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Abstract: A new issue that arises in modern applications
involves the efficient manipulation of (static or moving)
spatial objects, and the relationships among them. As a
result, modern database systems should be able to
efficiently support that type of data. Towards this goal,
appropriate extensions of multidimensional access
methods can be exploited in order to index and retrieve
spatiotemporal objects, satisfying users' demands. This
paper introduces the basic specifications such a
spatiotemporal index structure should follow, evaluates
existing proposals with respect to the above specifications,
and illustrates issues of interest involving object
representation, query processing, and index maintenance.

1. Introduction

Efficient storage and retrieval techniques for non-
traditional data, such as geometric objects in
multidimensional space, are necessary in modern database
systems. Spatiotemporal Database Management Systems
(STDBMS), in particular, should (i) offer appropriate data
types and query language to support (static or moving)
spatial data, (ii) provide efficient indexing and retrieval
methods, and (iii) exploit cost models for specialized
spatiotemporal operations for query processing and
optimization purposes. Relevant applications include
Geographic Information Systems (GIS), Transaction /
Valid Time Databases, Multimedia Systems, as well as
Scientific and Statistical Databases, such as databases for
medical, weather, environmental, astrophysics etc.

applications.
The primary goal of an STDBMS is the accurate

modeling of the real world; that is a dynamic world, which
involves objects whose position, shape and size change
over time. Real world examples include storage and
manipulation of trajectories, fire or hurricane front
monitor, simulators (e.g. flight simulators), weather
forecast etc. For example, consider the query: "find the
past days in which the solar magnetic wind showed
patterns similar to today's patterns over the region of
Mediterranean sea". Worboys [28] also provides a survey
of, mainly GIS oriented, spatiotemporal applications on
administrative areas, road networks, and land ownership.
On such data sets, selection, join or nearest-neighbor
queries need to be supported.

Figure 1 illustrates two real world example applications
that include spatiotemporal data [22]. The first one is taken
from the maritime world, where there is a need for the
representation and reasoning on moving point objects; the
second one comes from the environmental applications,
and specifically from forest fire management, where there
is a need to represent and analyze regions that change their
location over time.

Figure 1a illustrates a simplified example of two vessel
trajectories (A, B) in the international waters (IW) between
two countries. Assuming a navigation on a plane surface,
each trajectory can be represented with a line object in
three-dimensional space defined by the Cartesian system
(x, y, t). Two typical queries regarding this situation, which
are handled as spatiotemporal join operations, are: “Did
any vessel cross any national boundary (NBi) on the 3rd of

July?” or “Is there any chance for a vessel collision to
occur?”. As a second example, Figure 1b illustrates three
snapshots (Fi1, Fi2, Fi3) of a burning area (Fi) in a forest.

Assuming a fire on a plane surface (a projection of the
earth surface), the burning area consists of a set of regions,
possibly with holes (e.g. lakes). Each fire can be
represented as a complex solid in three-dimensional space
defined by the Cartesian system (x, y, t). Some typical
queries regarding this situation, which are handled as
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spatiotemporal selection operations, are: “Did city C1 ever

burn?” or “Did fire-front of Fi ever meet river Rv? If yes,

when did that happen?”.
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 Figure 1: Two real world examples with spatiotemporal objects

In the literature, several spatial access methods have
been proposed for multidimensional space without,
however, taking the time aspect into consideration. These
methods are capable of manipulating points, arbitrary
shaped objects (e.g. polygons), or raster data. A recent
survey can be found in [8]. On the other hand, temporal
access methods have been proposed to index valid and/or
transaction time, where space is not considered at all. A
large family of access methods has been proposed to
support multiversion / temporal data [2, 11, 12, 13], by
keeping track of data evolution over time (e.g. assume a
database consisting of medical records, or employees’
information, or bank transactions, etc.). For a survey on
temporal access methods see [23].

