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Abstract: A new issue that arises in modern applications applications.
involves the efficient manipulation of (static or moving) The primary goal of an STDBMS is the accurate
spatial objects, and the relationships among them. As a modeling of the real world; that is a dynamic world, which
result, modern database systems should be able to involves objects whose position, shape and size change
efficiently support that type of data. Towards this goal, over time. Real world examples include storage and
appropriate extensions of multidimensional access manipulation of trajectories, fire or hurricane front
methods can be exploited in order to index and retrieve monitor, simulators (e.g. flight simulators), weather
spatiotemporal objects, satisfying users' demands. This forecast etc. For example, consider the quefiyid"the
paper introduces the basic specifications such a past days in which the solar magnetic wind showed
spatiotemporal index structure should follow, evaluates patterns similar to today's patterns over the region of
existing proposals with respect to the above specifications, Mediterranean séa Worboys [28] also provides a survey
and illustrates issues of interest involving object of, mainly GIS oriented, spatiotemporal applications on
representation, query processing, and index maintenance. administrative areas, road networks, and land ownership.
On such data setselection join or nearest-neighbor
gueries need to be supported.
1. Introduction Figure 1 illustrates two real world example applications
that include spatiotemporal data [22]. The first one is taken
Efficient Storage and retrieval techniques for non- from the maritime World, where there is a need for the
traditional data, such as geometric objects in representation and reasoning on moving point objects; the
multidimensional space, are necessary in modern databasesecond one comes from the environmental applications,
systems.Spatiotemporal Database Management Systems and specifically from forest fire management, where there
(STDBMS), in particular, should (i) offer appropriate data IS @ need to represent and analyze regions that change their
types and query language to support (static or moving) location over time.
spatial data, (ii) provide efficient indexing and retrieval Figure 1a illustrates a simplified example of two vessel
methods, and (iii) exploit cost models for specialized trajectories (A, B) in the international waters (IW) between
spatiotemporal operations for query processing and two countries. Assuming a navigation on a plane surface,
optimization purposes. Relevant applications include €ach trajectory can be represented with a line object in
Geographic Information Systems (GIS), Transaction / three-dimensional space defined by the Cartesian system
Valid Time Databases, Multimedia Systems, as well as (X Y: ). Two typical queries regarding this situation, which
Scientific and Statistical Databases, such as databases forare handled aspatiotemporal joinoperations, are:Did
medical, weather, environmental, astrophysics etc. any vessel cross any national boundary jjN# the 3rd of
July?” or “Is there any chance for a vessel collision to
occur?”. As a second example, Figure 1b illustrates three
Copyright 1998 IEEE. Published in the Proceedings of SSDBM'98, July snapshotsF(il, Fip, Fi3) of a burning area':() in a forest.
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spatiotemporal selectionperations, are:Did city C; ever
burn?’ or “Did fire-front of F ever meet river Rv? If yes,
when did that happeni?

@)

(b)

Figure 1: Two real world examples with spatiotemporal objects

In the literature, several spatial access methods have
been proposed for multidimensional space without,
however, taking the time aspect into consideration. These
methods are capable of manipulating points, arbitrary
shaped objects (e.g. polygons), or raster data. A recent
survey can be found in [8]. On the other hand, temporal

access methods have been proposed to index valid and/or

transaction time, where space is not considered at all. A
large family of access methods has been proposed to
support multiversion / temporal data [2, 11, 12, 13], by
keeping track of data evolution over time (e.g. assume a
database consisting of medical records, or employees’
information, or bank transactions, etc.). For a survey on
temporal access methods see [23].

To the best of our knowledge, we are aware of only
four indexing methods that consider both spatial and
temporal attributes of objects, naméiR-treesand RT-
trees proposed by Xu et al. in [29]3D R-trees by
Theodoridis et al. in [27], andHR-trees proposed by
Nascimento and Silva in [15]. These approaches have the
following characteristics:

« 3D R-trees treat time as another dimension using a
'state-of-the-art' spatial indexing method, namely the R-
tree [5, 9],

MR-trees and HR-trees embed the concept of
overlapping into R-trees in order to represent

successive states of the database [14], and

each node of the tree structure by adopting ideas from
R-trees and TSBT trees [13].

