of the iterator model, in that
it reads from its children into caches on the producer node as quickly as it can,
and transfers data from the producer cache to the consumer cache as quickly as
it can, regardless of how many tuples it has been asked for, until the caches are
full. The simulator supports both pipelined and partitioned parallelism, the for-
mer through simulation of the iterator model using exchanges to enable partially
decoupled evaluation of parent and children operators, and the latter by creating
multiple instances of an operator on different nodes.

5.2 Experiments

As in Sec. 4, the load of each machine, both due to external jobs and query
processing tasks, is used to estimate the machine capacity. More specifically, the
computational capacity of each machine is inversely proportional to machine con-
tention, in line with the approach described in [Paton et al. 2009]. The example
operator to be balanced throughout the experiments is a parallel hash join between
tables of the TPC-H database with scale factor 1. However, the load balancer
presented in this work is independent of any particular operator implementation;
the only requirements are the operator to create and store internal state that, in
the generic case, has to be moved in case of repartitioning and the existence of
ACM Journal Name, Vol. V, No. N, Month 20YY.

Efficient Load Balancing in Partitioned Queries Under Random Perturbations · 17

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
machine load

time steps

perturbed machine
non−perturbed machines

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
machine load

time steps

perturbed machine
non−perturbed machines

Fig. 8. Typical machine loads when evaluating the example join query and, on one of the machines,
a poisson (left) or poisson-cyclic (right) load is imposed.

an interface to enable such state movements. Multiple stateful operators in the
same query are balanced by separate controllers, as the controllers operate at the
operator level. The performance metric is the overall query response time, which
captures the impact of imbalanced execution that is experienced by the user.

We consider two types of random external job arrival, namely poisson, where the
rate of job arrival to (some of) the machines evaluating the join in each iteration
follows a poisson distribution with a fixed mean value, and poisson cyclic, where
the average arrival rate follows a poisson distribution multiplied by a sinusoidal
function. As such, the latter type can capture more realistically situations where
the machine workload fluctuates between time periods. The machine contention
for both these external workload types is depicted in Fig. 8. In that figure, the
average number of jobs starting per second is 1, the average job duration is 1 sec.,
and the period of the poisson cyclic load is 5 secs; also, the join is parallelised over
3 machines, one of which is perturbed with the external load described. Note that
under poisson-cyclic imbalances, periodically, the load of a perturbed machine is
similar to the load of the non-perturbed ones. The randomness of the external
load, and the inner complexities of query processing result in more realistic, albeit
more complex non-smooth load profiles, thus posing a significant challenge to load
balancing controllers. In each experiment, the techniques were checked under at
least 10 different random imbalances, and the mean and median performance values
were obtained.

5.2.1 LQR tuning policy. An approach to configuring the LQR-based load bal-
ancer, which proved to be effective as will be discussed subsequently, is as follows:
when the imbalance decreases (e.g., fewer external jobs arrive at the perturbed ma-
chines, or the overall number of machines increases while the number of perturbed
machines remains the same), it is safe to make the controller more aggressive with-
out risking performance degradation. Similarly, when the imbalance increases, the
controller should become less aggressive. As discussed in Section 4, a less (resp.
more) aggressive behavior is achieved by increasing (resp. decreasing) the weights
in the R matrix, or by decreasing (resp. increasing) the weights that correspond to
the accumulated errors in the Q matrix, or by both these mechanisms. However, in
most of our examples, and in order to keep the LQR configuration part as simple
as possible, the Q matrix was set to the identity one. Note that a less (resp. more)

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Gounaris, Yfoulis, and Paton

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180

200

Average number of jobs of duration 1s starting per second

T
im

s
(s

)

No Adapt

Flux−based

LQR

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

Average number of jobs of duration 1s starting per second

T
im

e
(s

)

No Adapt

Flux−based

LQR

Fig. 9. Experiment 1: The average response times of Q1 for a random poisson (left) and poisson
cyclic (right) imbalance.

aggressive controller requires more (resp. less) steps to converge. In the following
experiments, we have experimented with a small number of rather intuitive LQR
configurations with a view to illustrating the potential of the LQR approach to this
type of load balancing. It is out of the scope of this work to fine tune the LQR
controller so that its best performance possible is achieved, i.e., the configuration
of R and Q that we have employed may be suboptimal.

To smooth the differences between successive instances of the LQR input regard-
ing the machine capacity, the machine loads of Fig. 8 are normalized, so that their
sum is 1. For both techniques, adaptations of workload distribution are enforced
only if the allocation is modified by 5% or more at least on one machine with a
view to avoiding overreacting. Each time step, i.e. each controller cycle, is equal
to 0.1 secs. Due to the rapidly changing imbalances of Fig. 8, it might be the case
that the load change on a machine between two consecutive steps is higher than a
threshold (set to 5%), which implies that the load has not temporarily converged;
in that case, no effort to adapt is made by any balancing mechanism examined,
since any such efforts are prone to cause performance degradation. Also, LQR
starts enforcing adaptations only after an initial settling period, to avoid the initial
oscillation shown in the figures in Sec. 4. Finally, as in [Paton et al. 2009], the
original Flux proposal with respect to the mechanism that is responsible for enforc-
ing rebalancing decisions, is modified so that, at each step, as many state chunks
are transferred as required to reach a balanced state; limiting this number to one
renders the technique too sensitive to the overall number of chunks and the nature
of imbalance. LQR re-uses the same mechanism to realize adaptations.