To the best of our knowledge, we are aware of only
four indexing methods that consider both spatial and
temporal attributes of objects, namely MR-trees and RT-
trees, proposed by Xu et al. in [29], 3D R-trees by
Theodoridis et al. in [27], and HR-trees, proposed by
Nascimento and Silva in [15]. These approaches have the
following characteristics:
• 3D R-trees treat time as another dimension using a

'state-of-the-art' spatial indexing method, namely the R-
tree [5, 9],

• MR-trees and HR-trees embed the concept of
overlapping into R-trees in order to represent
successive states of the database [14], and

• RT-trees couple time intervals with spatial ranges in
each node of the tree structure by adopting ideas from
R-trees and TSBT trees [13].

 In this paper, we study the specific issues that arise
when handling spatiotemporal (i.e., time-evolving spatial)
objects, and differentiate the possible solutions on efficient
indexing and retrieval from those involving static spatial
objects. Our study constitutes the first attempt towards a
specification and classification scheme for spatiotemporal
access methods (STAMs). The rest of the paper is
organized as follows: In Section 2 we discuss the
motivation for this study. Section 3 describes a
specification and classification scheme for efficient
indexing and query processing in spatiotemporal databases.
Section 4 surveys and classifies relevant index structures
proposed in the past. We conclude in Section 5, giving also
directions for future work.

 
 2. Motivation
 
 In the literature, there has been a limited work on
formalization and modeling of spatiotemporal databases.
Moreover, different background of researchers (temporal
versus spatial databases) has usually led to different (and
possibly incompatible) definitions. A primitive
classification, for example, distinguishes between discrete
and continuous modeling. In the rest of the paper, we adopt
the following (discrete) definition for spatiotemporal
objects.

 
 Definition: A spatiotemporal object o (declared by its
identification number o_id) is a time-evolving spatial
object, i.e., its evolution (or history) is represented by a
set of triplets (o_id, si, ti), where si is the location of
object o_id at instant ti (si and ti are called space-stamp
and time-stamp, respectively).
 
 According to the above definition, a two-dimensional

point- (non-point) time-evolving object is represented by a
line (solid) in three-dimensional space. Figure 2 illustrates
two examples: (a) a moving point and (b) a moving region
(mpoint and mregion, respectively, according to the
terminology proposed in [7]). In this paper we study space
of dimensionality d = 2. However, 3- or, in general, d-
dimensional spatial objects could be supported in a similar
way.

 One of the tasks to be supported by an STDBMS is the
efficient indexing and retrieval of spatiotemporal objects.
This task demands robust indexing techniques and fast
access methods for a wide set of possible queries on
spatiotemporal data. As an obvious solution to the
problem, one could use an off-the-shelf access method for
spatial data, such as the R-tree [5, 9] or the Quadtree [20].
However, several issues arise when attempting to consider
spatiotemporal objects as three-dimensional spatial objects
and manipulate them by using conventional methods from
the spatial database literature, as will be discussed later.
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 Figure 2:  2-dimensional time-evolving spatial objects

 (i) data sets supported
 For all applications it is important to know beforehand the
nature of the data. As a first classification, a spatiotemporal
database consists of time-evolving point or region objects.
A region data type implementation could support both
point- and non-point objects, since points could be treated
as zero-sized regions.
 (ii) valid vs. transaction time
 Two separate time dimensions for database facts have been
addressed in temporal database literature [10]: transaction
time (i.e., time when the fact is current in the database and
may be retrieved) and valid time (i.e., time when the fact is
true in the modeled reality). An STDBMS would support
one or even both time dimensions. Thus we distinguish
among three cases: valid-time (also called historical),
transaction-time (also called rollback), and bitemporal
databases, and respective indexing methods are also
classified according to the above taxonomy.