In this paper, we study the specific issues that arise
when handling spatiotemporal (i.e., time-evolving spatial)
objects, and differentiate the possible solutions on efficient
indexing and retrieval from those involving static spatial
objects. Our study constitutes the first attempt towards a
specification and classification scherwe spatiotemporal
access methods (STAMs). The rest of the paper is
organized as follows: In Section 2 we discuss the
motivation for this study. Section 3 describes a
specification and classification scheme for efficient
indexing and query processing in spatiotemporal databases.
Section 4 surveys and classifies relevant index structures
proposed in the past. We conclude in Section 5, giving also
directions for future work.

2. Motivation

In the literature, there has been a limited work on
formalization and modeling of spatiotemporal databases.
Moreover, different background of researchers (temporal
versus spatial databases) has usually led to different (and
possibly  incompatible) definitions. A primitive
classification, for example, distinguishes betweéstrete
andcontinuousmodeling. In the rest of the paper, we adopt
the following (discrete) definition forspatiotemporal
objects

Definition: A spatiotemporal objeat (declared by its
identification number_id) is a time-evolving spatial
object, i.e., its evolution (or history) is represented by a
set of triplets ¢_id, s, t), wheres is the location of
objecto_id at instant; (5 andt; are calledspace-stamp
andtime-stamprespectively).

According to the above definition, a two-dimensional
point- (non-point) time-evolving object is represented by a
line (solid) in three-dimensional space. Figure 2 illustrates
two examples: (a) a moving point and (b) a moving region
(mpoint and mregion respectively, according to the
terminology proposed in [7]). In this paper we study space
of dimensionalityd = 2. However, 3- or, in general-
dimensional spatial objects could be supported in a similar
way.

One of the tasks to be supported by an STDBMS is the
efficient indexing and retrieval of spatiotemporal objects.
This task demands robust indexing techniques and fast
access methods for a wide set of possible queries on
spatiotemporal data. As an obvious solution to the
problem, one could use an off-the-shelf access method for
spatial data, such as the R-tree [5, 9] or the Quadtree [20].
However, several issues arise when attempting to consider
spatiotemporal objects as three-dimensional spatial objects
and manipulate them by using conventional methods from

RT-trees couple time intervals with spatial ranges in the spatial database literature, as will be discussed later.



spatiotemporal databases (obviously, the remaining one,
where a database consists of a fixed nhumber of non time-
evolving objects, can be manipulated with conventional
(a) database approaches).
(iv) loading of data
y Orthogonal to the above classification is the issue of bulk-
or dynamically- loaded databases. In other words, we
X distinguish between applications with current time-stamps
t; bulk-loaded in the database (and no update in past
instants be allowed) and applications with dynamic
insertions / updates of objects' time-stamps allowed (not
applicable, however, to transaction-time databases). The
design of an efficient STAM also depends on the above
classification for the database of interest.

It is well known that there exist two great families of
spatial indexing methods, namely R-trees [5, 9] and
Quadtrees [20]. Both structures have been incorporated
into several prototype or commercial DBMS (e.g.
Oracle8" Spatial Data Cartridge, lllustfd Spatial
Datablade Modules) and GIS software. We argue that (a)
specific representations of spatial and temporal attributes
of time-evolving spatial data, and (b) specific access on
data to support queries of interest are necessary extensions
to those methods for STDBMS purposes:

(v) approximations of moving objects

R-trees and variants approximate spatial objects by their
Minimum Bounding Rectangle$MBRs) in order to
construct the spatial index. Although the representation of
(ii) valid vs. transaction time spatiotemporal objects by their MBRs has been already