5.2.2 Experiment 1: Performance evaluation in a non network-constrained en-
vironment. The first query to be examined is a key/foreign-key join over the Order
(1.5M tuples) and LineItem (6M tuples) tables of TPC-H database; this query will
be referred to as Q1. In Q1, scans project out 25% of the columns so that com-
munication cost does not dominate. In Experiment 1, the degree of intra-operator
join parallelism is 3, and we compare the improvements of LQR and a Flux-based
approach as implemented in [Paton et al. 2009] over the non-adaptive case for vary-
ing average numbers of external jobs arriving at one of the machines per second.
The period of the sinusoidal function in poisson cyclic imbalances is always set to
5 secs.

The average response time of ten random imbalances for the non-adaptive, Flux
ACM Journal Name, Vol. V, No. N, Month 20YY.

Efficient Load Balancing in Partitioned Queries Under Random Perturbations · 19

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180

200

Average number of jobs of duration 1s starting per second

T
im

e
(s

)

No Adapt
Flux−based
LQR

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

Average number of jobs of duration 1s starting per second

T
im

e
(s

)

No Adapt
Flux−based
LQR

Fig. 10. Experiment 1: The median response times of Q1 for random poisson (left) and poisson
cyclic (right) imbalances.

0 1 2 3 4 5 6
−20

−10

0

10

20

30

40

50

60

Average number of jobs of duration 1s starting per second

Im
pr

ov
em

en
t

flux − poisson
LQR − poisson
flux − poisson cyclic
LQR − poisson cyclic

Fig. 11. Experiment 1: Percentile improvements over the non-adaptive case for Q2.

and LQR cases are shown in Fig. 9. Two main observations are: (i) both for poisson
and poisson cyclic imbalances, LQR performs consistently better than Flux; and (ii)
LQR avoids situations where adaptivity yields higher response times, whereas Flux
fails to balance the execution in a beneficial manner in a wide range of cases thus
causing further performance degradation. For poisson-cyclic imbalance, the aver-
age improvement when LQR is employed is 27.8% compared to the non-adaptive
case; to the contrary, Flux yields 21% higher response times. For the poisson im-
balance, both techniques improve performance; however, the average performance
improvements of LQR are more significant (41.9% to 6.3%).

The values of R that yielded this performance are 0.3 · I2,2, whereas Q is always
set to I2,2; I is the identity matrix. As mentioned earlier, finer tuning of this
matrix may lead to even higher performance. To check how sensitive LQR is to
different values of R, we also experimented with R = I2,2. The differences in the
LQR performance with this configuration are not significant (2-5%). The settling
period used was 15 steps for poisson imbalances and 10 steps for the poisson cyclic
ones. Small changes in these values did not seem to have a significant impact on
performance either.

Fig. 9 also depicts the standard deviation of mean time, which, in general, can
be relatively high for LQR. This is due to the fact that occasionally, LQR performs
significantly worse than its average performance. As a result, in all experiments
conducted, the median response time for LQR is consistently 1-5% lower than the
average response time. Fig. 10 shows the median times for Experiment 1.

Intuitively, LQR performs better for longer-running and continuous queries. But
ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Gounaris, Yfoulis, and Paton

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180

200

Average number of jobs of duration 1s starting per second

T
im

e
(s

)

No Adapt

Flux−based

LQR

0 1 2 3 4 5 6
0

50

100

150

Average number of jobs of duration 1s starting per second

T
im

e
(s

)

No Adapt

Flux−based

LQR

Fig. 12. Experiment 2: The average response times of Q1 for random poisson (left) and poisson
cyclic (right) imbalances.

it can also yield performance improvements for smaller queries. Let Q2 be a query
joining Part (200K tuples) and PartSupplier (800K tuples) on a key/foreign-key
bases. The performance improvements are shown in Fig. 11 (corresponding to av-
erages of ten random runs). Again, for poisson cyclic imbalances, LQR performs
consistently better than Flux; also applying LQR does not lead to negative im-
provements as Flux may do. On average, with LQR, the response time is reduced
by 22.6% and 15.2% when the imbalance type is poisson and poisson cyclic, respec-
tively. Note that in this experiment, we experimented with only three values for
the R matrix: 0.1, 0.3 and 0.5, with the graph showing the best performing case.

5.2.3 Experiment 2: Performance evaluation in a network-constrained environ-
ment. In this experiment, we apply a ten-fold increase in network latency coupled
with a ten-fold decrease in network bandwidth (see Table I) and we repeat Exper-
iment 1. As shown in Fig. 12, the performance of LQR remains essentially the
same: LQR reduces the response time on average by 40.2% and 27.8 % for poisson
and poisson cyclic imbalances, respectively. However, Flux exhibits much worse
performance, yielding increased response times for both imbalance types (e.g., for
poisson cyclic imbalances the average degradation is 52%). The configuration of
R remains the same (i.e., set to 0.3 · I2,2): the only difference from the previous
experiment is that small increases in the matrix weights improve, instead of aggra-
vating, the performance slightly. This is expected since data movements incur a
higher cost in this setting.

5.2.4 Experiment 3: Varying number of join evaluators. In this experiment, we
repeat the 1st experiment for varying number of machines participating in the join
evaluation. On average, under poisson external load, LQR yields 41.9%, 39.7%,
41%, and 39.2% lower average response times compared to the non adaptive case,
when the degree of join parallelism is 3 (Experiment 1), 6, 9 and 12, respectively
(see Fig. 13). In other words, it exhibits consistent behavior. On the other hand,
under the same type of external load, Flux yields 6.3%, 21.8%, 33% and 43.4%
performance improvements, respectively. It is interesting to note that in order to
achieve this performance, the R weights were reduced from 0.3 to 0.1 and to 0.05,
for parallelism degrees 9 and 12, respectively, to account for the reduced overall
imbalance. This experiment reveals an interesting pattern regarding the behavior
of the Flux balancing mechanism: it can yield as significant performance improve-
ments as the LQR controller only if the level of external load on the perturbed
ACM Journal Name, Vol. V, No. N, Month 20YY.

