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Abstract The concept of h-index has been proposed to easily assess a researcher’s per-

formance with a single number. However, by using only this number, we lose significant

information about the distribution of citations per article in an author’s publication list. In this

article, we study an author’s citation curve and we define two new areas related to this curve.

We call these ‘‘penalty areas’’, since the greater they are, the more an author’s performance is

penalized. We exploit these areas to establish new indices, namely Perfectionism Index and

eXtreme Perfectionism Index (XPI), aiming at categorizing researchers in two distinct cat-

egories: ‘‘influentials’’ and ‘‘mass producers’’; the former category produces articles which

are (almost all) with high impact, and the latter category produces a lot of articles with

moderate or no impact at all. Using data from Microsoft Academic Service, we evaluate the

merits mainly of PI as a useful tool for scientometric studies. We establish its effectiveness

into separating the scientists into influentials and mass producers; we demonstrate its

robustness against self-citations, and its uncorrelation to traditional indices. Finally, we apply

PI to rank prominent scientists in the areas of databases, networks and multimedia, exhibiting

the strength of the index in fulfilling its design goal.

Keywords Ranking � h-Index � Citation analysis � Bibliometrics

PI, note here that PI is not related and should not be confused with the term Perfect Index (Woeginger in
Math Soc Sci 56: 224–232, 2008).
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Introduction

The h-index has been a well honored concept since it was proposed by Hirsch (2005). A lot

of variations have been proposed in the literature, see for instance the references within

(Alonso et al. 2009). Many efforts enhanced the original h-index by taking into account

age-related issues (Sidiropoulos et al. 2007), multi-authorship (Hirsch 2010), fractional

citation counting (Katsaros et al. 2009), the highly cited articles (Egghe 2006). Other works

explored its predictive capabilities (Hirsch 2007), its robustness to self-citations (Schreiber

2007), etc. Some of the proposals have been implemented in commercial and free software,

such as Matlab1 and the Publish or Perish software.2

Even though there are several hundreds of articles developing variations to the original h-

index , there is notably little research on making a better and deeper exploitation of the

‘‘primitive’’ information that is carried by the citation curve itself and by its intersection with

the 45� line defining the h-index . The projection of the intersection point on the axes creates

three areas that were termed in (Rousseau 2006; Ye and Rousseau 2010; Zhang 2009) as the h-

core-square area,3 the tail area and the excess area (see Fig. 1). The core area is a square of

size h (depicted by grey color in the figure), includes h2 citations and it is also called Durfee

square area (Anderson et al. 2008); the area that lies to the right of the core area is the tail or

lower area, whereas the area above the core area is the excess or upper or e2 area (Zhang

2009). Both the absolute and the relative sizes of these areas carry significant information.

The absolute size of the excess and core areas were directly used for the definition of e-index

and h-index ; part of the absolute size of the tail area was used by Garcı́a-Pérez (2012) to create

a vector of h-indices; the relative size of the core to the tail area (without taking into account

the tail length) was used by Ye and Rousseau (2010) for similar purposes, etc. (For a complete

review of the relevant bibliography cf. section ‘‘Relevant work’’.)

The common characteristic of all these works is that they develop indices to ‘‘break

ties’’, i.e., to differentiate between scientists with equal h-indices.

We believe that the latent information carried by these areas is not adequately explored,

and most significantly, it can be used in a different way, not as a plain tie-breaker, but as a

‘‘first-class’’ citizen in the scientometric indices ecosystem.

Rosenberg (2011) took the first step towards this goal; he provided a qualitative

characterization for the scientists with many citations in the upper area and a few citations

in the tail area by referring to them as perfectionists. He referred to the authors with few

citations in the upper area and many citations in the tail area as mass producers, since they

have a lot of publications but mostly of low impact. Finally, he referred to the rest of the

scientists as the prolific ones. The origin of this terminology is quite old; it was proposed

by Cole and Cole (1967), and subsequently studied further by Feist (1997).

Motivated by Rosenberg’s classification scheme, we pose the following question: ‘‘Can

we develop a quantitative methodology for identifying those scientists who are truly

laconic and constantly influential compared to those who produce a mass of papers but

relatively few of them contribute to their h-index ?’’

In the present paper, we will present a methodology and an easy calculated criterion to

categorize a scientist in one of two distinct categories: either an author is a ‘‘mass pro-

ducer’’, i.e., he has authored many papers with relatively few citations or he is

1 http://www.mathworks.de/matlabcentral/fileexchange/28161-bibliometrics-the-art-of-citations-indices.
2 http://www.harzing.com/pop.htm.
3 In the sequel of the article for the sake of simplicity, we use the term h-core and h-core-square
interchangeably.
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‘‘influential’’, i.e., most of his papers have an impact because they have received a sig-

nificant number of citations. This methodology will indirectly highlight the ‘‘attitude’’

towards publishing. Some scientists are acting in a laconic way, in the sense that they are

not fond of having published ‘‘half-baked’’ articles that are soon superseded by mature and

extended versions of their work. Others develop their work in a slow and incremental way,

publishing their ideas in a step-by-step fashion producing a lot of moderate impact articles

until they hit the big contribution. This attitude may be due to other reasons as well, e.g.,

the pressure to present published articles as deliverables to a project. In any case, it is not

the purpose of the present article to discover and explain those reasons. The sole purpose of

our work is to develop metrics that can be used complementary to the traditional ones such

as the h-index , in order to separate the steadily influential authors from the mass producers.

At this point we need to emphasize that the concept of ‘‘influential’’ scientists we develop

here is not related to the notion of influential nodes in a social network of actors as

considered by Basaras et al. (2013).

The area of scientometric performance indicators is very rich, and it is continuously

flourishing. Vinkler (2011) provides a brief classification of the traditional and modern

scientometric indicators explaining their virtues and shortcomings; it is shown there that

Hirsch index is not the only indicator that combines impact and quantity, but p-index

(Vinkler 2009) which introduced the concept of ‘‘elite set’’ is another competitor of it.

Nevertheless, in this article we use Hirsch index as a basis to expose our ideas claiming

that neither Hirsch index is the ’best’ one nor that our core methodology applies exclu-

sively to it. We are strongly confident that our ideas can be applied also to the family of

indices based on the Impact Factor by penalizing those journals that publish articles which

accumulate far less citations than the Impact Factor of the journal they appear in.

The rest of the article is organized as follows. In the next section we will present the

relevant literature and then define two new areas in the citation curve. Based on these two

new areas, we will establish two new metrics for evaluating the performance of authors in

terms of impact. In section ‘‘Penalty areas and the Perfectionism Indices’’ we will present

our datasets, which were built by extracting data from the Microsoft Academic Search

database, and analyze these data to view the dataset characteristics. Subsequently, we will

present the distributions of our new metrics for the above datasets and compare them with

other metrics proposed in the literature. Finally, in section ‘‘PI in action: Ranking scien-

tists’’ we will present some of the resulting ranking tables based on the new metrics and h-

index . Section ‘‘Conclusions’’ will conclude the article.
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Fig. 1 Citation curve depicting
the excess, core and tail areas.
(Color figure online)
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Motivation and contributions

During the latest years an abundance of scientometric indices have been published to

evaluate the academic merit of a scientist. Despite the debate around the usefulness of any

index in general, they remain an indispensable part of the evaluation process of a scientist’s

academic merit. The ideas behind the h-index philosophy was so influential, that the vast

majority of the proposed indices are about some variant or extension of the h-index itself.

Despite the wealth and sophistication of the proposed indices, we argue that the relevant

literature did not strive for an holistic consideration of the information carried by the

citation curve and by the 45� line. In the next paragraph we will present the motivating idea

with a simple example.

Let us consider author a who has published 13 articles, and author b who has published

24 articles with citation distributions f29; 24; 20; 17; 15; 14; 13; 12; 11; 10; 9; 3; 0g and

f29; 24; 20; 17; 15; 14; 13; 12; 11; 10; 2; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 0; 0; 0g respectively. Both

authors have the same ‘‘macroscopic’’ characteristics in terms of the number of citations,

i.e., they both have the same total number of citations, identical core areas and h-indices

equal to 10, identical excess areas with 65 citations there, and the same number of citations

in the tail area, namely 12. However, author a has only 3 articles in his tail area, whereas

author b has 14 articles.