Two separate time dimensions for database facts have beerfadOptecj to re_pr_esent_ mu_It!medla O.bJeCtS for authoring
addressed in temporal database literature ftaisaction purposes [27], it is an inefficient solution due to the nature

time (i.e., time when the fact is current in the database and of ”ﬁo"‘”g objepts. In other words, _since ot.)jects' are
may be retrieved) anelid time (i.e., time when the fact is moving around in the work space, their three-dimensional

true in the modeled reality). An STDBMS would support '\;:BRS Lésuillyoi”nc:udg a vast amo“;ntl of deaddspacel, a fact
one or even both time dimensions. Thus we distinguish Ejat undou tle y ﬁ‘?‘ hs'to eXtrlemdey a.rgeﬁ.af‘ O.V%r apping
among three caseszalid-time (also called historical), ata rectangles, which in turn leads to inefficient indexing.

transaction-time (also calledrollback), and bitemporal Figure 3 illustrates this case, where a point object

databases, and respective indexing methods are alsoMOVes from pointA to point B. It is evident that the
classified according to the above taxonomy. corresponding MBR covers a large portion of the data

Apart from the above taxonomy, spatiotemporal space, thus leading to high overlap and therefore to small

databases can be characterized with respect to (a) thediScrimination capability of the index structure.
mobility of the database and (b) the batch or dynamic .
loading of data. !
(iii) database mobility B
There are cases where the cardinality of the database is -

static over time, but database objects may change their
location. An example includes a military application where
the positions of certain ships have to be monitored over

time. The reverse one (i.e., the cardinality changes over /
X

(b)

Figure 2: 2-dimensional time-evolving spatial objects

(i) data sets supported

For all applications it is important to know beforehand the
nature of the data. As a first classification, a spatiotemporal
database consists of time-evolving point or region objects.
A region data type implementation could support both
point- and non-point objects, since points could be treated
as zero-sized regions.

4

time but the locations of all spatial objects stored in the
database remain static) is also a case of interest. For
instance, consider a sequence of maps using points to show
the seismic activity of a region. In a third case, both the Figure 3: The MBR of a moving object occupies a large portion
database cardinality as well as the objects' location may of the data space

vary with time. All these cases are of interest for the

A



Due to that side effect, alternative representations (as method for spatiotemporal databases.

an example, Orenstein's decomposition schemes [16])

should be investigated. On the other hand, in order to store 3. A List of Specifications

an object in a Linear Quadtree, we have to decompose it in

a number of maximal blocks. It is anticipated that complex According to the discussion of Section 2, we classify three

objects, which evolve in a dynamic environment, will
consist of a great number of maximal blocks, and therefore
an excess number of quadcodes will have to be inserted in
the structure.

(vi) time (t-) dimension peculiarity

In the case of transaction-time databases there tis a
dimension peculiarity, i.e., time can be considered as an
attribute taking monotonically increasing values. In such a
case, the time dimension is not just another dimension, but
appropriate actions should be taken in order to take
advantage of this special characteristic. This property is
interpreted into the following constraint: for each two
consecutive tripletso( id, s, t) and 6_id, s.1, t+1) of an
objecto_id, it is alwayst,; > ti. Apart from makingt-
dimension a special case, the above property also causes
side effect: all objects' instances withlower than a

types of specification issues to be considered:
« issues omlata types and data sets supported
¢ issues orindex constructionand
e issues omuery processing

3.1. Data Types and Data Sets Supported

As illustrated in Figure 2, both point and non-point spatial
objects need to be efficiently supported by appropriate
STAMs. In accordance to spatial indexing area, those
indexes could be classified
methods) and SAMs (spatial access methods) respectively,
with respect to the data types supported. Obviously, SAMs
glso support point objects since points are zero-sized

regions.

in PAMs (point access

A second classification concerns the time dimension(s)
supported. The respective classification discussed in
Section 2 is illustrated in Table 1. Recall that, since at least
one time dimension support is a fundamental property of
an STDBMS, the fourth case shapshotdatabases (i.e.,
no consideration of valid or transaction time) is not of

threshold could be considered adsoleté ones. In other
words, a (practically large) portion of a STAM could be
packedin order to reduce index space, since no updates are
permitted for the corresponding data. Alternatively to
packing, apurging process (also presented in [2] to save

space in the multiversion B-tree) could be adopted in order
to move the specific nodes to tertiary storage, e.g. optical
disks, or even delete them.

interest in our discussion.