Efficient Load Balancing in Partitioned Queries Under Random Perturbations · 21

0 1 2 3 4 5 6
0

20

40

60

80

100

Average number of jobs of duration 1s starting per second

T
im

e
(s

)

No Adapt

Flux−based

LQR

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

Average number of jobs of duration 1s starting per second

T
im

e
(s

)

No Adapt

Flux−based

LQR

0 1 2 3 4 5 6
0

10

20

30

40

50

Average number of jobs of duration 1s starting per second

T
im

e
(s

)

No Adapt

Flux−based

LQR

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

T
im

e
(s

)

Average number of jobs of duration 1s starting per second

No Adapt

Flux−based

LQR

0 1 2 3 4 5 6
0

10

20

30

40

50

60

Average number of jobs of duration 1s starting per second

T
im

e
(s

)

No Adapt

Flux−based

LQR

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

T
im

e
(s

)

Average number of jobs of duration 1s starting per second

No Adapt

Flux−based

LQR

Fig. 13. Experiment 3: Top: The average response times of Q1 for random poisson imbalances
when the degree of join partitioned parallelism is 6 (left), 9 (middle) and 12 (right). Bottom: The
corresponding average response times for random poisson cyclic imbalances.

1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180

200

Number of processors with variable external load

T
im

e
(s

)

No Adapt

Flux−based

LQR

1 2 3 4 5 6
0

20

40

60

80

100

120

140

Number of processors with variable external load

T
im

e
(s

)

No Adapt

Flux−based

LQR

Fig. 14. Experiment 4: The average response times of Q1 for a random poisson (left) and poisson
cyclic (right) imbalance.

machine is high or the ratio of non-perturbed machines to the perturbed ones is
not small. However, LQR is more robust with respect to these parameters.

The same pattern appears also when the imbalance follows the poisson cyclic
distribution: LQR behaves similarly to Experiment 1, whereas the performance
of Flux improves with higher degrees of join parallelism, and outperforms LQR
when this degree is 12 (Fig. 13). However, configuring LQR efficiently is more
intriguing: for small numbers of external jobs arriving at the perturbed machine,
the R weights are the same as the ones used for poisson imbalance. However, they
should be increased (or the initial settling window should be increased) for higher
job arrival rates.

5.2.5 Experiment 4: Varying number of perturbed machines. In this experiment,
the degree of join parallelism is set to 6, the average number of external jobs arriving
at the perturbed machines is set to 3, and the number of perturbed machines
varies from 1 to 6. Again, the query is Q1. For the two types of imbalance,
LQR yields 14.4% and 7% lower response times (on average), whereas Flux fails
to yield performance improvements, as depicted in Fig. 14. When no adaptations
are allowed, the number of perturbed machines has no impact; the differences in
the relevant bars in the figure are solely due to the fact that the imbalances are
randomly generated and thus are never the same. When all, or almost all the

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Gounaris, Yfoulis, and Paton

0 1 2 3 4 5 6
0

50

100

150

200

250

300

350

Average number of jobs of duration 1s starting per second

T
im

e
(s

)

No Adapt

Flux−based

LQR

0 1 2 3 4 5 6
0

50

100

150

200

250

300

350

T
im

e
(s

)

Average number of jobs of duration 1s starting per second

No Adapt

Flux−based

LQR

Fig. 15. Experiment 5: The average response times of Q3 for a random poisson (left) and poisson
cyclic (right) imbalance.

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

Average number of jobs of duration 1s starting per second

T
im

e
(s

)

No Adapt

Flux−based

LQR

0 1 2 3 4 5 6
0

10

20

30

40

50

60

Average number of jobs of duration 1s starting per second

T
im

e
(s

)

No Adapt

Flux−based

LQR

Fig. 16. Experiment 5: The average response times of Q4 for a random poisson (left) and poisson
cyclic (right) imbalance.

machines are perturbed, LQR cannot improve performance because it does not
avoid non-beneficial data movements; nevertheless the degradation is not as severe
as in the Flux case. Since the imbalance increases with the number of perturbed
machines, we also increase the R weights up to 10 for poisson imbalances and up to
2 for poisson cyclic ones. More specifically, for poisson imbalances, the R weights
that yield the lower response times are 0.3, 0.3, 1, 2, 5 and 10, for 1 to 6 perturbed
machines, respectively. For poisson cyclic imbalances, more moderate increases are
needed, especially if they are coupled with an increase of the Q elements and an
enlargement of the initial settling window: 0.1, 0.3, 1.5, 1.5, 2 and 1.

5.2.6 Experiment 5: Queries with multiple joins. In the last experiment config-
uration, we experiment with two multiple join queries, one 2-join and one 3-join:
Q3, which joins Q1 with the Supplier relation (10K tuples), and Q4 which joins the
Supplier, Customer (150K tuples), PartSupplier (800K tuples) and Orders tables.
The degree of parallelism for each join is 3, and a separate controller is responsible
for each join. As in Experiment 1, LQR can lead to significant performance benefits
both for Q3 (see Fig. 15) and Q4 (see Fig. 16). This is not the case though for
Flux, which, on average, causes further performance degradations, for both queries
and both types of imbalance. Note that the R weights and the settling window
are a bit larger than those in Experiment 1, up to 1.5 and 20 steps, respectively.
This is because the imbalance in one operator due to external jobs is aggravated
by the imbalanced execution of other operators in the same pipeline, so that a less
aggressive controller is needed.