At a first glance, we can simply use the number of articles in the tail as a tie-breaker to

differentiate between the two authors, and characterize the first one as constantly ‘‘influ-

ential’’, and the second one as a ‘‘mass producer’’. But, how can we capture the fact that, in

the short term, the first author’s h-index is more likely to increase. At the same time, we

need a way to describe—actually, to penalize—the second author for this long and

lightweight tail. Starting from these questions we will define the penalty areas and then

develop the respective indices. In this article, we do not consider temporal issues, e.g., the

time of publication of the articles in the tail area; such issues are part of our on-going work.

Specifically, the article makes the following contributions:

• It defines two areas to quantify the fact that some authors publish articles which

eventually do not have analogous impact with those that contribute to their h-index .

• It develops two new perfectionism indices taking into account the size of the penalty

areas. There are the PI and XPI indices, which are statistically uncorrelated to the h-

index , thus proving that they measure something that is different from what the h-index

measures.

• Using these indices, it proposes a filter to separate the authors into influential ones and

mass producers. This filter partitions the authors irrespectively of their h-index , i.e., it

can classify two authors as influentials, even if the values of their h-indices are

significantly different. This two-way segmentation of the scientists is a significant

departure from the earlier, rich classification schemes (Cole and Cole 1967; Feist

1997), since with a single integer number and its sign (plus or minus) it can provide

rankings, contrary to intuitive mapping schemes such as that by Zhang (2013b).

• It provides a thorough investigation of the indices against the h-index for three datasets

retrieved by the Microsoft’s Academic Search.

At this point, we need to emphasize again that the proposed indices are neither a substitute

for any of the already existing metrics nor a tool for identifying ‘‘bad’’ publishing

behaviour. They are one more tool in the indices toolbox of someone who wishes to

capture the multi-dimensional facet of a scientist’s performance.
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Relevant work

The original article by Hirsch (2005) created a huge wave of proposals for indices

attempting to capture the academic performance of a scientist. It is characteristic that at the

time of writing the present article, the h-index ’s article had more than 3850 citations in

Google Scholar. Since the focus of the present manuscript is not about the h-index in

general, but about the exploitation of the information in the tail area, we will survey only

the articles relevant to the usage and mining of that part of the citation.

Ye and Rousseau (2010) studied the evolution of tail-core ratio as a function of time,

and later extended their study by Liu et al. (2013) including a few more ratios among the

three areas. Similar in spirit is the work reported by Chen et al. (2013), which examines

variations of the ratios across scientific disciplines. Baum (2012) introduced the ratio (the

relative citedness) of the few, highly-cited articles in a journal’s h-core and the many,

infrequently-cited articles in its h-tail as a way to improve journals’ Impact Factors.

Having as motive to consider each and every citation under the whole citation curve

(and therefore under the tail area as well), Anderson et al. (2008) proposed a fractional

citation counting scheme based on Ferrers graphs. Later, Franceschini and Maisano (2010)

recognized the weaknesses of that scheme and proposed the Citation Triad method; both

indices are striving to exploit the information under the whole citation curve in a way that

creates a strictly monotonic (increasing) index for every new citation added to the curve,

which is completely different to what we propose.

A kind of ‘‘quantization’’ scheme for the citation curve and the creation of multiple

Durfee squares under that curve was proposed by Garcı́a-Pérez (2012). The output of that

method was a vector (i.e., multiple h-indexes) as a measure of the scientific performance.

However, the method simply transformed the task of comparing different citation curves

into the problem of comparing vectors, without setting clear rules. A study of the con-

tribution of the excess, core and tail areas to the entire citation curve was performed by

Bornmann et al. (2010) proving that this contribution varies across scientists. The study

provided also a regression model for determining the most visible article of a scientist. The

position of the centroids of the core and tail area was used by Kuan et al. (2011) as an index

for comparing different scientists providing only straightforward characterizations for

high-low impact and productivity. Along these lines of research, Zhang (2013b) proposed a

triangle mapping technique to map the three percentages (of the excess, core and tail area)

of these citations onto a point within a regular triangle; by viewing the distribution of the

mapping points, different shapes of citation curves can be studied in a perceivable form.

The work described by Dorta-González and Dorta-González (2011) sought selective and

large producers considering only a part of the excess and a part of the tail area, thus again

neglecting a part of the tail area which carries significant information.

The most closely relevant articles to our work are these from Rosenberg (2011) and

Zhang (2013a). Rosenberg (2011) described a three-class scheme for scientists’ classifi-

cation based on the length and thickness of the tail of the citation curve. Zhang (2013a)

proposed the h0 index as a quantitative measure to discover which scientist belongs to

which one of those three categories.

Collectively, the present work differentiates itself by the previous studies in a number of

factors: (a) it exploits the full spectrum of information under the citation curve, (b) it is

based on the definition of new areas (not below, but above the citation curve), (c) it

penalizes those scientists with long and thin tails, (d) it proposes an index that can be used

as a filter to separate the constantly influential scientists from the mass producers.
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Penalty areas and the Perfectionism Indices

In this section, we will define the penalty areas which form the basis for the development

of the respective scientometric indices. Before proceeding further, we summarize in

Table 1 some basic symbols related to the productivity and impact of a scientist, along

with their description and the relations among them.

The tail complement penalty area

We now get back to the motivating example presented in the previous section, and we

illustrate graphically their citation distributions (see Fig. 2). We depict with red solid color

the h-core area of each author.

It is intuitive that long tails and light-weight tails reduce an author’s articles’ collective

influence. Therefore, we argue such kind of a tail area should be considered as a ‘‘nega-

tive’’ characteristic when assessing a scientists’s performance. The closer the citations of

the tail’s articles get to the line y ¼ h, the more probable it is for the scientist to increase

his h-index , and at the same time to be able to claim that practically each and every article

he publishes does not get unnoticed by the community.

For this purpose, we define a new area, the tail complement penalty area, denoted as

TC-area with size CTC . The size of the tail complement penalty area is computed as

follows:

CTC ¼
X

8i2PT

ðh� CiÞ ¼ h� ðp� hÞ � CT : ð1Þ

This area is depicted with the green crossing-lines pattern in Fig. 2, and fulfilling the

motivation behind its definition, it is much bigger for author b than for author a.

The ideal complement penalty area

If we push further the idea of the tail complement penalty area, we can think that ‘‘ideally’’

an author could publish p papers with p citations each and get an h-index equal to p. Thus,

Table 1 Basic symbols and their interpretation

Symbol Description Relations

h h-index of an author

p Number of articles of an author

P Set of articles of an author jPj ¼ p

PH Set of articles that belong in the core area jPH j ¼ h

PT Set of articles that belong in the tail area jPT j ¼ pT ¼ p� h

pT Number of articles that belong in PT

C Number of citations of an author

Ci Number of citations for publication i

CH Number of citations for publications in PH CH ¼
P
8i2PH

Ci ¼ R2 (Jin et al. 2007)

CT Number of citations for publications in PT CT ¼
P
8i2PT

Ci

CE Number of citations in the upper (excess) area CE ¼ CH � h2
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a square p� p could represent the minimum number of citations to achieve an h-index

value equal to p. Along the spirit of penalizing long and thin tails, we can define another

area in the citation curve: the ideal complement penalty area (IC-area), which is the

complement of the citation curve with respect to the square p� p. Figure 3 illustrates

graphically the IC-area with the green crossing-lines pattern. The size of the IC-area (CIC)

can be computed as follows:

CIC ¼
X

8i2P ^ Ci\p

ðp� CiÞ: ð2Þ

Apparently, this area does not depend on the h-index value, as it holds for the case of the

TC-area. Notice that the IC-area includes the TC-area defined in the previous paragraph.