Apart from the above taxonomy, spatiotemporal
databases can be characterized with respect to (a) the
mobility of the database and (b) the batch or dynamic
loading of data.
 (iii) database mobility
 There are cases where the cardinality of the database is
static over time, but database objects may change their
location. An example includes a military application where
the positions of certain ships have to be monitored over
time. The reverse one (i.e., the cardinality changes over
time but the locations of all spatial objects stored in the
database remain static) is also a case of interest. For
instance, consider a sequence of maps using points to show
the seismic activity of a region. In a third case, both the
database cardinality as well as the objects' location may
vary with time. All these cases are of interest for the

spatiotemporal databases (obviously, the remaining one,
where a database consists of a fixed number of non time-
evolving objects, can be manipulated with conventional
database approaches).
 (iv) loading of data
 Orthogonal to the above classification is the issue of bulk-
or dynamically- loaded databases. In other words, we
distinguish between applications with current time-stamps
ti bulk-loaded in the database (and no update in past
instants be allowed) and applications with dynamic
insertions / updates of objects' time-stamps allowed (not
applicable, however, to transaction-time databases). The
design of an efficient STAM also depends on the above
classification for the database of interest.

It is well known that there exist two great families of
spatial indexing methods, namely R-trees [5, 9] and
Quadtrees [20]. Both structures have been incorporated
into several prototype or commercial DBMS (e.g.
Oracle8TM Spatial Data Cartridge, IllustraTM Spatial
Datablade Modules) and GIS software. We argue that (a)
specific representations of spatial and temporal attributes
of time-evolving spatial data, and (b) specific access on
data to support queries of interest are necessary extensions
to those methods for STDBMS purposes:
 (v) approximations of moving objects
 R-trees and variants approximate spatial objects by their
Minimum Bounding Rectangles (MBRs) in order to
construct the spatial index. Although the representation of
spatiotemporal objects by their MBRs has been already
adopted to represent multimedia objects for authoring
purposes [27], it is an inefficient solution due to the nature
of moving objects. In other words, since objects are
moving around in the work space, their three-dimensional
MBRs usually include a vast amount of dead space, a fact
that undoubtedly leads to extremely large and overlapping
data rectangles, which in turn leads to inefficient indexing.

Figure 3 illustrates this case, where a point object
moves from point A to point B. It is evident that the
corresponding MBR covers a large portion of the data
space, thus leading to high overlap and therefore to small
discrimination capability of the index structure.
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 Figure 3: The MBR of a moving object occupies a large portion

of the data space
 



Due to that side effect, alternative representations (as
an example, Orenstein's decomposition schemes [16])
should be investigated. On the other hand, in order to store
an object in a Linear Quadtree, we have to decompose it in
a number of maximal blocks. It is anticipated that complex
objects, which evolve in a dynamic environment, will
consist of a great number of maximal blocks, and therefore
an excess number of quadcodes will have to be inserted in
the structure.
  (vi) time (t-) dimension peculiarity
 In the case of transaction-time databases there is a t-
dimension peculiarity, i.e., time can be considered as an
attribute taking monotonically increasing values. In such a
case, the time dimension is not just another dimension, but
appropriate actions should be taken in order to take
advantage of this special characteristic. This property is
interpreted into the following constraint: for each two
consecutive triplets (o_id, si, ti) and (o_id, si+1, ti+1) of an
object o_id, it is always ti+1 > ti. Apart from making t-
dimension a special case, the above property also causes a
side effect: all objects' instances with ti lower than a
threshold could be considered as ‘obsolete’ ones. In other
words, a (practically large) portion of a STAM could be
packed in order to reduce index space, since no updates are
permitted for the corresponding data. Alternatively to
packing, a purging process (also presented in [2] to save
space in the multiversion B-tree) could be adopted in order
to move the specific nodes to tertiary storage, e.g. optical
disks, or even delete them.
 (vii) support of specific spatiotemporal queries
 The target of indexing methods is the efficient retrieval of
data that satisfy the constraints of a user defined query. In
spatial database literature, three main operations have been
addressed: spatial selection, spatial join, and nearest-
neighbor queries. Apart from the above common purpose
queries, STDBMS users could be also interested in other,
spatiotemporal application oriented ones. As an example,
timeslice queries [10], where a timeslice could be an
instant or an interval, are important for practical
applications since by a series of them a visualization of the
spatiotemporal database within a time interval could be
succeeded. Another example includes the history queries,
which retrieve, for example, all instances of a specified
object identified by o_id, and involve visualization issues.
The definition of a widely accepted set of spatiotemporal
queries is obviously necessary, not only for the purposes of
an appropriate index design but also for the design of
spatiotemporal data models, query languages, benchmarks,
etc.