(vii) support of specific spatiotemporal queries Transaction time: | Transaction time:
. ; . - . NO YES

The target of indexing methods is the efficient retrieval of Valid e N : Ton T

data that satisfy the constraints of a user defined query. In 3! t_'me_' 0 — ransaction-ime

spatial database literature, three main operations have been_Yalid time: YES valid-time bitemporal

addressed:spatial selection spatial join, and nearest-

neighborqueries. Apart from the above common purpose
queries, STDBMS users could be also interested in other,
spatiotemporal application oriented ones. As an example,

_t|mesl|ce quenes_[lO], vxllhere a _tlmeshce CfOUId be _anl methods has been proposed for special cases where data
Instant or an interval, are important for practical 5 static or dynamic. In the context of spatiotemporal
applications since by a series of them a visualization of the y,iaha5es, the temporal dimension invalidates all previous
spatiotemporal database W'th'.n a time interval CO.L"d be approaches with respect to the nature of spatial data (i.e.
succeeded. Another example includes fifstory queries  \yhether they are static or dynamic). However, as explained
which retrieve, for example, all instances of a specified j, 1 previous section, in the latter context we may
object identified byo_id, and involve visualization issues. ;g ajize three cases of interest with respect to the motion

The definition of a widely accepted set of spatiotemporal ¢ gpiects and the cardinality of the database through time.
queries is obviously necessary, not only for the purposes of to anove classification (with respect to the mobility of
an appropriate index design but also for the design of the data set) is illustrated in Table 2.

spatiotemporal data models, query languages, benchmarks,
etc.

Table 1. Classification of spatiotemporal databases (with
respect to the time dimensions supported)

In the area of spatial databases, a score of indexing

. . Cardinality: Cardinality:
The above issues, and possibly several others not static in ti%e dynamic in %lime
presented in this listing, constitute the design of a STAM Still objects growing
to be a subject different from that of a pure spatial index Moving objects evolving full-dynamic

(i.e., by considering thdt direction is an extra dimension
in multidimensional space). In the next section, we
elaborate on those issues in order to present a specification
list that should be supported by an efficient indexing

Table 2 Classification of spatiotemporal databases (with
respect to the mobility of the data set)



In addition, by assuming that all objects' instances are operation [21]) or partial disjointness (i.e., according to
known in advance and no insertion / update is allowed (i.e., space or time coordinates) criteria would be considered to
entries ardulk-loadedor batch insertedn the database) is efficiently handle page overflow.
different from the case that only current instances are « Pack / Purge operations to handle 'obsolete' entries:
dynamically inserted / wupdated (in a so-called Index pages consisting ofobsoleté entries could be
chronological or append-only databayeor the case that packed or purged in order to reduce disk space. Such
insertions of / updates to any object instance referred to reorganization technigues could be introduced in the
any time-stamp (not meaningful in transaction- time design of a STAM due to the nature of the data involved.
databases, see Table 1) are allowed. The above Under the assumption that the average page capacity of
classification (with respect to the time-stamp update issue) dynamic tree indexes is about 67%, the following ‘3-to-2’

is illustrated in Table 3. merge technique could be used: three consecutive
‘'obsolete’ pages, each being around 67% full, would be
Batch-only Dynamic merged into two full pages. In general, alternative to -
insertions insertions n-1' merge techniques, with being a tuned parameter,
Past time-stamp insertign static chronological could be applied. Alternative to packing, by purging pages
/ updatenot allowed consisting of bbsoleté entries and removing them from
Past time-stamp insertign dynamic the index organization a remarkable space saving could be
/ updateallowed achieved. The purge operation actually leads to unbalanced

trees because several nodes are removed without affecting
the rest of the index structure, and especially the pointers
directing to those nodes. However, this situation is not

harmful, as long as a search that encounter such a

Table 3. Classification of spatiotemporal databases (with
respect to the time-stamp update issue)