We realize of course that it is hard (if possible at all) to find scientists—with sufficiently

large h-index , and—with zero-sized TC-area. Therefore, the index derived by this area is

not expected to provide significant insights into scientists’ performance.
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Fig. 2 Citation curves for two sample authors (a, b). (Color figure online)
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The new scientometric perfectionism indices: PI and XPI

The definition of the penalty areas in the previous subsection, allows us to design two new

metrics which will act as the filter to separate influential from mass producers. Firstly, let

us introduce the concept of Parameterized Count, PC, as follows:

PC ¼ j � h2 þ k � CE þ l � CT ð3Þ

where j; k; l are real numbers. Therefore, we define PC as the parameterized addition of

the three areas we defined earlier. Apparently:

• when j ¼ k ¼ l ¼ 1, then it holds that PC ¼ C,

• when j ¼ 1 ^ k ¼ l ¼ 0, then PC ¼ h2,

• when k ¼ 1 ^ j ¼ l ¼ 0, then PC ¼ CE ¼ e2 ¼ Ch � h2,

• when l ¼ 1 ^ j ¼ k ¼ 0, then PC ¼ CT .

By assigning positive values to j and k, but negative values to l, we can favor authors with

short and thick tails in the citation curve. Even in this way, we cannot differentiate between

the authors A and B of our example.

For this reason, instead of using the tail of the citation curve, we use the tail complement

penalty area. Thus, similarly to Eq. 3, we define the concept of Perfectionism Index based

on TC-area as follows:

PI ¼ j � h2 þ k � CE � m � CTC ð4Þ

In the experiments that will be reported in the next sections, we will use the values of

j ¼ k ¼ m ¼ 1. We experimented with various combination of values for the parameters,

but we used integer values equal to one, because these default values give a straightforward

geometrical notion of the newly defined metric. Noticeably, it will appear that PI can get

negative values. Thus:

• if an author has PI\0, then we characterize him as a mass producer,

• if an author has PI [ 0, then we characterize him as an influential.

In the same way as the PI’s definition, we define an extremely perfectionism metric, the Extreme

Perfectionism Index, taking into account the ideal complement penalty area, as follows:

XPI ¼ j � h2 þ k � CE þ l � CT � m � CIC: ð5Þ

As in the previous case, we will assume that j ¼ k ¼ l ¼ m ¼ 1. We will show in the

experiments, that very few authors have positive values for this metric. Using the previ-

ously defined perfectionism indices, the resulting values for authors a and b are shown in

Table 2. Author a has greater values than author b for both XPI and PI perfectionism

indices. This is a desired result.

Before proceeding to the next section, which describes the detailed experiments that

demonstrate the merits of the new indices, we provide an additional example of five

authors with different publishing patterns, as an extension to our artificial motivating

example which was presented in the beginning of the article. We use only initials but they

refer to real persons and their data. In Table 3 we present the raw data (i.e., h-index ,

number of publications p and number of citations C) of 5 authors4 selected from Microsoft

4 We selected authors with relatively small number of publications and citations for better readability of the
figures.
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Academic Search.5 The last column shows the calculated PI values, which can be positive

as well as negative numbers. In Fig. 4 we present citation plots for these five authors.

In Fig. 4a we compare three authors: AuthorA, AuthorB and AuthorC. They correspond

to real names but we have preferred to present them anonymously. They all have an h-index

equal to 10. Note that AuthorA has a comparatively large number of publications but the

citation curve is cropped to focus on the lower values. As he has the bigger and longest tail

(red line with crosses), he could be characterized as a ‘‘mass producer’’. This is reflected in a

PI value of -2,505 as shown in Table 3. AuthorB (green line with diagonal crosses) has

shorter tail than AuthorA and higher excess area. From the same table we remark that his PI

value is 11 (i.e. close to zero). Finally, the last author of the example, AuthorC (blue line

with asterisks), has similar tail with AuthorB but a bigger excess area ðe2Þ. Definitely, he

demonstrates the ‘‘best’’ citation curve out of the three authors of the example. In fact, his PI

score is 717, higher than the respective figure of the other two authors.

In Fig. 4b, again we compare three authors: AuthorD, AuthorE and AuthorC. The first

two have h-index value equal to 15. Comparing those, it seems that AuthorD (red line with

crosses) has a better citation curve than AuthorE (green line with diagonal crosses) because

he has a shorter tail and a bigger excess area. Indeed, the first one has PI = 717, whereas

the second one has PI = -2,523. AuthorC (blue line with asterisks) has a smaller tail and a

big excess area but since there is a difference in h-index we cannot say for sure if he must

be ranked higher or not than the others.

In Fig. 4c we have scaled the citation plots so that all lines cut the line y ¼ x at the same

point. From this plot, it is shown that AuthorC has a better curve than AuthorE because he

has a shorter tail and a bigger excess area. When comparing AuthorC to AuthorD, we see

that the latter has a longer tail but also a bigger excess area. Both curves show almost the

same symmetry around the line y ¼ x. That is why they both have similar PI values. This is

a further positive outcome as authors with different quantitative characteristics (say, a

senior and a junior one) may have similar qualitative characteristics, and thus be classified

together.

In general, there is no upper (lower) limit for the size of the PI index. This depends on

the productivity (number of articles) and impact (citation) distribution of each scientist.

However, a positive PI means that the scientist is a perfectionist one, and a negative PI

indicates a mass-producer (Table 4).

Experiments

In this section, we will present the results of the evaluation of the proposed indexes. The

primary goal of our experimentation is to study the merits of the PI index, since our results

confirmed that the severe penalty that XPI imposes makes it a less useful scientometric

tool. Firstly, we will explain the procedures for dataset acquisition, then we will present

their characteristics, and finally we will give the results that concern the evaluation of PI.

Table 2 Traditional and pro-
posed indices for authors a and b

Author p C h CT CE CH CTC PI CIC XPI

a 13 177 10 12 65 165 18 147 33 144

b 24 177 10 12 65 165 128 37 404 -227

5 http://academic.research.microsoft.com/.
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Datasets acquisition and characterization

During the period December 2012 to April 2013, we compiled 3 datasets. The first one

consists of randomly selected authors (named ‘‘Random’’ henceforth). The second one

includes highly productive authors (named ‘‘Productive’’). The last one consists of authors

in the top h-index list (named ‘‘Top h’’). The publication and the citation data were

extracted from the Microsoft Academic Search (MAS) database using the MAS API.

Table 3 Computed h-index and
PI values for 5 sample authors

Author h p C PI

AuthorA 10 319 585 -2,505

AuthorB 10 49 391 11

AuthorC 10 48 1097 717

AuthorD 15 105 2,040 690

AuthorE 15 259 1,137 -2,523

(a) (b)

(c)  Adjusted form of Figure 4(b).

Fig. 4 Real examples. (Color figure online)
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The dataset ‘‘Random’’ was generated as follows: We fetched a list of about 100,000

authors belonging to the ‘‘Computer Science’’ domain as tagged by MAS. MAS assigns at

least three sub-domains to every author. These three sub-domains may not all belong to the

same domain (e.g., Computer Science). For example, an author may have two sub-domains

from Computer Science and one from Medicine. We kept only the authors who have their

first three sub-domains belonging to the domain of Computer Science. From this set, we

randomly selected 500 authors with at least 10 publications and at least 1 citation.

The dataset ‘‘Productive’’ was generated as follows: from the set of 100,000 Computer

Science authors we selected the top-500 most productive. The least productive author from

this sample has 354 publications.

The third dataset named ‘‘Top h’’ was generated by querying the MAS Database for the

top-500 authors in the ‘‘Computer Science’’ domain ordered by h-index .

Table 5 summarizes the information about our datasets with respect to the number of

authors (line: # of authors), number of publications (line: # of publications), number of

citations (line: # of Citations) and average/min/max numbers of citations and publications

per author.