The results of this experiment provide initial insights into the behavior of our
ACM Journal Name, Vol. V, No. N, Month 20YY.

Efficient Load Balancing in Partitioned Queries Under Random Perturbations · 23

Experiment Flux-based Replication-based DHT-inspired LQR
mean median mean median mean median mean median

Exp.1 6.3 7.04 26.7 26.5 28.3 28.2 41.9 43.2

Exp.2 -13 -11 12.6 12.8 27.6 27.5 40.2 42. 5

Exp.3-6 nodes 21.8 20.4 35.9 35.9 35.4 35.1 39.7 41.9

Exp.3-9 nodes 33 32.7 37.2 37.4 37.4 37.3 41 43.3

Exp.3-12 nodes 43.4 45.3 42.3 43.6 39.4 39.2 39.2 39.4

Exp.4 -52 -50 -36 -34 19 19.3 14.4 17.3

Exp.5 - Q3 -22 -23 -6.7 -7.1 7.1 9 28.9 30.7

Exp.5 - Q4 -1.9 -3.5 21.3 21.5 12.4 12.1 31.3 32.6

Table II. The average percentile improvements on the mean and the median response times com-
pared to the non-adaptive case under poisson imbalances.

Experiment Flux-based Replication-based DHT-inspired LQR
mean median mean median mean median mean median

Exp.1 -21 -22 2.7 1.8 19.6 19.4 27.8 30.8

Exp.2 -52 -52 -29 -31 18.3 18.3 27.8 30.6

Exp.3-6 nodes -5.7 -7 15.3 15.7 25.7 25.8 22 25

Exp.3-9 nodes 1.9 1.6 14.5 13.3 28.5 27.5 24 25.4

Exp.3-12 nodes 27.2 25.5 30.3 29.7 30.3 30.5 21.8 26.5

Exp.4 -68 -67 -56 -56 12.8 12.7 7 9.8

Exp.5 - Q3 -46 44 -29 -29 -5 -1.6 15.9 20.4

Exp.5 - Q4 -30 -31 0.2 -0.3 -0.5 1 19.4 19.4

Table III. The average percentile improvements on the mean and the median response times
compared to the non-adaptive case under poisson cyclic imbalances.

technique in scenarios where multiple operators share resources, e.g., in a multi-
query setting. However, the interference of multiple controllers for tasks that share
resources requires further investigation.

5.2.7 Experiment 6: Comparison with other approaches. Up to this point, we
compared the LQR and the Flux balancing mechanisms. In [Paton et al. 2009], two
additional techniques were introduced, a replication-based one and another inspired
by distributed hash tables (DHTs). As mentioned in Sec. 2, both these proposals
are characterized by serious limitations, e.g., the DHT-inspired one suffers from
reduced throughput due to duplicate work. In Tables II and III, we present the
average percentile improvements over the non-adaptive case for all techniques.

Observing these tables, a conclusion that can be drawn is that when a single
machine experiences external load, LQR is the best performing technique, unless
the overall number of participating machines is relatively high. In the latter case,
the difference between LQR and the other techniques is narrow. Especially for
network constrained environments (i.e., Experiment 2) and multiple join queries
(i.e., Experiment 5), LQR performs significantly better than any of the other three
approaches. When more than one machines is perturbed, LQR is capable of yielding
improved response times, in contrast to Flux and replication-based approaches. The
DHT-inspired solution performs slightly better in this context, but we believe that
the performance difference is not adequate to outweigh its drawbacks in more stable

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Gounaris, Yfoulis, and Paton

#machines average (secs) stdev

3 0.005201894 0.000484936

6 0.005840807 0.000430175

9 0.007319328 0.000765713

12 0.008871405 0.000724823

Table IV. The cost of applying LQR.

environments.

5.2.8 Experiment 7: LQR overhead. At runtime, LQR performs the following
tasks: (i) it estimates the K vector (Eq. (2)); (ii) it reconfigures the partitioning
vector to reflect the new workload distribution (the tuples are not reconfigured);
and (iii) it moves state from one machine to another. The second task requires a
negligible amount of time, whereas the third one is modelled by the simulator and
has been included in all performance results presented. The cost of estimating K,
which involves also the cost of building all the other model matrices, is strongly
correlated with the number of machines to be balanced. As shown in Table IV,
this cost is at the orders of milliseconds measured on a Intel Core2 Duo at 2.2 GHz
machine with 3GB of RAM. As such, the overall overhead incurred is low enough
not to annul the performance benefits. For example, while evaluating Q1, LQR
spends, in total, 2 secs approximately per run, even though, in our experiments,
where each step was 0.1 secs, LQR may be applied hundreds of times.

6. CONCLUSIONS

This work presents a novel approach to balancing parallel query execution over ma-
chines with unpredictably time-varying load where not taking into account the cost
of balancing decisions leads to suboptimal behavior. Although we have considered
only partitioned database queries, we believe that our work is of broader interest, as
the core problem it deals with is the inherent cost of enacting decisions in adaptive
systems.