In the_spatial da}tabase Iitera_ture, only two out of three ‘dangling' pointer will never follow it [2].
classes (i.e., thetatic anddynamicones) are meaningful, «  Change time-stamp aranularity:
with dozens of methods proposed for each one (an Anoth 9 f P gre SYII'AM Vol tae-
exhaustive survey is found in [8]), since chronological data nother case of reorganizing a INVOlves time
is meaningless in pure spatial databases. On the other handStamp granularity (.e., the unit of measure in time

a STAM would be able to support one, two, or all three of g:mggz:gz)c r\g Eegsth: t'Tri';tzmnphglz?”t‘éla:%’a‘)f t%etémtie
the above database classes. ges, e.g. Y,

underlying index should be reorganized in order to express
objects' time-stamps according to the updated unit of

3.2. Index Construction measure.

Due to the aforementioned peculiarity tedimension and
the nature of spatiotemporal data, we argue that an

efficient STAM should take several issues into . - . .-
consideration during its construction, which extend |N€ mMajor objective a STAM is to efficiently handle query

relevant ideas that exist in pure spatial indexes. In the processing. The broader is the set of queries supported, the
sequel, we discuss issues on efficient handling of new more applicable and useful the access method becor_ne_s. A
entries, 'obsolete’ entries, and granularity change. Our set of fundamental query types as well as some specialized

discussion considers hierarchical tree structures since dueries are discussed in the sequel.

hashing methods do not seem to fit well to ° Selection queries: _ T
multidimensional indexing purposes. Queries of the formfind all objects that have lied within a

- Insert/ Split operations: specific area (or at a specific point), during a specific time
As soon as a new tripleb{d, o, t) of an objecto is interval (or at a specific time instafitare expected to be

] (EEN]
inserted into the database, the root entries are checked int1® MOst common ones addressed by STDBMS users.

order to select the one that "fits" the new entry. At the next Assuming a hierarchical tre.e structure,  the retrieval
levels, the same procedure is repeated until the leaf level is Procedure is  straightforward: - starting from the root
reached. Then the entry is inserted into one of the leaf N°Je(S), @ downwards traversal of the index is executed by
pages, with respect to a performance criterion. That should applying the criterion of intersected mterval_s (for time) and
take spatial and temporal coordinates of the entry into ranges (for ?Pac.e) betyvgen the query yvmdow and each
account, however by keeping the axis peculiarity in node approximation. Itlls lmpor'tant to pplnt out tpate
mind. As usually, an insertion may causgaae overflow temporal or pure spatial selection queries need to be
in that case, appropriate handling of overflowing entries SuPPorted as well.

could result to either a split operation, or a forced °* Join queries: _ . _
reinsertion procedure, or even using overflow pages (e.g. Queries of the formfind all pairs of objects that have lied

supernodesn [3]). Total (e.g. similar to the ‘Rree split spatially close (i.e., within distance X), during a specific

3.3. Query Processing



Specification Explanation (domain) Note

Specl Data types supported point | region @
Spec2 Database classification I: with respect to time dimension(s valid-time | transaction-time |
supported bitemporal
Spec3 Database classification Il: with respect to the data set| growing | evolving | full-dynamic
mobility
Spec4 Database classification II: with respect to time-stamp | static | chronological | dynamic @
update
Spech Specific object approximation NO | YES
Spec6 Handling 'obsolete’ entries (e.g. support of bulk-loading|/ NO | YES ®
packing / purging operations)
Spec7 Specific (application-oriented) query processing operation NO | YES

Notes: @region includes both point- and non-point objects
@ gynamic classification is meaninglesstimansaction-time databases (see Spec?)
® meaningless idynamic  databases (see Spec4)