Figure 5 shows the distributions for the values of h-index , m, C and p. The m index was

defined in Hirsch’s original article (Hirsch 2005) and is explained (quoting Hirsch’s text) in

Table 4 Symbols used and their interpretation

Symbol Description Relations

CTC Tail complement area CTC ¼
P
8i2PT
ðh� CiÞ

CIC Ideal complement area CIC ¼
P
8i2P ^ Ci\p ðp� CiÞ

PC Parameterized Count PC ¼ j � h2 þ k � CE þ l � CT

PI Perfectionism Index PI ¼ j � h2 þ k � CE � m � CTC

XPI eXtreme Perfectionism Index XPI ¼ j � h2 þ k � CE þ l � CT � m � CIC

j h-core area factor

k Excess area factor

l Tail area factor

m Penalty area (Tail complement or

Ideal complement) factor

Table 5 Statistics of the datasets
used in our study

Random Productive Top h

No. of authors 500 500 500

No. of publications 25,679 223,232 149,462

No. of P/Author 51 446 298

Min No. of P/Author 10 354 92

Max No. of P/Author 768 1,172 1,172

No. of Citations 410,280 3,197,880 5,015,971

No. Cit/Author 820 6,395 10,031

Min No. of Cit/Author 1 25 4,405

Max No. of Cit/Author 47,263 47,263 47,263
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5 Distributions of h-index , m, p, C indices (Left plots CDFs. Right plots PDFs) a h-index, b h-index, c
C ð�10; 000Þ, d C ð�10; 000Þ, e m, f m, g p ð�1; 000Þ h p ð�1; 000Þ. (Color figure online)
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the next paragraph. Plots are illustrated in pairs. The ones on the left show cumulative

distributions. For example, in Fig. 5a we see that 80 % of the authors in the sample

‘‘Random’’ (red solid line) have h-index less than 10. It is obvious that the sample ‘‘Top h’’

(blue dotted line) has higher values for the h-index . Figures 5c, d show the distributions

for the total number of citations. As expected the sample ‘‘Top h’’ has the highest values.

Figures 5e, f show the distributions for the m value. Recall its definition from Hirsch

(2005): A value of m � 1 (i.e., an h-index of 20 after 20 years of scientific activity),

characterizes a successful scientist. A value of m � 2 (i.e., an h-index of 40 after 20 years

of scientific activity), characterizes outstanding scientists, likely to be found only at the top

universities or major research laboratories. A value of m � 3 or higher (i.e., an h-index of

60 after 20 years, or 90 after 30 years), characterizes truly unique individuals. Indeed, only

a few authors have m [ 3.

Figure 5 g, h illustrate the distributions for the total number of publications. It is

obvious that in the ‘‘Random’’ sample (red solid line) there are relatively low values for the

total number of publications. Also, as expected, the distribution for the ‘‘Productive’’

sample has the highest values for the total number of publications.

For the completeness of the dataset description we present Fig. 6. In this plots is shown

the distribution of the Career length of researchers in our samples. This information was

necessary in order to compute the m� index presented in Fig. 5. The figures 6a, b

depicting carreer length, show that since the distributions of carreers of top and productive

are similar, this means that the PI index mainly characterizes the scientist’s behaviour

towards publising and not the length of its scientific life

We have conducted further experiments to study the behavior of other indices such as a
(Hirsch 2005) and e2 (Zhang 2009). However, the results did not carry any significant

information, and therefore, the figures for these factors are not presented.

Does PI offer new insights about the impact and publication habits of scientists?

The first question that needs to be answered is whether a new index offers something new

and different compared to the existing (hundreds of) indices. The answer is positive; our

metric separates the rank tables into two parts independently from the rank positions.

In Fig. 7a the x-axis denotes the rank position (normalized percentagewise) of an author

by h-index , whereas the y-axis denotes the rank position by the total number of citations

ðCÞ. Each point denotes the position of an author ranked by the two metrics. Note that all

(a) (b)

Fig. 6 Distributions of career length (Left plot CDFs. Right plots PDF) a Career Length bCareer Length.
(Color figure online)
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three samples are merged but if the point is blue asterisk, then the author belongs to the

‘‘Top h’’ sample, if the point is green diagonal cross then he belongs to the ‘‘Productive’’

sample etc. If an author belongs to more than one sample, then only one color is visible

since the bullet overwrites the previous one. From Fig. 7a the outcomes are:

• ‘‘Top h’’ authors are ranked in the first 40 % of the rank table by h-index , as well as in

the top 40 % by the total number of citations ðCÞ.

C

h

(a)

P
I

h

(b)

P
I

C

(c)

P
I

C/p

(d)

h

C/p

(e)

Fig. 7 Correlation of PI to standard bibliometric indices. (Q-Q plots: X- and Y-axis denote normalized rank
positions (%).) a h versus C (unioned), b h versus PI (unioned), c C versus PI (unioned), d C=p versus PI
(unioned), e C=p versus h (unioned). (Color figure online)
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• ‘‘Productive’’ authors are mainly ranked by h-index between 30 and 70 %. The rank

positions by C are between 20 and 70 %.

• ‘‘Random’’ authors are mainly ranked below 60 % for both metrics with some outliers

in the range 0–60 %, mostly by C.

The aforementioned conclusions are as expected; it also occurs that h-index ranking does

not differ significantly from the C ranking; i.e., they are correlated which is consistent6

with earlier findings (Spruit 2012).

In Fig. 7b the h-index ranking is compared to PI ranking. It can be seen that there is no

correlation between PI and h-index . Note that the horizontal line at about 32 % (also

shown later in Table 6) shows the cut point of PI for the zero value. Authors that reside

below this line have PI [ 0 and authors above this line have PI\0. This observation

strengthens the motivation of the article; only one out of three authors is a perfectionist

one. Even among those with high h-index (Table 6) only half of them are truly laconic.

• ‘‘Top h’’ authors are split to two groups. The first group is ranked in the top 20 % of the

PI rank table. The second group is ranked in the last 50 %. These two groups are also

separated by the zero line of PI.

P
I

TR

(a)

X
P

I

TR

(b)

T
R

h

(c)

T
R

C

(d)

Fig. 8 Correlation of Academic Trace to PI, XPI, C, hindex. (Q-Q plots: X- and Y-axis denote normalized
rank positions (%).) a T versus PI, b T versus XPI c h versus T d C versus T . (Color figure online)

6 http://michaelnielsen.org/blog/why-the-h-index-is-virtually-no-use/.
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• ‘‘Productive’’ authors are almost all ranked at lower positions by PI than by h-index .

Almost all points reside above the PI zero line and also above the line y ¼ x (with some

exceptions at about 65–70 % of the rank list).

• ‘‘Random’’ authors are also generally higher ranked by PI than by h-index . They are

also split into two groups by the line PI ¼ 0.

From the above, it seems that PI is not correlated to h-index , whereas the line PI ¼ 0 plays

the role of a symmetric axis. Thus, it emerges as the key value that separates the ‘‘influ-

ential’’ authors from the ‘‘mass producers’’.

In Fig. 7c we compare PI ranking against C (total number of citations) ranking. It is

expected that the plot would be similar to Fig. 7b based on the similarity of h-index with C.

In Figs. 7d, e we compare h-index and PI with the average number of citations per

publication (C=p) ranking. It is apparent that PI is not correlated to C=p. h-index is also

uncorrelated to C=p, however the points of the qq-plot in Fig. 7e are closer to the line

x ¼ y than the points of Fig. 7d.

(a) (b)

(c) (d)

(e) (f)

Fig. 9 Distributions of CT , CTC (tail complement), CIC (ideal complement). (Left plots: CDFs. Right plots:
PDFs) a CT (*1,000) b CT (*1,000) c CTC (*10,000) d CTC (*10,000), e CIC (*100,000), f CIC (* 100,000).
(Color figure online)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10 Distributions of PI, PIðj¼2Þ and PIðj¼4Þ a PIð�10; 000Þ b PIð�10; 000Þ c PIðj¼2Þð�10; 000Þ d

PIðj¼2Þð�10; 000Þ e PIj¼4ð�10; 000Þ f PIj¼4ð�10; 000Þ g PIðlimited xrangeÞ h PIj¼4ðlimited x rangeÞ. (Color

figure online)
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Conclusively, the PI ranking is not correlated to h-index , C and C=p.