The proposal is founded on applied control theory and more specifically on linear
quadratic regulation (LQR) optimal control. As well as a detailed presentation
of the controller design and configuration, the contributions of this work include
an empirical and theoretical analysis of the stability and convergence properties,
and performance evaluation in comparison with state-of-the-art heuristics. The
evaluation results demonstrate the superiority of LQR and its ability to find a
beneficial trade-off between balanced execution and balancing cost. Nevertheless,
this work can be extended in various ways. Two of the most promising directions are
the dynamic configuration of the controller (both at an inter- and intra-query level),
and the investigation of its behavior in multi-query settings. The former implies
the dynamic configuration of LQR, which corresponds to the category of switching
controllers. Designing stable and efficient switching controllers to operate in a
rapidly changing environment is a highly non-trivial control theoretical problem.
Another interesting direction is to incorporate the controller in a real system and
investigate the actual impact of measurements delays and noise on the behavior
of the controller; if this impact is significant, more sophisticated and decentralized
ACM Journal Name, Vol. V, No. N, Month 20YY.

Efficient Load Balancing in Partitioned Queries Under Random Perturbations · 25

solutions (e.g. [Camponogara et al. 2002]), should be examined.

ACKNOWLEDGMENTS

Dr. Yfoulis has been supported by the ATEI grant titled “Adaptive QoS control
and optimization of computing systems”.

REFERENCES

Åström, K. J. and Wittenmark, B. 1995. Adaptive Control. Addison-Wesley, Reading, MA,
USA.

Balazinska, M., Balakrishnan, H., and Stonebraker, M. 2004. Contract-based load man-
agement in federated distributed systems. In NSDI. 197–210.

Birdwell, J., Zhong, T., Chiasson, J., Abdallah, C., and Hayat, M. 2006. Resource-
constrained load balancing controller for a parallel database. In Proceedings of the American
Control Conference.

Camponogara, E., Jia, D., Krogh, B., and Talukdar, S. 2002. Distributed model predictive
control. IEEE Control Systems Magazine 22, 1, 44–52.

Deshpande, A., Ives, Z. G., and Raman, V. 2007. Adaptive query processing. Foundations and
Trends in Databases 1, 1, 1–140.

DeWitt, D. 1992. Parallel Database Systems: The Future of High Performance Database Systems.
Comm ACM 35, 6, 85–98.

Diao, Y., Hellerstein, J. L., Parekh, S. S., Griffith, R., Kaiser, G. E., and Phung, D. B.
2005. Self-managing systems: A control theory foundation. In Proc. of IEEE ECBS 2005.
441–448.

Diao, Y., Hellerstein, J. L., Storm, A. J., Surendra, M., Lightstone, S., Parekh, S. S., and
Garcia-Arellano, C. 2004. Incorporating cost of control into the design of a load balancing
controller. In IEEE Real-Time and Embedded Technology and Applications Symposium. 376–
387.

Diao, Y., Wu, C. W., Hellerstein, J. L., Storm, A. J., Surendra, M., Lightstone, S.,
Parekh, S., Garcia-Arellano, C., Carroll, M., Chu, L., and Colaco, J. 2005. Comparative
studies of load balancing with control and optimization techniques. In Proceedings of the
American Control Conference. 1484–1490.

Dumont, G. and Huzmezan, M. 2002. Concepts, methods and techniques in adaptive control.
In Proceedings of the American Control Conference. Boston, MA.

Franklin, G., Powell, J., and Workman, M. 1998. Digital Control of Dynamic Systems.
Reading, Massaschusetts: Addison-Wesley, third ed.

Fu, Y., Wang, H., Lu, C., and Chandra, R. S. 2006. Distributed utilization control for real-
time clusters with load balancing. In RTSS ’06: Proceedings of the 27th IEEE International
Real-Time Systems Symposium. 137–146.

Gedik, B. and Liu, L. 2003. Peercq: A decentralized and self-configuring peer-to-peer information
monitoring system. In ICDCS. 490–499.

Gounaris, A., Yfoulis, C., Sakellariou, R., and Dikaiakos, M. D. 2008a. A control theoretical
approach to self-optimizing block transfer in web service grids. TAAS 3, 2.

Gounaris, A., Yfoulis, C., Sakellariou, R., and Dikaiakos, M. D. 2008b. Robust runtime
optimization of data transfer in queries over web services. In Proc. of ICDE.

Gounaris, A., Yfoulis, C. A., and Paton, N. W. 2009. An efficient load balancing LQR con-
troller in parallel databases queries under random perturbations. In 3rd IEEE Multi-conference
on Systems and Control (MSC 2009).

Graefe, G. 1990. Encapsulation of parallelism in the volcano query processing system. In Proc.
of SIGMOD, H. Garcia-Molina and H. V. Jagadish, Eds. 102–111.

Graefe, G. 1996. Iterators, Schedulers, and Distributed Memory Parallelism. Software Practice
and Experience 26, 4, 427–452.

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Gounaris, Yfoulis, and Paton

Hellerstein, J. L., Diao, Y., Parekh, S., and Tilbury, D. M. 2004. Feedback Control of
Computing Systems. John Wiley & Sons.

Ives, Z., Florescu, D., Friedman, M., Levy, A., and Weld, D. 1999. An Adaptive Query
Execution System for Data Integration. In ACM SIGMOD. 299–310.

Kephart, J. and Chess, D. 2003. The Vision of Autonomic Computing. IEEE Computer 36, 1,
41–50.

Kephart, J. and Das, R. 2007. Achieving self-management via utility functions. IEEE Internet
Computing 11, 1, 40–48.