 The above issues, and possibly several others not
presented in this listing, constitute the design of a STAM
to be a subject different from that of a pure spatial index
(i.e., by considering that t- direction is an extra dimension
in multidimensional space). In the next section, we
elaborate on those issues in order to present a specification
list that should be supported by an efficient indexing

method for spatiotemporal databases.
 

 3. A List of Specifications
 
 According to the discussion of Section 2, we classify three
types of specification issues to be considered:
• issues on data types and data sets supported,
• issues on index construction, and
• issues on query processing.

3.1. Data Types and Data Sets Supported

As illustrated in Figure 2, both point and non-point spatial
objects need to be efficiently supported by appropriate
STAMs. In accordance to spatial indexing area, those
indexes could be classified in PAMs (point access
methods) and SAMs (spatial access methods) respectively,
with respect to the data types supported. Obviously, SAMs
also support point objects since points are zero-sized
regions.

A second classification concerns the time dimension(s)
supported. The respective classification discussed in
Section 2 is illustrated in Table 1. Recall that, since at least
one time dimension support is a fundamental property of
an STDBMS, the fourth case of snapshot databases (i.e.,
no consideration of valid or transaction time) is not of
interest in our discussion.

Transaction time:
NO

Transaction time:
YES

Valid time: NO transaction-time

Valid time: YES valid-time bitemporal

Table 1:  Classification of spatiotemporal databases (with
respect to the time dimensions supported)

In the area of spatial databases, a score of indexing
methods has been proposed for special cases where data
are static or dynamic. In the context of spatiotemporal
databases, the temporal dimension invalidates all previous
approaches with respect to the nature of spatial data (i.e.
whether they are static or dynamic). However, as explained
in the previous section, in the latter context we may
visualize three cases of interest with respect to the motion
of objects and the cardinality of the database through time.
The above classification (with respect to the mobility of
the data set) is illustrated in Table 2.

Cardinality:
static in time

Cardinality:
dynamic in time

Still objects growing
Moving objects evolving full-dynamic

Table 2:  Classification of spatiotemporal databases (with
respect to the mobility of the data set)



In addition, by assuming that all objects' instances are
known in advance and no insertion / update is allowed (i.e.,
entries are bulk-loaded or batch inserted in the database) is
different from the case that only current instances are
dynamically inserted / updated (in a so-called
chronological or append-only database), or the case that
insertions of / updates to any object instance referred to
any time-stamp (not meaningful in transaction- time
databases, see Table 1) are allowed. The above
classification (with respect to the time-stamp update issue)
is illustrated in Table 3.

Batch-only
insertions

Dynamic
insertions

Past time-stamp insertion
/ update not allowed

static chronological

Past time-stamp insertion
/ update allowed

dynamic

Table 3:  Classification of spatiotemporal databases (with
respect to the time-stamp update issue)

In the spatial database literature, only two out of three
classes (i.e., the static and dynamic ones) are meaningful,
with dozens of methods proposed for each one (an
exhaustive survey is found in [8]), since chronological data
is meaningless in pure spatial databases. On the other hand,
a STAM would be able to support one, two, or all three of
the above database classes.