We have also implemented several comparisons of PI and XPI with various type of

ranking indices. We do not include all of them for brevity. All them show that our new

metric is not tied correlated with none of them. One interesting metric is the ‘‘Academic

Trace’’ (Ye and Leydesdorff 2013). This metric looks similar to PI in the way that it has a

(a) (b)

(c)

Fig. 11 Distributions of XPI, a XPIð�100; 000Þ, b XPIð�100; 000Þ, c XPIðlimited x rangeÞ. (Color figure
online)

h

h

(a)

P
I

P I

(b)

Fig. 12 Robustness of h-index and PI to self-citations (Q-Q plots: X and Y axis denote the rank position
normalized in percent) a h versus h(no-self) bPI versus PI(no-self). (Color figure online)
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negative factor for the zero cited publications. For this reason we prove that neither PI nor

XPI is correlated to ‘‘Academic Trace’’ metric.

Ye and Leydesdorff (2013) defined the metric named ‘‘Academic Trace’’ as:

T ¼ trðVÞ ¼ h2

p
þ C2

T

C
þ C2

E

C
�

p2
z

p

where pz is the number of the zero cited publications. Figure 8 shows the comparison of

Academic Trace ðTÞ with PI, XPI, C and hindex. As it is shown in Fig. 8a, b, PI and XPI

are not correlated to T . That is because the negative factor of T (the p2
z=p) is usually too

small so it does not affect significantly the resulting score. Academic Trace can only be

used with the notion of a time window (like Impact Factor). When used with a time

window the average number of zero cited papers increases and this negative factor affects

the ranking. So, Academic Trace can mainly be used with a temporal notion. In addition,

Fig. 8c, d show that it is correlated with hindex and especially with the total number of

citations ðCÞ, except for some outliers of the ‘‘Productive’’ sample which are ranked last

with T but they are about at 70th (of 100) position by hindex and C. These researchers

probably have a very big set of zero cited publications. As a conclusion we can say that

Academic Trace is strongly correlated with the total number of citations, and when used

Table 7 Ranking by h-index (top-20 scientists)

Author h PI p C C=p Change

val pos val pos h� PI

Shenker Scott 97 1 5754 52 508 45,621 89.81 -51

Foster Ian 93 2 -15510 1,287 768 47,265 61.54 -1,285

Garcia-Molina Hector 92 3 -17423 1,299 605 29,773 49.21 -1,296

Estrin Deborah 90 4 5348 62 479 40,358 84.25 -58

Ullman Jeffrey 86 5 11267 18 460 43,431 94.42 -13

Culler David 84 6 7552 38 386 32,920 85.28 -32

Tarjan Robert 83 7 2888 117 405 29,614 73.12 -110

Towsley Don 82 8 -31929 1,318 793 26,373 33.26 -1,310

Kanade T. 81 9 -20753 1,309 742 32,788 44.19 -1,300

Haussler David 81 10 10952 19 335 31,526 94.11 -9

Jain Anil 81 11 -11474 1,236 590 29,755 50.43 -1,225

Papadimitriou Christos 80 12 -5897 968 506 28,183 55.70 -956

Katz Randy 78 13 -27820 1,317 757 25,142 33.21 -1,304

Pentland Alex 77 14 -1242 724 509 32,022 62.91 -710

Han Jiawei 77 15 -15410 1,285 653 28,942 44.32 -1,270

Jordan Michael 75 16 -1062 717 499 30,738 61.60 -701

Karp Richard 75 17 7231 41 377 29,881 79.26 -24

Zisserman A. 75 18 210 263 421 26,160 62.14 -245

Jennings Nick 74 19 -15718 1,289 626 25,130 40.14 -1,270

Thrun S. 74 20 -5789 958 445 21,665 48.69 -938
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with a time window is an improvement to Impact Factor as it penalizes the big sets of zero

cited publications (but not the once or twice cited ones7).

Aggregate analysis of the datasets

Figure 9 shows the distributions for the areas defined in the previous section. In particular,

Fig. 9a, b illustrate the distributions for the CT (tail) area. It seems that the ‘‘Top h’’

cumulative distribution is very similar to the ‘‘Productive’’ one, however, the ‘‘Top h’’

distribution has slightly higher values.

Figure 9c , d illustrate the distributions for the CTC (tail complement) area. It seems that

CTC has the same distribution as CT for all samples except for the sample ‘‘Productive’’, for

which CTC has slightly higher values than CT does. Note, also, that the ‘‘Productive’’

distribution has lower values for h-index than ‘‘Top h’’. This means that the height of the

CTC areas is smaller for the ‘‘Productive’’ authors than for ‘‘Top H’ ones. The previous two

remarks lead to the (rather expected) conclusion that the ‘‘Productive’’ authors have long

and thin tails.

The CIC distribution is shown in Fig. 9e, f. In these plots, it is clear that the ‘‘Pro-

ductive’’ authors have clearly higher values than any other sample, since CIC is strongly

related with the total number of publications.

Table 8 Ranking by PI index (top-20 influential scientists)

Author PI h p C C=p Change

val pos val pos h-PI

Vapnik Vladimir 32542 1 50 171 126 36,342 288.43 ?170

Rivest Ronald 29340 2 62 53 320 45,336 141.68 ?51

Zadeh L. 25613 3 59 70 320 41,012 128.16 ?67

Kohonen Teuvo 19880 4 51 157 160 25,439 158.99 ?153

Floyd Sally 18059 5 66 38 222 28,355 127.73 ?33

Kesselman Carl 17054 6 60 64 272 29,774 109.46 ?58

Schapire Robert 16169 7 56 90 186 23,449 126.07 ?83

Milner Robin 16019 8 54 108 202 24,011 118.87 ?100

Shamir A 15926 9 53 125 213 24,406 114.58 ?116

Tuecke Steven 14747 10 44 281 96 17,035 177.45 ?271

Balakrishnan Hari 14444 11 72 21 272 28,844 106.04 ?10

Agrawal Rakesh 14375 12 67 30 353 33,537 95.01 ?18

Hinton G. 13415 13 63 45 314 29,228 93.08 ?32

Aho Alfred 13048 14 50 173 193 20,198 104.65 ?159

Lamport Leslie 12254 15 59 71 273 24,880 91.14 ?56

Hopcroft John 12088 16 45 258 198 18,973 95.82 ?242

Morris Robert 11685 17 57 81 305 25,821 84.66 ?64

Ullman Jeffrey 11267 18 86 5 460 43,431 94.42 -13

Haussler David 10952 19 81 10 335 31,526 94.11 -9

Joachims T. 10767 20 41 377 134 14,580 108.81 ?357

7 Usually when a publication is cited once or twice during its total ‘‘life’’, these citations are self-citations.
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In Fig. 10 we see the distributions for the previously defined PI index. For all plots, the

zero y-axis is the center of the figure. As seen in Fig. 10a, b most of the authors are located

around zero. Note that in the right plots, a point at x ¼ 0; y ¼ 95 % with a previous value of

x ¼ �3;000 means that the 95 % of the authors have values in the range

�1;500; . . .; 1;500. The first two plots show that the ‘‘Top h’’ authors have the highest

values for PI (about 10 % of them have values greater than 8,000). Interestingly, it seems

that the value 0 is a key value. This practically means that the majority of the authors

follows a conservative approach toward publishing; they publish significant articles hoping

to attract also a significant number of citations. However, the fact that we can encounter

authors far away (to the left and to the right) from zero, strengthens the value of the present

research, because it shows two things: (a) there are scientists which publich very

aggressively and they end up being ‘‘mass producers’’; (b) there are a few scientists who

only publish when they have produced ground-breaking results that really advance their

field. We strongly believe that this is not a random concidence. The bell-shaped curves of

‘‘Top-h’’ and ‘‘Productive’’ authors confirm that there is a publishing pattern; otherwise,

the curves would be flat ones. These outliers (scientists at the far left and at the far right)

reveal the information that we are seeking, i.e., the mass-producers and the perfectionists.