Lightstone, S., Schiefer, B., Zilio, D., and Kleewein, J. 2003. Autonomic computing for
relational databases: the ten-year vision. In Proc.of the IEEE Workshop Autonomic Computing
Principles and Architectures (AUCOPA). 419–424.

Lightstone, S., Surendra, M., Diao, Y., Parekh, S. S., Hellerstein, J. L., Rose, K., Storm,
A. J., and Garcia-Arellano, C. 2007. Control theory: a foundational technique for self
managing databases. In ICDE Workshops. 395–403.

Lu, H. and Tan, K.-L. 1992. Dynamic and load-balanced task-oriented datbase query processing
in parallel systems. In 3rd Int. Conf. on Extending Database Technology EDBT. Springer,
357–372.

Markl, V., Raman, V., Simmen, D., Lohman, G., and Pirahesh, H. 2004. Robust query
processing through progressive optimization. In Proc. SIGMOD. 659–670.

Mehta, M. and DeWitt, D. J. 1995. Managing intra-operator parallelism in parallel database
systems. In Proc. of 21th Int. Conf. on Very Large Data Bases VLDB. 382–394.

Ng, K. W., Wang, Z., Muntz, R. R., and Nittel, S. 1999. Dynamic Query Re-Optimization.
In SSDBM. 264–273.

Paton, N. W., Chávez, J. B., Chen, M., Raman, V., Swart, G., Narang, I., Yellin, D. M., and
Fernandes, A. A. A. 2009. Autonomic query parallelization using non-dedicated computers:
an evaluation of adaptivity options. VLDB J. 18, 1, 119–140.

Rahm, E. and Marek, R. 1995. Dynamic multi-resource load balancing in parallel database
systems. In Proc. of 21th Int. Conf. on Very Large Data Bases VLDB. 395–406.

Raman, V., Han, W., and Narang, I. 2005. Parallel querying with non-dedicated computers.
In Proc. VLDB. 61–72.

Sampaio, S., Paton, N., Smith, J., and Watson, P. 2006. Measuring and Modelling the Perfor-
mance of a Parallel ODMG Compliant Object Database Server. Concurrency and Computation:
Practice and Experience 18, 1, 63–109.

Shah, M. A., Hellerstein, J. M., Chandrasekaran, S., and Franklin, M. J. 2003. Flux: An
adaptive partitioning operator for continuous query systems. In Proc. of ICDE. 25–36.

Wolf, J. L., Yu, P. S., Turek, J., and Dias, D. M. 1993. A parallel hash join algorithm for
managing data skew. IEEE Transactions on Parallel and Distributed Systems 4, 12, 1355–1371.

Xing, Y., Zdonik, S. B., and Hwang, J.-H. 2005. Dynamic load distribution in the borealis
stream processor. In ICDE. 791–802.

7. APPENDIX

7.1 Technical details

Here we provide a more formal description of the design of our controller, part of
which is in [Gounaris et al. 2009]. According to the load balancing requirement,
all outputs yj , j = 1, . . . , P (P is the number of machines) are equalized to their
optimal value, which is their average y(k) = 1

P

∑P
i=1 yi(k). Hence we have to

design a tracking controller so that the outputs follow a time-varying reference
trajectory y(k). Therefore, instead of having a static value or an external signal as
the reference input, the reference is specified as a linear combination of measured
outputs, i.e. their average. In order to use the LQR regulation controller, this
tracking requirement is typically transformed to a regulation problem by considering
ACM Journal Name, Vol. V, No. N, Month 20YY.

Efficient Load Balancing in Partitioned Queries Under Random Perturbations · 27

as state-variables the control errors ej = yj − y. The control error vector is then
given by

e(k) =

y1

y2

· · ·
yP

− 1

P

∑P
i=1 yi∑P
i=1 yi

· · ·∑P
i=1 yi

 = (IP,P − 1

P 1P,P)y(k) where IP,P and 1P,P are

the P × P identity and unary matrices, respectively. In this formulation matrices
and vectors are denoted by boldface uppercase and lowercase letters, respectively.
The corresponding state vector x(k) is augmented with the accumulated error,

which contains the sum of the values of the errors in all steps: x(k) =
[

e(k)
eI(k)

]

Hence, the two types of state variable, i.e., the error and the accumulated error,
are specified according to the formulas below.

e(k) = (IP,P − 1
P

1P,P) (y(k) + dm(k)), eI(k + 1) = eI(k) + e(k) (5)

The general form of the output equation for the state space model is as follows.

y(k + 1) = A(k)y(k) + B(k) (u(k) + dc(k)) (6)

u(k) is the control input vector, which is a linear function of the system’s state,

i.e. u(k) = −Kx(k) , x(k) =
[

e(k)
eI(k)

]
. K is specified by the LQR framework.

The vectors dm,dc in Eq. (5),(6), according to the control theory terminology,
correspond to the measurement disturbance and the control disturbance, which are
changes that affect the measured output and the way the control input influences
the measured output, respectively. They can accommodate load and reference input
changes, measurement noise as well as modeling inaccuracies.