3.2. Index Construction

Due to the aforementioned peculiarity of t-dimension and
the nature of spatiotemporal data, we argue that an
efficient STAM should take several issues into
consideration during its construction, which extend
relevant ideas that exist in pure spatial indexes. In the
sequel, we discuss issues on efficient handling of new
entries, 'obsolete' entries, and granularity change. Our
discussion considers hierarchical tree structures since
hashing methods do not seem to fit well to
multidimensional indexing purposes.
• Insert / Split operations:
 As soon as a new triplet (o-id, oi, ti) of an object o is
inserted into the database, the root entries are checked in
order to select the one that "fits" the new entry. At the next
levels, the same procedure is repeated until the leaf level is
reached. Then the entry is inserted into one of the leaf
pages, with respect to a performance criterion. That should
take spatial and temporal coordinates of the entry into
account, however by keeping the t- axis peculiarity in
mind. As usually, an insertion may cause a page overflow;
in that case, appropriate handling of overflowing entries
could result to either a split operation, or a forced
reinsertion procedure, or even using overflow pages (e.g.
supernodes in [3]). Total (e.g. similar to the R+-tree split

operation [21]) or partial disjointness (i.e., according to
space or time coordinates) criteria would be considered to
efficiently handle page overflow.
• Pack / Purge operations to handle 'obsolete' entries:
 Index pages consisting of ‘obsolete’ entries could be
packed or purged in order to reduce disk space. Such
reorganization techniques could be introduced in the
design of a STAM due to the nature of the data involved.
Under the assumption that the average page capacity of
dynamic tree indexes is about 67%, the following ‘3-to-2’
merge technique could be used: three consecutive
'obsolete' pages, each being around 67% full, would be
merged into two full pages. In general, alternative ‘n - to -
n-1’ merge techniques, with n being a tuned parameter,
could be applied. Alternative to packing, by purging pages
consisting of ‘obsolete’ entries and removing them from
the index organization a remarkable space saving could be
achieved. The purge operation actually leads to unbalanced
trees because several nodes are removed without affecting
the rest of the index structure, and especially the pointers
directing to those nodes. However, this situation is not
harmful, as long as a search that encounter such a
'dangling' pointer will never follow it [2].
• Change time-stamp granularity:
 Another case of reorganizing a STAM involves the time-
stamp granularity (i.e., the unit of measure in time
dimension). When the time-stamp granularity of a time
dimension changes, e.g. from an hour to a day, then the
underlying index should be reorganized in order to express
objects' time-stamps according to the updated unit of
measure.
 
 3.3. Query Processing
 
 The major objective a STAM is to efficiently handle query
processing. The broader is the set of queries supported, the
more applicable and useful the access method becomes. A
set of fundamental query types as well as some specialized
queries are discussed in the sequel.
• selection queries:
 Queries of the form “find all objects that have lied within a
specific area (or at a specific point), during a specific time
interval (or at a specific time instant)” are expected to be
the most common ones addressed by STDBMS users.
Assuming a hierarchical tree structure, the retrieval
procedure is straightforward: starting from the root
node(s), a downwards traversal of the index is executed by
applying the criterion of intersected intervals (for time) and
ranges (for space) between the query window and each
node approximation. It is important to point out that pure
temporal or pure spatial selection queries need to be
supported as well.
• join queries:
 Queries of the form “find all pairs of objects that have lied
spatially close (i.e., within distance X), during a specific



time interval (or at a specific time instant)” are also crucial
in spatiotemporal databases. An immediate application is
accident detection by comparing vehicle trajectories. The
retrieval procedure is also straightforward: starting from
the two root nodes, a downwards traversal of the two
indexes is performed in parallel, by comparing the entries
of each visited node according to the overlap operator,
such as the synchronized tree traversal proposed in [4] for
R-tree structures.
• nearest-neighbor queries:
 Given an object X, the nearest-neighbor query requests for
the k closest objects with respect to X. For example the
query: “find the 5 closest ambulances with respect to the
accident place” is a nearest-neighbor query. Evidently,
such a query can be supported by the algorithm proposed
in [19]. However, consider the query: “find the 5 closest
ambulances with respect to the accident place in a time
interval of 2 minutes before and after the accident,
knowing the directions and velocities of ambulances and
the street map”. Evidently, more sophisticated algorithms
are required, towards spatiotemporal nearest-neighbor
query processing.