Another generic conclusion drawn from the figures is that it is very likely to find a

perfectionist who is also a ‘‘Top-h’’ rather than a ‘‘Productive’’ one. This means that the

Table 9 Ranking by PI (bottom-20 by PI, i.e., top-20 mass producers)

Author PI h p C C=p Change

val pos val pos h� PI

Ikeuchi Katsushi -18173 1,303 43 327 638 7,412 11.62 -976

Thalmann D. -18356 1,304 46 249 632 8,600 13.61 -1,055

Reddy Sudhakar -18369 1,305 43 322 659 8,119 12.32 -983

Gao Wen -18494 1,306 26 649 907 4,412 4.86 -657

Prade Henri -18692 1,307 65 42 633 18,228 28.80 -1,265

Liu K. -19063 1,308 42 355 672 7,397 11.01 -953

Kanade T. -20753 1,309 81 9 742 32,788 44.19 -1,300

Rosenfeld Azriel -21023 1,310 59 73 707 17,209 24.34 -1,237

Gupta Anoop -23959 1,311 64 43 739 19,241 26.04 -1,268

Miller J. -24112 1,312 40 433 807 6,568 8.14 -879

Shin Kang -24125 1,313 57 85 731 14,293 19.55 -1,228

Schmidt Douglas -24153 1,314 56 94 729 13,535 18.57 -1,220

Bertino Elisa -27058 1,315 49 194 805 9,986 12.40 -1,121

Yu Philip -27727 1,316 63 48 789 18,011 22.83 -1,268

Katz Randy -27820 1,317 78 13 757 25,142 33.21 -1,304

Towsley Don -31929 1,318 82 8 793 26,373 33.26 -1,310

Kuo C. -36848 1,319 40 425 1148 7,472 6.51 -894

Gerla Mario -37464 1,320 67 32 945 21,362 22.61 -1,288

Dongarra Jack -39901 1,321 67 31 982 21,404 21.80 -1,290

Poor H. -40492 1,322 55 100 1069 15,278 14.29 -1,222

Huang Thomas -54047 1,323 67 33 1172 19,988 17.05 -1,290
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Table 10 Rank table by PI of sample ‘‘Networks’’

Author PI h p C C=p Change

val pos val pos h� PI

Jacobson Van 19982 1 44 44 161 25,130 156.09 ?43

Floyd Sally 18059 2 66 9 222 28,355 127.73 ?7

Balakrishnan Hari 14444 3 72 7 272 28,844 106.04 ?4

Johnson David 12180 4 54 21 263 23,466 89.22 ?17

Morris Robert 11685 5 57 16 305 25,821 84.66 ?11

Handley M. 10763 6 47 35 201 18,001 89.56 ?29

Perkins C. 9609 7 52 25 373 26,301 70.51 ?18

Paxson Vern 8871 8 60 12 233 19,251 82.62 ?4

Stoica Ion 8558 9 63 11 266 21,347 80.25 ?2

Heidemann John 8059 10 47 36 237 16,989 71.68 ?26

Culler David 7552 11 84 3 386 32,920 85.28 -8

Shenker Scott 5754 12 97 1 508 45,621 89.81 -11

Govindan Ramesh 5356 13 55 19 287 18,116 63.12 ?6

Estrin Deborah 5348 14 90 2 479 40,358 84.25 -12

Crovella Mark 4886 15 46 38 172 10,682 62.10 ?23

Perrig Adrian 4304 16 58 14 247 15,266 61.81 -2

Lu Songwu 3430 17 44 45 129 7,170 55.58 ?28

Akyildiz Ian 3089 18 53 23 401 21,533 53.70 ?5

Kleinrock Leonard 1986 19 51 31 282 13,767 48.82 ?12

Knightly Edward 263 20 41 50 172 5,634 32.76 ?30

Peterson L. -652 21 54 22 292 12,200 41.78 ?1

Hubaux Jean-Pierre -653 22 45 43 247 8,437 34.16 ?21

Vaidya Nitin -1242 23 50 32 337 13,108 38.90 ?9

Zhang Lixia -1609 24 55 20 374 15,936 42.61 -4

Low Steven -1796 25 45 42 291 9,274 31.87 ?17

Boudec Jean-Yves -2338 26 44 46 258 7,078 27.43 ?20

Win Moe -2619 27 46 37 341 10,951 32.11 ?10

Rexford Jennifer -2632 28 49 33 269 8,148 30.29 ?5

Zhang Hui -3344 29 52 27 352 12,256 34.82 -2

Srikant R. -3827 30 46 39 328 9,145 27.88 ?9

Diot Christophe -4054 31 52 30 290 8,322 28.70 -1

Simon Marvin -4450 32 42 49 370 9,326 25.21 ?17

Ammar Mostafa -4547 33 43 48 308 6,848 22.23 ?15

Kurose Jim -5114 34 59 13 391 14,474 37.02 -21

Campbell Andrew -6036 35 46 41 348 7,856 22.57 ?6

Chlamtac I. -6274 36 43 47 357 7,228 20.25 ?11

Crowcroft Jon -6863 37 48 34 404 10,225 25.31 -3

Whitt W. -7759 38 52 29 394 10,025 25.44 -9

Goldsmith A. -7819 39 57 17 479 16,235 33.89 -22

Srivastava Mani -8139 40 57 18 423 12,723 30.08 -22

Paulraj A. -8421 41 64 10 442 15,771 35.68 -31

Schulzrinne Henning -11050 42 53 24 555 15,556 28.03 -18
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‘‘Top-h’’ scientists are more ‘‘selective’’ towards publishing, but this not the rule. Its

exceptions also strenghten the value of the PI index.

Figure 10g is a zoomed-in version of Fig. 10a. It is clear that about 96 % of the

‘‘Productive’’ authors have PI\0. This means that in this sample there are a lot of ‘‘mass

producers’’ (people with high number of publications but relatively low h-index- or at least

not in ‘‘Top h-indexers’’). The other samples cut the zero y-axis at about 50 to 60 %, which

means that 40 to 50 % are positive. It is also noticeable that about 70 % (15–85 %) of the

‘‘Random sample have values very close to zero within the range -200, …, 200.

In Fig. 10c–f) we present the distributions for PIj¼2 and PIj¼4. We remind that factor j
is the core area multiplier. In these plots, it is shown that these distributions behave like the

basic PI distribution except that they are slightly shifted to the right. The ‘‘Productive’’

sample is affected less than the others. This outcome is understandable since they are the

authors with small h-index core areas compared to their tail and excess areas.

Comparing subfigure 10h to g we can better see the differences. The number of authors

in the negative side of samples ‘‘Random’’ and ‘‘Top h’’ has decreased from 57 and 58 to

24 and 23 % respectively, meaning that about 33–35 % of the sample members moved

from the negative to the positive side. The number of ‘‘Productive’’ authors in the negative

side has been decreased from 97 to 88 %, i.e. an additional 11 % of the sample members

moved to the positive side.

In addition to the distribution plots, Table 6 presents the number of authors that have the

mentioned metrics below or above zero for each sample. As mentioned before, 97 % of the

‘‘Productive’’ authors have PI\0, whereas only 3 % reside in the positive side of the plot.

This amount increases as we increase the core factor j. For j ¼ 4 the increment is 9 %

(12 % from 3 %). In all other samples the increment is greater, i.e. for ‘‘Top h’’ the

increment is 35 %, for ‘‘Random’’ is 33 %.