Table 4: List of specifications for spatiotemporal indexing

time interval (or at a specific time instahgre also crucial operations, such as the ones described above or an
in spatiotemporal databases. An immediate application is extended list that appears in [7], together with the
accident detection by comparing vehicle trajectories. The fundamental selection, join, and nearest-neighbor ones. In
retrieval procedure is also straightforward: starting from conclusion, Table 4 illustrates a classification scheme that
the two root nodes, a downwards traversal of the two applies for indexing methods on spatiotemporal data.
indexes is performed in parallel, by comparing the entries In the next section, methods proposed in the past to
of each visited node according to tbeerlap operator, index spatiotemporal objects are presented and evaluated
such as the synchronized tree traversal proposed in [4] for with respect to the list of Table 4.

R-tree structures.

e nearest-neighbor queries: 4. A Survey of STAMs
Given an objeck, the nearest-neighbor query requests for

the k closest objects with respect o For example the  ajthough spatiotemporal data handling is very important in
query: ‘find the 5 closest ambulances with respect to the modeling real world applications, research in

accident place is a nearest-neighbor query. Evidently, gnatigtemporal indexing is quite limited. The emphasis is
such a query can be supported by the algorithm proposed gien ejther in pure spatial indexing supporting
in [19]. However, consider the quenyfind the 5 closest ) iidimensional data or temporal indexing for
ambulances with respect to the accident place in a time ¢qnyentional data types (e.g. numbers, strings). The efforts

interval of 2 minutes before and after the accident, performed in the past towards spatiotemporal indexing can
knowing the directions and velocities of ambulances and ¢ ¢|assified in the following categories:

the street mdp Evidently, more sophisticated algorithms
are required, towards spatiotemporal nearest-neighbor
query processing.

According to the discussion in Section 2, other
(application oriented) queries of interest include among
others thetimeslice (which can be transformed into
‘partially-point' or range queries using appropriate query
windows) andhistory (which could be supported by the
maintenance of appropriate-next pointers) operations.
Although a formal set of spatiotemporal operators, in
correspondence to the topological / directional models [6,
18] between spatial regions or Allen's relations [1] between
temporal intervals, is lacking, proposals for spatiotemporal
indexing should be able to support specific spatiotemporal

methods that treat time as another dimen$j,
methods that incorporate the time informatioto the
nodes of the index structure, but without assuming
another dimension [29], and
methods that use overlapping index structuresrder
to represent the state of the database in different (valid
or transaction) time instants [15, 29].
Let us trace through the advantages and disadvantages
of the aforementioned approaches, and explain the reasons
why they fail to solve the problem of spatiotemporal
indexing to a sufficient degree.

Assuming that time is another dimension is a simple
idea, since the tools to handle multidimensional data are
already available (e.g. R-trees and variants [5, 9]). The 3D



R-tree implemented in [27] considers time as an extra
dimension in the original two-dimensional space and
transforms two-dimensional regions in three-dimensional
boxes (MBRs). Figure 4, for example, illustrates (a) a set
of spatial objects with a specific lifespan for each one and
(b) the corresponding 3D R-tree. The retrieval of objects
that fulfil a spatiotemporal range constrainfin@d all
objects that overlap object D both in space and t)jme
also illustrated and its implementation is a typical three-
dimensional range query in the R-tree structure.

y

,,,,,,

[RafRa] | |

(b)
[A[EJF] | [8[€]P] |
Figure 4: The three-dimensional MBRs stored in an R-tree
structure.

Since the particular application considered in [27] (i.e.,
multimedia objects in an authoring environment) involves
objects that do not change their location through time, no
dead space is introduced by their three-dimensional

representation. However, if the above approach were used

for moving objects, a lot of empty space would be
introduced, as illustrated in Figure 3.