We assume that the expected completion time depends solely on the control
input, i.e., the workload allocation, and the machine load. As such, in Eq. (6),
the matrix A can be omitted. Although in general the system dynamics captured
in A may not be negligible, using relatively large control and sample intervals
reduces the effects of dynamics and measurement noise. Moreover, in this work we
wanted to go beyond techniques relying on detailed off-line profiling, on the basis
of representative types of workloads and/or machines, which are difficult to find in
a dynamic context. A generic solution is sought, and our experimental results for
several different workloads confirm the control performance of our controller and
its robustness to unmodeled dynamics. However, offline or online profiling methods
could be integrated into the design to improve the accuracy of the controller. The
matrix B is a time-varying matrix that can be found at runtime through system
identification or monitoring. It is a P × P matrix with elements corresponding to
the time units required for each of the participating machines to process a unit
of workload, which is the inverse of the processing speed of the machines, and, as
such, can capture both changes in the computational capacity, e.g., due to load
change, and data skews. Since the expected completion time of one machine does
not depend on the processing speed of another, we may assume that B is diagonal.

As already explained, the load balancing problem imposes two types of con-
ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Gounaris, Yfoulis, and Paton

straints on the control inputs, i.e. ui ≥ 0 and
∑P

i=1 ui = 1, which we can in-
corporate into the proposed state-space model in two ways. The first proposal
is to inject an appropriate correction of the initial estimate of u using artificial
disturbance terms dm

i (k) in Eq. (6) as follows:

dm
i (k) =

{−ui(k), ui(k) ≤ 0
ui(k)∑P ′

j=1
uj

(1−∑P ′

j=1 uj) otherwise (7)

where P ′ is the number of nodes for which the initial LQR decision on u is a positive
number. Alternatively, the equality constraint can be satisfied without the need of
dm by allowing the controller to specify the allocation only for P − 1 nodes. For
the last machine the allocation will be

uP (k) = 1−
P−1∑

j=1

uj(k) (8)

The bound constraints 0 ≤ ui ≤ 1 may be satisfied by careful selection of the LQR
parameters.

Remember that Eq. (3) gives the cost function (to be minimized) employed by
LQR, which is rewritten here: J = 1

2

∑∞
k=1

[
xT(k)Qx(k) + uT(k)Ru(k)

]
. To

ensure that J ≥ 0 it is required that Q be positive semidefinite and that R be
positive definite. This is equivalent to the requirement that the eigenvalues of Q
are all either positive or zero, and the eigenvalues of R are positive. In passing, the
eigenvalues of a matrix are the zeros of its characteristic polynomial.

Having defined the state space model, in order to design an LQR controller, we
have to derive a difference equation linking the state variables and the control input,
according to the form

x(k + 1) = Ã x(k) + B̃ u(k) (9)

where Ã is a 2N × 2N matrix, and B̃ is a 2N × N one; N is the number of
allocations that are explicitly decided by the controller. A challenge in this step is
to ensure that the system is controllable from the theoretical point of view (or at
least stabilizable, i.e., all its uncontrollable states are stable) and stable. Proofs of
these properties are discussed in the sequel.

From the combination of the first part of Eq.(5) and (6) , we can derive that
e(k + 1) = (IN,N − 1

P 1N,N)B(k) (u(k) + dc(k)) ∼= (IN,N − 1
P 1N,N)B(k)u(k)

Note also that the second part of Eq. (5) can be rewritten as

eI(k + 1) =
[
IN,N IN,N

] [
e(k)
eI(k)

]
(10)

Inserting the two formulas above in Eq. (9), we get

Ã =
[

0N,N 0N,N

IN,N IN,N

]
and (11)

B̃ =
[

ĨN,N BN,N

0N,N

]
, ĨN,N = (IN,N − 1

P
1N,N) (12)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Efficient Load Balancing in Partitioned Queries Under Random Perturbations · 29

After the Ã, B̃,Q and R matrices have been specified, toolkits, such as the
Control System Toolbox of MATLABTM , provide an automated technique for the
estimation of K.

7.2 Controllability and stabilizability

A control system is fully controllable if all its states can be driven from their initial
condition to any desired final value in finite time, by appropriate unconstrained
control actions. This property is crucial in control system design, for if some or all
of the states that appear in a state-space model of a system are uncontrollable, this
can have a serious impact on the convergence and stability of the resulting closed-
loop system. Controllability is directly related to the stabilizability of a system; the
latter ensures that even if some uncontrolled states exist, these remain bounded.

In a general state-space setting, stabilizability of the pair [A,B] is the ability to
make the closed-loop system asymptotically stable, i.e. ensuring that the closed-
loop system matrix Ac = A − BK has all its eigenvalues inside the unit circle,
i.e. 0 ≤ ‖eig(Ac)‖ < 1. Since there does not exist a control law to drive any
uncontrollable states –or modes, as they are usually called in control terms– to
a desired direction, this implies that a system is stabilizable if its uncontrollable
states, if any, are stable.

Let us now move to our state-space model of the load balancing problem under
a dynamic feedback control architecture –Eqs. (5), (6)– and the two control laws
proposed in (7), (8). We will first show that the first proposal leads to an unstabi-
lizable system due to the presence of an uncontrollable and unstable state. This is
a direct consequence of including all nodes in the design and imposing a common
reference input equal to their average response.

The second proposal, which excludes the last node from the design, does not suffer
from uncontrollability anymore, hence stability and performance guarantees for the
resulting closed-loop system are provided by a dynamic state-feedback control law.
An obvious question is whether these properties also hold for the last node, which
has been excluded. We also conclude that the answer to this question is positive.

Proposition 7.1. The state-space model specified in (9), (11), (12) is uncon-
trollable and unstabilizable. It possesses an uncontrollable and unstable state that
corresponds to an eigenvalue on the unit circle. The reduced state-space model,
obtained when one of the nodes is excluded, is fully controllable.