In Fig. 11 the same kinds of plots are presented for the metric XPI. As expected, the

difference is that most of the authors lie in the negative side of the graph. The cut points of

y-axis are also presented in Table 6. About 2 % of the ‘‘Top h-index ’’ authors have

XPI [ 0 but none of the ‘‘Productive’’ authors do. The cut point for ‘‘Random’’ authors is

at 6 %. Also, at this point we repeat the experiment of varying the j value. The results do

not match with those of the PI case. Incrementing j does not increase the number of

positive authors in the same way as the PI case. The increment is negligible for the

‘‘Productive’’ and ‘‘Top h’’ and very small for the sample ‘‘Random’’. This leads to the

conclusion that varying the j factor does not affect XPI significantly. Probably different

Table 10 continued

Author PI h p C C=p Change

val pos val pos h� PI

Garcia-Luna-Aceves J. -11169 43 46 40 460 7,875 17.12 -3

Nahrstedt Klara -12286 44 52 28 492 10,594 21.53 -16

Cioffi J. -14685 45 52 26 575 12,511 21.76 -19

Mukherjee B. -15702 46 58 15 535 11,964 22.36 -31

Katz Randy -27820 47 78 5 757 25,142 33.21 -42

Towsley Don -31929 48 82 4 793 26,373 33.26 -44

Gerla Mario -37464 49 67 8 945 21,362 22.61 -41

Giannakis Georgios -44707 50 77 6 932 21,128 22.67 -44
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Table 11 Rank table by PI of sample ‘‘DataBases’’

Author PI h p C C=p Change

val pos val pos h� PI

Agrawal Rakesh 14375 1 67 8 353 33,537 95.01 ?7

Ullman Jeffrey 11267 2 86 2 460 43,431 94.42 0

Motwani Rajeev 9349 3 69 6 271 23,287 85.93 ?3

Fagin Ronald 4400 4 59 16 215 13,604 63.27 ?12

Widom Jennifer 4031 5 71 4 280 18,870 67.39 -1

Florescu Daniela 3058 6 40 43 132 6,738 51.05 ?37

Bernstein Philip 2917 7 52 22 279 14,721 52.76 ?15

Buneman Peter 2001 8 43 39 158 6,946 43.96 ?31

Hellerstein Joseph 1941 9 51 25 272 13,212 48.57 ?16

Naughton J. 640 10 48 29 221 8,944 40.47 ?19

Dewitt David 308 11 63 10 308 15,743 51.11 -1

Koudas Nick 58 12 35 50 168 4,713 28.05 ?38

Sagiv Yehoshua -196 13 42 40 209 6,818 32.62 ?27

Chaudhuri Surajit -278 14 41 41 239 7,840 32.80 ?27

Egenhofer Max -314 15 47 30 223 7,958 35.69 ?15

Livny Miron -597 16 61 12 310 14,592 47.07 -4

Suciu Dan -659 17 54 19 285 11,815 41.46 ?2

Papadias Dimitris -809 18 38 47 200 5,347 26.73 ?29

Lakshmanan Laks -914 19 37 48 196 4,969 25.35 ?29

Lenzerini M. -1074 20 50 26 269 9,876 36.71 ?6

Abiteboul Serge -1111 21 59 15 321 14,347 44.69 -6

Ioannidis Yannis -1647 22 39 46 209 4,983 23.84 ?24

Sellis Timos -2747 23 36 49 264 5,461 20.69 ?26

Jagadish H. -2924 24 52 24 303 10,128 33.43 0

Dayal Umeshwar -2975 25 44 34 306 8,553 27.95 ?9

Maier David -3096 26 45 32 331 9,774 29.53 ?6

Wiederhold Gio -3320 27 43 38 315 8,376 26.59 ?11

Ramakrishnan Raghu -4249 28 52 23 348 11,143 32.02 -5

Snodgrass Rick -4293 29 41 42 297 6,203 20.89 ?13

Srivastava Divesh -4333 30 44 35 317 7,679 24.22 ?5

Ceri Stefano -4355 31 45 33 345 9,145 26.51 ?2

Kriegel Hans-Peter -5034 32 46 31 451 13,596 30.15 -1

Stonebraker M. -5643 33 62 11 380 14,073 37.03 -22

Halevy Alon -5858 34 71 5 392 16,933 43.20 -29

Abbadi Amr -6906 35 39 45 361 5,652 15.66 ?10

Gray Jim -7953 36 54 18 508 16,563 32.60 -18

Faloutsos Christos -8509 37 68 7 484 19,779 40.87 -30

Jensen Christian -8566 38 44 37 389 6,614 17.00 -1

Agrawal Divyakant -9199 39 40 44 433 6,521 15.06 ?5

Aalst W. -9811 40 48 28 468 10,349 22.11 -12

Weikum Gerhard -11700 41 44 36 467 6,912 14.80 -5

Sheth Amit -12193 42 58 17 488 12,747 26.12 -25
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default values for the factors of Eq. 4 (especially for j and/or m) may be needed for tuning

the XPI metric. However, this task remains out of the scope of the present article.

PI robustness to self-citations

Self-citations (a citation from an article to another article when there is at least one

common author between the citing and the cited paper) is a common way for authors to

increase the visibility of their works. It has been documented that self-citations can have

significant impact upon h-index (Schreiber 2007). However, self-citations do not neces-

sarily represent a bad practise, that the scientometric indices should punish. In many cases

(Katsaros et al. 2009), ‘‘they can effectively describe the authoritativeness of an article.’’

Therefore, the aim is to design robust metrics (Katsaros et al. 2009) that will be unaffected

by self-citations (Katsaros et al. 2009).

We performed an experiment to study the behavior of h-index and PI with respect to

self-citations. In Fig. 12(a) a qq-plot is shown, which compares the ranking produced by h-

index . The x-axis represents the rank produced by the computed h-index including self-

citations, whereas the y-axis represents the rank of h-index after excluding self-citations.

We have performed several experiments with different types of ranking and they all show

similar behavior with respect to h-index . In Fig. 12(b) the same kind of qq-plot for the PI

as a rank criterion is displayed. It is apparent that PI is much less affected by self-citations

than the h-index . This is another advantage of the proposed metric; it is not affected by

self-citations.

PI in action: Ranking scientists

In the previous two subsections, we performed an analysis of the datasets at a coarse level.

In this section, we will provide an analysis at a finer level, that of individual scientists. We

have emphasized from the beginning of the article that it is not this article’s purpose to

explain the roots of the publishing behaviour of individual scientists. However, we will

attempt to record those characteristics of the scientists (if there are such characteristics)

that make them exhibit particular behaviours.

Table 7 shows the rank table for the top-20 authors by h-index from all our samples.

They are truly remarkable scientists with significant contributions to their field. The table

Table 11 continued

Author PI h p C C=p Change

val pos val pos h� PI

Carey Michael -14606 43 60 14 488 11,074 22.69 -29

Franklin Michael -14765 44 60 13 559 15,175 27.15 -31

Han Jiawei -15410 45 77 3 653 28,942 44.32 -42

Jajodia Sushil -15483 46 53 21 554 11,070 19.98 -25

Mylopoulos John -15513 47 53 20 569 11,835 20.80 -27

Garcia-Molina Hector -17423 48 92 1 605 29,773 49.21 -47

Bertino Elisa -27058 49 49 27 805 9,986 12.40 -22

Yu Philip -27727 50 63 9 789 18,011 22.83 -41
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Table 12 Rank table by PI of sample ‘‘Multimedia’’