The second approach, which has been followed in [29],
is based on the incorporation of the time information, by
means of time intervals, inside the structure. The effort
leads to the RT-tree, which is a spatiotemporal version of
an R-tree. Both the spatial and temporal information is
maintained separately. Each entry, either in a leaf or a non-
leaf node, contains entries of the for8 T, P), whereSis
the spatial information (MBR),T is the temporal
information (interval), andP is a pointer to a subtree or the
detailed description of the object. LBt= (i, t;), i <, t; be
the current time-stamp arigd;, be the consecutive one. If
an object does not change its spatial location fiydmt;,,,
then its spatial informatio® remains the same, whereas
the temporal informatioff is updated td", by increasing
the upper value of the interval, i.&.,= (t, t:,). However,

entry with temporal informatiom = (t.4, tj+1) is created

and inserted into the RT-tree. The most important
limitations of this approach are listed below:

Evidently, if we assume that the number of objects that
change is large, then many entries are created and the
RT-tree grows considerably. Therefore the structure is
preferred for databases of low mobility.

Since the instances of the objects that correspond to
several time-stamps are maintained in a single tree and
are not separated, queries that focus on a specific time-
stamp face the overhead of the rest ones.

When a node overflows, a decision must be taken in
order to choose the characteristics where the split will
be based. The spatial or temporal or both characteristics
can be used, but no proposal has been presented on
when to use each approach.

The research efforts of the third category include the
MR-tree and HR-tree, which are influenced by the work on
overlapping B-trees [14]. Both methods support the
following approach: different index instances are created
for different transaction time-stamps. However, in order to
save disk space, common paths are maintained only once,
since they are shared among the structures. The collection
of structures can be viewed asaayclic graph rather than

a collection of independent tree structures. The concept of
overlapping tree structures is simple to understand and
implement. Moreover, when the objects that have changed
their location in space are relatively few, then this
approach is very space efficient. However, if the number of
moving objects from one time instant to another is large,
this approach degenerates to independent tree structures,
since no common paths are likely to be found. Figure 5
illustrates an example of overlapping trees for two
different time instantg, andt;. The dotted lines represent
links to common paths / subpaths.

Timetoy Timet,

Figure 5: Overlapping trees for two different time instatatandt;.

Among the aforementioned proposals, it is only the 3D
R-tree that has been implemented and experimentally
tested [27]. The so-callaghified schemavas evaluated in
comparison with a simple scheme that separates temporal
and spatial information of objects by maintaining two
different indexes (e.g. one 1D or segment R-tree and one
2D R-tree, respectively). The retrieval cost for several pure
temporal, pure spatial and spatiotemporal operators was
measured and appropriate guidelines were extracted. An
example of the latter case includes tlagydut query (a
kind of timeslice operation), where all objects' instances at

as soon as an object changes its spatial location, a new



STAM MR-tree RT-tree 3D R-tree HR-tree
Specification
Spect Data types supported region region region region
Spec2 Type of time supported transaction- transaction- valid-time transaction-
time time time
Spec3 Data set mobility full-dynamic full-dynamic growing full-dynamic
Spec4 Time-stamp update chronological chronological static chronological
Spec5 Specific object approximation YES YES NO YES
Spec6 Handling 'obsolete’ entries NO NO NO NO
Spec? Specific query processing operationy YES (timeslice) NO YES (timeslice) | YES (timeslice)

Table 5 Evaluation of existing STAMs

a specific instantt = T have to be retrieved. No operations (Spec7) or the lack of specific object
experimentation of the other methods has been performed, approximations other than MBRs (Spec5) is the general
to the best of the authors' knowledge; only simple rule. In addition to that, although all methods support static
analytical considerations of best and worst case for the or chronological databases (Spec4), no special handling of
storage space of MR-trees and RT-trees can be found in'obsolete’ object instances (Spec6) is considered.
[29]. Therefore, there is a lack of performance comparison Therefore, it is claimed that the existing methods should be
among the proposed approaches, with respect to the spaceextended and / or revised and, moreover, new proposals are
occupied, the construction time, and the response time in needed.

order to answer a variety of spatiotemporal queries.