 According to the discussion in Section 2, other
(application oriented) queries of interest include among
others the timeslice (which can be transformed into
'partially-point' or range queries using appropriate query
windows) and history (which could be supported by the
maintenance of appropriate to-next pointers) operations.
Although a formal set of spatiotemporal operators, in
correspondence to the topological / directional models [6,
18] between spatial regions or Allen's relations [1] between
temporal intervals, is lacking, proposals for spatiotemporal
indexing should be able to support specific spatiotemporal

operations, such as the ones described above or an
extended list that appears in [7], together with the
fundamental selection, join, and nearest-neighbor ones. In
conclusion, Table 4 illustrates a classification scheme that
applies for indexing methods on spatiotemporal data.

 In the next section, methods proposed in the past to
index spatiotemporal objects are presented and evaluated
with respect to the list of Table 4.
 
 4. A Survey of STAMs
 
 Although spatiotemporal data handling is very important in
modeling real world applications, research in
spatiotemporal indexing is quite limited. The emphasis is
given either in pure spatial indexing supporting
multidimensional data or temporal indexing for
conventional data types (e.g. numbers, strings). The efforts
performed in the past towards spatiotemporal indexing can
be classified in the following categories:
• methods that treat time as another dimension [27],
• methods that incorporate the time information into the

nodes of the index structure, but without assuming
another dimension [29], and

• methods that use overlapping index structures in order
to represent the state of the database in different (valid
or transaction) time instants [15, 29].
 Let us trace through the advantages and disadvantages

of the aforementioned approaches, and explain the reasons
why they fail to solve the problem of spatiotemporal
indexing to a sufficient degree.

 Assuming that time is another dimension is a simple
idea, since the tools to handle multidimensional data are
already available (e.g. R-trees and variants [5, 9]). The 3D

 Specification  Explanation (domain)  Note

 Spec1  Data types supported  point | region  (1)

 Spec2  Database classification I: with respect to time dimension(s)
supported

 valid-time | transaction-time |
bitemporal

 

 Spec3  Database classification II: with respect to the data set
mobility

 growing | evolving | full-dynamic  

 Spec4  Database classification III: with respect to time-stamp
update

 static | chronological | dynamic  (2)

 Spec5  Specific object  approximation  NO | YES  

 Spec6  Handling 'obsolete' entries (e.g. support of bulk-loading /
packing / purging operations)

 NO | YES  (3)

 Spec7  Specific (application-oriented) query processing operations  NO | YES  

 Notes: (1) region  includes both point- and non-point objects
 (2) dynamic  classification is meaningless in transaction-time  databases (see Spec2)
 (3) meaningless in dynamic  databases (see Spec4)

 
 Table 4:  List of specifications for spatiotemporal indexing



R-tree implemented in [27] considers time as an extra
dimension in the original two-dimensional space and
transforms two-dimensional regions in three-dimensional
boxes (MBRs). Figure 4, for example, illustrates (a) a set
of spatial objects with a specific lifespan for each one and
(b) the corresponding 3D R-tree. The retrieval of objects
that fulfil a spatiotemporal range constraint ("find all
objects that overlap object D both in space and time") is
also illustrated and its implementation is a typical three-
dimensional range query in the R-tree structure.
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 Figure 4: The three-dimensional MBRs stored in an R-tree

structure.
 
 Since the particular application considered in [27] (i.e.,

multimedia objects in an authoring environment) involves
objects that do not change their location through time, no
dead space is introduced by their three-dimensional
representation. However, if the above approach were used
for moving objects, a lot of empty space would be
introduced, as illustrated in Figure 3.