Author PI h p C C=p Change

val pos val pos h� PI

Donoho David 7508 1 72 2 350 27,524 78.64 ?1

Cox Ingemar 3464 2 41 15 210 10,393 49.49 ?13

Simoncelli Eero 2619 3 47 12 227 11,079 48.81 ?9

Yeo Boon-lock 2131 4 27 44 77 3,481 45.21 ?40

Rui Yong 1745 5 33 32 168 6,200 36.90 ?27

Jain Ramesh 1637 6 36 25 243 9,089 37.40 ?19

Yeung Minerva 1490 7 24 48 66 2,498 37.85 ?41

Goljan Miroslav 1401 8 28 41 64 2,409 37.64 ?33

Wiegand Thomas 602 9 32 33 262 7,962 30.39 ?24

Fridrich Jessica 472 10 27 45 118 2,929 24.82 ?35

Elad Michael 156 11 36 26 216 6,636 30.72 ?15

Naphade Milind 136 12 24 49 106 2,104 19.85 ?37

Manjunath B. -46 13 39 20 279 9,314 33.38 ?7

Orchard M. -784 14 34 30 187 4,418 23.63 ?16

Wu Min -1079 15 27 46 169 2,755 16.30 ?31

Li Mingjing -1180 16 28 42 150 2,236 14.91 ?26

Zhang Ya-Qin -2205 17 36 28 236 4,995 21.17 ?11

Hauptmann Alexander -3183 18 34 31 243 3,923 16.14 ?13

Smith John -3277 19 40 17 282 6,403 22.71 -2

Zakhor Avideh -3468 20 38 23 268 5,272 19.67 ?3

Ebrahimi Touradj -3520 21 31 37 272 3,951 14.53 ?16

Memon Nasir -3736 22 32 34 286 4,392 15.36 ?12

Li Shipeng -3925 23 26 47 271 2,445 9.02 ?24

Hua Xian-sheng -4252 24 24 50 285 2,012 7.06 ?26

Ma Wei-ying -4292 25 46 13 335 9,002 26.87 -12

Ortega Antonio -4894 26 31 36 330 4,375 13.26 ?10

Xiong Zixiang -4950 27 35 29 308 4,605 14.95 ?2

Bouman C -5592 28 27 43 380 3,939 10.37 ?15

Wu Xiaolin -6332 29 31 39 337 3,154 9.36 ?10

Bovik Alan -8008 30 39 19 507 10,244 20.21 -11

Ramchandran Kannan -8111 31 49 11 421 10,117 24.03 -20

Liu Bede -8784 32 38 22 436 6,340 14.54 -10

Strintzis M. -8871 33 29 40 454 3,454 7.61 ?7

Chang Edward -9099 34 31 38 448 3,828 8.54 ?4

Delp Edward -10001 35 37 24 438 4,836 11.04 -11

Chen Liang-Gee -10311 36 32 35 478 3,961 8.29 -1

Tekalp A. -10552 37 40 18 448 5,768 12.88 -19

Unser Michael -10801 38 54 6 465 11,393 24.50 -32

Vetterli M. -11139 39 63 4 547 19,353 35.38 -35

Jain Anil -11474 40 81 1 590 29,755 50.43 -39

Katsaggelos Aggelos -11662 41 36 27 504 5,186 10.29 -14

Wang Yao -11705 42 39 21 484 5,650 11.67 -21
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also shows their corresponding PI values; it is remarkable that about half of them are

characterized as ‘‘Mass Producers’’ (i.e., they have negative PI values). We will seek an

explanation for that by contrasting these results in Table 8.

Table 8 shows the rank list ordered by PI; all authors have high ranking positions by h-

index as well. If we try to find what is common in all these persons, we could say that (most

of) these scientists spend significant time of their careers in industrial environments

making groundbreaking contributions, and being recognized as inventors whose ideas have

been incorporated into many products that penetrated our lives. Examples include Tuecke,

Rivest, Shamir, Agrawal, and Lamport. The personnel in these environments are highly

trained, working on ‘‘real’’ problems whose solutions are part of business products. Thus,

these groups are not publishing-prone, and (most of the time) whenever they publish their

results, these are path-breaking and influential. Others, such as Vapnik, Zadeh, Kohonen,

Aho and Schapire are pioneers, inventing brand new knowledge and developing it in a long

series of articles. It might also be the case that these scientists work only with experienced

researchers, thus being elitists (Cormode et al. 2013), because for instance their topics are

very advanced. On the contrary, people coming solely from academic environments have

the role of a mentor (Cormode et al. 2013) and are charged with the task of training young

PhD students whose initial works (usually) do not have high impact. Moreover, sometimes

they are involved in projects of exploratory nature, which eventually do not open new

avenues. Finally, we should not forget the publish-or-perish pressure upon their students

and themselves.

Table 9 shows the top-20 ‘‘Mass Producers’’ from our samples. In this table we also

present the average number of citations per paper (C=p column). It can be seen that there is

a big range of average values from 4 to 45 citations per publication in the top ‘‘Mass

Producers’’. In this table we will recognize—consistent with what we said in the previous

paragraph – some excellent academics who have trained many PhD students.

In Tables 10, 11 and 12 we present the ‘‘toppers’’ with respect to the fields of ‘‘Net-

works’’ ‘‘Databases’’ and ‘‘Multimedia’’, respectively. Starting from the ‘‘Networks’ table,

we see Van Jacobson and Sally Floyd ranked first and second respectively; they are well-

known inventors who contributed fundamental algorithms to the design and operation of

the Internet. They both had careers in industry: in Cisco, Xerox, AT&T Center for Internet

Research at ICSI, and worked extensively on developing standards (RFC) in the areas of

TCP/IP congestion control. Similarly, looking at Table 11 for the database field, we will

find in the top positions persons such as Rakesh Agrawal, Ronald Fagin, Jeffrey Ullman

Table 12 continued

Author PI h p C C=p Change

val pos val pos h� PI

Chang Shih-Fu -11941 43 52 7 507 11,719 23.11 -36

Nahrstedt Klara -12286 44 52 9 492 10,594 21.53 -35

Girod Bernd -13613 45 52 8 529 11,191 21.16 -37

Pitas Ioannis -13849 46 44 14 515 6,875 13.35 -32

Chellappa Rama -14092 47 50 10 604 13,608 22.53 -37

Zhang Hongjiang -15112 48 63 5 556 15,947 28.68 -43

Kuo C. -36848 49 40 16 1148 7,472 6.51 -33

Huang Thomas -54047 50 67 3 1172 19,988 17.05 -47
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and Rajeen Motwani who also have spent their careers in companies such as Google, IBM

and Microsoft, or have contributed fundamental algorithms in fields such as compilers,

databases and algorithms. We can make similar observations from Table 12 where we find

some entrepreneurs such as Ramesh Jain who founded or co-founded multiple startup

companies including Imageware, Virage and Praja. The type of career is certainly a factor

that helps categorize a scientist as an influential, since we can see that Van Jacobson

(‘‘Networks’’) and Nick Koudas (from ‘‘Databases’’ who spend part of his career in AT&T)

are the ones who gained the greatest rise in PI ranking compared to the h-ranking: 43 and

38 positions, respectively.

If we turn our attention to the bottom rows of these tables we will recognize some

excellent mentors, but mass producers: Elisa Bertino and Jiawei Han from databases,

Georgios Giannakis and Jack Dongarra from the networking community, Thomas S. Hu-

ang, Rama Chellappa and Ioannis Pitas from multimedia.

But, is it really the case that only inventors and industry persons are influentials,

whereas academia persons are mass producers? In that case, the PI index would be of little

usefulness since the separation of influentials and mass producers would be quite

straightforward. The answer to this question is definitely negative. From the beginning of

our article we emphasized that this is a generic attitude of the scientists towards publishing,

rather than an outcome of their type of careers. Thus, we can see in the ‘‘Networks’’ field

some academia persons such as Hari Balakrishnan, David Johnsonand Ion Stoica, or Peter

Buneman from ‘‘Databases’’ who are quite high in the PI ranking, even though they did not

develop their careers in companies working with highly trained colleagues. On the other

hand, P. S. Yu (‘‘Databases’’) who spend many years in IBM is found at the end of

Table 11, remaining in the top-50 of ‘‘Databases’’.

Conclusions

The development of indices to characterize the output of a scientist is a significant task not

only for funding and promotion purposes, but also for discovering the scientist’s ‘‘pub-

lishing habits’’. Motivated by the question of discovering the steadily influential scientists

as opposed to mass producers, we have defined two new areas on an scientist’s citation

curve:

• The tail complement penalty area (TC-area), i.e., the complement of the tail with

respect to the line y ¼ h.

• the ideal complement penalty area (IC-area), i.e., the complement with respect to the

square p� p.

Using the aforementioned areas we defined two new metrics:

• The perfectionism index based on the TC-area, called the PI index.

• The extreme perfectionism index based on the IC-area, called the XPI index.

We have performed an experimental evaluation of the behavior of the PI and XPI indices.

For this purpose, we have generated three datasets (with random authors, prolific authors

and authors with high h-index ) by extracting data from the Microsoft Academic Search

database. Our contribution is threefold:

• We have shown that the proposed indices are uncorrelated to previous ones, such as the

h-index .
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• We have used these new indices, in particular PI, to rank authors in general and, in

particular, to split the population of authors into two distinct groups: the ‘‘influential’’

ones with PI [ 0 vs. the ‘‘mass producers’’ with PI\0.

• Also, we have shown that ranking authors with the PI index is more robust than h-index

with respect to self-citations, and we applied it to rank individual scientists offering

some explanations for the reasons behind their publishing habits.

We are already involved in the consideration of temporal issues into PI by integrating the

concepts of contemporary h-index (Sidiropoulos et al. 2007) into the PI index.
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