Tablg 5 classifigs the' methods that have been_ prqposed5_ Conclusion
for spatiotemporal indexing purposes. The classification is
based on the specification list proposed in Section 3.
Recall that it is not claimed to be @mplete set of
specificationdn any sense but a (open to additions) list of
criteria, which should be supported in order to meet the
needs of efficient spatiotemporal query processing.

In particular, all methods index regions (including
points as a special case) and three out of four methods
support transaction-time (although it is not declared in
[29]). Apart from that, the 3D R-tree implementation in
[27] handlesgrowing and static databases (since objects
are accompanied by a valid-time lifespan without,
however, changing their location in space and all objects
instances are known in advance) while the rest proposals
are classified afull-dynamic (with respect to the data set
mobility) and chronological (with respect to time-stamp
updates). Concerning the rest specifications, the 3D R-tree
takes no care of specific approximations, since each object
is represented by its MBR, but implements a specific

spatiotemporal operation (namely, tagoutquery, which database. Due to the peculiarities of the time dimension,

IS a k|nq of a timeslice operation). On the other hand, the workspace of interest cannot be directly considered to
overlapping trees, such as the MR-tree and the HR-tree, be just ad+1 — dimensional one

mamta;]n ahset of l\élBIf?f; 'perlobdectélalthougrl! with no Imks In this paper, we have studied several discussion points
to each other, and efficiently handle timeslice operations .4 we have presented a list of specifications that an

due_ to thgir design specificgtions (although in [15, 29] the efficient STAM should follow. Issues on (a) data types and
typical point angi frange qlé'la”es alre;lonlyhlelcussed). Is ai data sets supported, (b) index construction, and (c) query
As extracted from Table 5, although all proposals aim processing operations are addressed and existing proposals

at organizing time-evolving spatial objects in an efficient 115 57 '>9] are evaluated according to the above issues. To
manner, a limited support of specific spatiotemporal

Spatiotemporal data support is considered to be an
important research direction, since many applications need
to manipulate data that change over time. STDBMS, in
particular, should (i) offer appropriate data types and query
languages for time-evolving spatial objects, (ii) provide
efficient indexing techniques and access methods for
spatiotemporal query processing, and (iii) exploit cost
models for query optimization purposes. Recent research
on modeling and querying includes temporal elements
attached to components of spatial objects [28], alternative
continuous or discrete models of moving points or regions
[7], or motion vectors that describe the current status of
moving objects [24].

The specific needs of STDBMS users also require
appropriate indexing techniques on spatiotemporal data.
Although conceptually the problem seems to be easy to
solve, several issues arise when one attempts to design an
indexing method for ad-dimensional spatiotemporal



our knowledge, it is the first attempt towards a [5]
specification and classification scherfr STAMs. The

main conclusion is that the existing methods do not follow

the full list of specifications proposed. Thus they should be
extended and / or revised while new proposals should be [6]
investigated.

We are currently working on the design and
implementation of spatiotemporal indexing schemes in [7]
order to evaluate them under real experimentation. More
specifically, since up to now schemes based on the R-tree
only have been proposed, we are working towards making
Overlapping B+trees [14] and the multiversion B-tree (]
(MVBT) structure [2] suitable for storing quad / octcodes
and perform experiments for various queries. A second
task of current work includes the design and
implementation of a benchmarking environment in order to
provide performance comparison of the existing STAMSs. [9]
A variety of tests using synthetic and real spatiotemporal
data sets are necessary in order to better understand the
spatiotemporal indexing and retrieval issues. Also, [10]
similarity-based queries are of importance in
spatiotemporal databases, and, therefore efficient tailor-
made access methods for similarity retrieval have to be
proposed. As a further task of research, the study of cost [11]
models for spatiotemporal operations, which can be based
on analytical performance cost formulae for spatial query
processing [17, 25, 26], is a step towards a complete set of [12]
appropriate STDBMS support tools.
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