Proof. For the state-space model in (9),(11),(12) we denote B̂ = Ĩ B to obtain

Ã =
[

0 0
I I

]
, B̃ =

[
Ĩ B
0

]
=

[
B̂
0

]

The system’s controllability may be easily checked using the controllability matrix

Pc =
[
B̃ Ã B̃ Ã2 B̃ . . . ÃN−1 B̃

]

Our system is fully controllable if and only if the rank of the controllability matrix
Pc : 2N×N2 is equal to the dimension of Ã, i.e. rank(Pc) = 2N (see e.g. [Franklin
et al. 1998]). This is equivalent to the existence of 2N linearly independent rows or
columns in Pc. Due to the special structure of our Ã , B̃ matrices, it is easy to show

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Gounaris, Yfoulis, and Paton

that Ãk B̃ =
[

0
B̂

]
, k ≥ 1. This implies that Pc =

[
B̂ 0 0 . . . 0
0 B̂ B̂ . . . B̂

]
.

In this structure, we have 2N linearly independent columns if and only if the

2N × 2N submatrix P1 is non singular, i.e. det(P1) 6= 0, where P1 =
[

B̂ 0
0 B̂

]
.

Clearly det(P1) = det(B̂)2, and det(B̂) = det(̃I) det(B̃). But det(B̃) =
∏N

i=1 bi,
where bi are the diagonal entries of the diagonal matrix B, hence for a meaningful
load balancing setting, in which the computational loads of all nodes are assumed
non-zero, it is straightforward to see that full controllability is equivalent to the
condition det(̃I) 6= 0. Simple determinant manipulations reveal that det(̃IN×N) =
0 , N = P and det(̃IN×N) = 1

P , N = P − 1. Hence the full-order system is
uncontrollable and the reduced-order system fully controllable.

Moreover, we have rank(̃IP×P) = P − 1, thus the matrix loses one degree and
our system has a single uncontrollable mode. We finally show that this mode
corresponds to an eigenvalue at z = 1, i.e. on the unit circle. This eigenvalue is
unstable, therefore the full-order system is also unstabilizable. To show this we
need to calculate the eigenvalues of the closed-loop system matrix Ac = Ã− B̃K.

If K = [KP KI] then Ac =
[−Ĩ BKP −Ĩ BKI

I I

]
and further manipulations lead

to

det(zI−Ac) = det(z(z − 1)I− ĨB[(z − 1)KP + KI])

from which we conclude that for any choice of K, z = 1 is an eigenvalue of the
closed loop matrix , since for z = 1 we have det(zI − Ac) = −det(̃IBKI) =
−det(̃I) det(B) det(KI) = 0.

Proposition 7.2. Consider the reduced-order system in (9), (11), (12), in which
the last node has been excluded. For this system, assume that by designing an
appropriate dynamic state-feedback control law while respecting (8) we obtain an
asymptotically stable closed-loop system. Then the response of the last node will
also be asymptotically stable.

Proof. For N = P −1 in Eqs. (9),(11),(12) we obtain the state-space equations
of a reduced-order system, where P − 1 integrators are used for the first P − 1
nodes, and the last node is excluded from the design. According to (8), its control
input uP is specified as uP = 1 −∑P−1

j=1 uj . This relation can be used to specify
the link between the error eP (k) of the P -th node –for which no care to guarantee
asymptotic stability has been taken, since no integrator is used– and the errors of
the other nodes ej(k) , j = 1, 2, . . . , P − 1.

Simple manipulations yield the following equations, where the effect of the vari-
ables eP , yP of the last node is explicitly shown.

e(k) = (I− 1
P

1)y(k) − 1
P

yP 1̃ = Ĩ y(k)− 1
P

yP 1̃

eP (k) =
P − 1

P
yP − 1

P
1̃T y

e(k + 1) =
[
Ĩ B +

1
P

bP I
]

u(k)− 1
P

bP 1̃T , hence

ACM Journal Name, Vol. V, No. N, Month 20YY.

Efficient Load Balancing in Partitioned Queries Under Random Perturbations · 31

[
e(k + 1)
eI(k + 1)

]
= Ã

[
e(k)
eI(k)

]
+ B̃ u(k) + d̃(k) where (13)

Ã =
[

0 0
I I

]
, B̃ =

[
Ĩ B + 1

P bP I
0

]
, d̃(k) =

[− 1
P bP Ĩ
0

]
(14)

and 1̃ is an N × 1 unary vector, bP is the last diagonal entry of matrix B , i.e.
yP (k + 1) = bP uP (k), and all other matrices have dimensions N ×N, N = P − 1.

Eq. (13) reveals the contribution of the last node to the entries of matrix B̃.
We observe also that the last node gives rise to a time-varying disturbance term d̃,
which depends on the computational load.

We have seen in the previous proposition that the system is stabilizable, hence
we can design a stabilizing dynamic state-feedback controller to guarantee in the
presence of disturbances that all errors ej(k) , j = 1, 2, . . . , P − 1 are asymptoti-
cally approaching zero, thus all P − 1 nodes are balanced. However, this does not
guarantee that the system is correctly balanced, unless asymptotic stability for the
last node is also shown. Further manipulations reveal that

P−1∑

i=1

ei = 1̃T e = (1̃T 1)y − 1
P

yP 1̃T 1̃ =
1
P

1̃T y − P − 1
P

yP

However, 1
P 1̃T y− P−1

P yP is already proven that it is equal to −eP , i.e., the last
node’s error is equal to the negative sum of the rest of the errors, thus it tends
asymptotically to zero in a stable design, and load balancing is achieved.

ACM Journal Name, Vol. V, No. N, Month 20YY.