 The second approach, which has been followed in [29],
is based on the incorporation of the time information, by
means of time intervals, inside the structure. The effort
leads to the RT-tree, which is a spatiotemporal version of
an R-tree. Both the spatial and temporal information is
maintained separately. Each entry, either in a leaf or a non-
leaf node, contains entries of the form (S, T, P), where S is
the spatial information (MBR), T is the temporal
information (interval), and P is a pointer to a subtree or the
detailed description of the object. Let T = (ti, tj), i ≤ j, tj be
the current time-stamp and tj+1 be the consecutive one. If
an object does not change its spatial location from tj to tj+1,
then its spatial information S remains the same, whereas
the temporal information T is updated to T', by increasing
the upper value of the interval, i.e., T' = (ti, tj+1). However,
as soon as an object changes its spatial location, a new

entry with temporal information T = (tj+1, tj+1) is created
and inserted into the RT-tree. The most important
limitations of this approach are listed below:
• Evidently, if we assume that the number of objects that

change is large, then many entries are created and the
RT-tree grows considerably. Therefore the structure is
preferred for databases of low mobility.

• Since the instances of the objects that correspond to
several time-stamps are maintained in a single tree and
are not separated, queries that focus on a specific time-
stamp face the overhead of the rest ones.

• When a node overflows, a decision must be taken in
order to choose the characteristics where the split will
be based. The spatial or temporal or both characteristics
can be used, but no proposal has been presented on
when to use each approach.
The research efforts of the third category include the

MR-tree and HR-tree, which are influenced by the work on
overlapping B-trees [14]. Both methods support the
following approach: different index instances are created
for different transaction time-stamps. However, in order to
save disk space, common paths are maintained only once,
since they are shared among the structures. The collection
of structures can be viewed as an acyclic graph, rather than
a collection of independent tree structures. The concept of
overlapping tree structures is simple to understand and
implement. Moreover, when the objects that have changed
their location in space are relatively few, then this
approach is very space efficient. However, if the number of
moving objects from one time instant to another is large,
this approach degenerates to independent tree structures,
since no common paths are likely to be found. Figure 5
illustrates an example of overlapping trees for two
different time instants t0 and t1. The dotted lines represent
links to common paths / subpaths.

Time t0 Time t1

Figure 5: Overlapping trees for two different time instants t0 and t1.

Among the aforementioned proposals, it is only the 3D
R-tree that has been implemented and experimentally
tested [27]. The so-called unified scheme was evaluated in
comparison with a simple scheme that separates temporal
and spatial information of objects by maintaining two
different indexes (e.g. one 1D or segment R-tree and one
2D R-tree, respectively). The retrieval cost for several pure
temporal, pure spatial and spatiotemporal operators was
measured and appropriate guidelines were extracted. An
example of the latter case includes the 'layout' query (a
kind of timeslice operation), where all objects' instances at



a specific instant t = T have to be retrieved. No
experimentation of the other methods has been performed,
to the best of the authors' knowledge; only simple
analytical considerations of best and worst case for the
storage space of MR-trees and RT-trees can be found in
[29]. Therefore, there is a lack of performance comparison
among the proposed approaches, with respect to the space
occupied, the construction time, and the response time in
order to answer a variety of spatiotemporal queries.

Table 5 classifies the methods that have been proposed
for spatiotemporal indexing purposes. The classification is
based on the specification list proposed in Section 3.
Recall that it is not claimed to be a complete set of
specifications in any sense but a (open to additions) list of
criteria, which should be supported in order to meet the
needs of efficient spatiotemporal query processing.

In particular, all methods index regions (including
points as a special case) and three out of four methods
support transaction-time (although it is not declared in
[29]). Apart from that, the 3D R-tree implementation in
[27] handles growing and static databases (since objects
are accompanied by a valid-time lifespan without,
however, changing their location in space and all objects'
instances are known in advance) while the rest proposals
are classified as full-dynamic (with respect to the data set
mobility) and chronological (with respect to time-stamp
updates). Concerning the rest specifications, the 3D R-tree
takes no care of specific approximations, since each object
is represented by its MBR, but implements a specific
spatiotemporal operation (namely, the layout query, which
is a kind of a timeslice operation). On the other hand,
overlapping trees, such as the MR-tree and the HR-tree,
maintain a set of MBRs per object, although with no links
to each other, and efficiently handle timeslice operations
due to their design specifications (although in [15, 29] the
typical point and range queries are only discussed).

As extracted from Table 5, although all proposals aim
at organizing time-evolving spatial objects in an efficient
manner, a limited support of specific spatiotemporal

operations (Spec7) or the lack of specific object
approximations other than MBRs (Spec5) is the general
rule. In addition to that, although all methods support static
or chronological databases (Spec4), no special handling of
'obsolete' object instances (Spec6) is considered.
Therefore, it is claimed that the existing methods should be
extended and / or revised and, moreover, new proposals are
needed.

5. Conclusion

Spatiotemporal data support is considered to be an
important research direction, since many applications need
to manipulate data that change over time. STDBMS, in
particular, should (i) offer appropriate data types and query
languages for time-evolving spatial objects, (ii) provide
efficient indexing techniques and access methods for
spatiotemporal query processing, and (iii) exploit cost
models for query optimization purposes. Recent research
on modeling and querying includes temporal elements
attached to components of spatial objects [28], alternative
continuous or discrete models of moving points or regions
[7], or motion vectors that describe the current status of
moving objects [24].

The specific needs of STDBMS users also require
appropriate indexing techniques on spatiotemporal data.
Although conceptually the problem seems to be easy to
solve, several issues arise when one attempts to design an
indexing method for a d-dimensional spatiotemporal
database. Due to the peculiarities of the time dimension,
the workspace of interest cannot be directly considered to
be just a d+1 – dimensional one.

In this paper, we have studied several discussion points
and we have presented a list of specifications that an
efficient STAM should follow. Issues on (a) data types and
data sets supported, (b) index construction, and (c) query
processing operations are addressed and existing proposals
[15, 27, 29] are evaluated according to the above issues. To

Specification

STAM MR-tree RT-tree 3D R-tree HR-tree

Spec1: Data types supported region region region region

Spec2: Type of time supported transaction-
time

transaction-
time

valid-time transaction-
time

Spec3: Data set mobility full-dynamic full-dynamic growing full-dynamic

Spec4: Time-stamp update chronological chronological static chronological

Spec5: Specific object  approximation YES YES NO YES

Spec6: Handling 'obsolete' entries NO NO NO NO

Spec7: Specific query processing operations YES (timeslice) NO YES (timeslice) YES (timeslice)

Table 5:  Evaluation of existing STAMs



our knowledge, it is the first attempt towards a
specification and classification scheme for STAMs. The
main conclusion is that the existing methods do not follow
the full list of specifications proposed. Thus they should be
extended and / or revised while new proposals should be
investigated.

We are currently working on the design and
implementation of spatiotemporal indexing schemes in
order to evaluate them under real experimentation. More
specifically, since up to now schemes based on the R-tree
only have been proposed, we are working towards making
Overlapping B+trees [14] and the multiversion B-tree
(MVBT) structure [2] suitable for storing quad / octcodes
and perform experiments for various queries. A second
task of current work includes the design and
implementation of a benchmarking environment in order to
provide performance comparison of the existing STAMs.
A variety of tests using synthetic and real spatiotemporal
data sets are necessary in order to better understand the
spatiotemporal indexing and retrieval issues. Also,
similarity-based queries are of importance in
spatiotemporal databases, and, therefore efficient tailor-
made access methods for similarity retrieval have to be
proposed. As a further task of research, the study of cost
models for spatiotemporal operations, which can be based
on analytical performance cost formulae for spatial query
processing [17, 25, 26], is a step towards a complete set of
appropriate STDBMS support tools.
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