
Discovery of Top-k Dense Subgraphs

in Dynamic Graph Collections

Elena Valari, Maria Kontaki, and Apostolos N. Papadopoulos

Data Engineering Lab., Department of Informatics, Aristotle University
54124 Thessaloniki, Greece

{evalari,kontaki,papadopo}@csd.auth.gr

Abstract. Dense subgraph discovery is a key issue in graph mining,
due to its importance in several applications, such as correlation analysis,
community discovery in the Web, gene co-expression and protein-protein
interactions in bioinformatics. In this work, we study the discovery of the
top-k dense subgraphs in a set of graphs. After the investigation of the
problem in its static case, we extend the methodology to work with dy-
namic graph collections, where the graph collection changes over time.
Our methodology is based on lower and upper bounds of the density,
resulting in a reduction of the number of exact density computations.
Our algorithms do not rely on user-defined threshold values and the
only input required is the number of dense subgraphs in the result (k).
In addition to the exact algorithms, an approximation algorithm is pro-
vided for top-k dense subgraph discovery, which trades result accuracy
for speed. We show that a significant number of exact density compu-
tations is avoided, resulting in efficient monitoring of the top-k dense
subgraphs.

1 Introduction

Many modern applications require the management of large volumes of graph
data. Graphs are very important in scientific applications such as bioinformat-
ics, chemoinformatics, link analysis in social networks, to name a few. Dense
subgraph discovery is a fundamental graph mining task [1,5] with increasing im-
portance. Density is a significant property of graphs, because it is highly related
to how well a graph is connected and can be used as a measure of the graph
coherence. Usually, the densest the graph the more likely that the connectivity
among the graph nodes will be higher.

Among the various density definitions, we adopt the one that relates the
graph density to the average degree [7]. More formally, for a graph G(V,E),
where V is the set of nodes and E the set of edges, the density of G, denoted as
den(G), is given by the number of edges over the number of nodes, i.e., den(G) =
|E|/|V |. For the rest of the work, we focus on undirected and unweighted graphs.
Generalizations to other graph classes are performed easily with appropriate
modifications. Figure 1 depicts some examples of density computation.

Algorithms for dense subgraph discovery that have been proposed in the liter-
ature require one or more constraints to be defined by the user [2]. For example,

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 213–230, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

214 E. Valari, M. Kontaki, and A.N. Papadopoulos

2v

3v

1v

4v

(a) den(G) = 5/4

2v

3v

1v

4v

5v

(b) den(G) = 8/5

2v1v

5v

4v 3v

(c) den(G) = 10/5

Fig. 1. Densities of various graphs

all subgraphs having a density value higher than a threshold are reported back
to the user. The major limitation of such an approach is that the determination
of threshold values is difficult: i) if the threshold is too low, then we risk a cum-
bersome answer set and ii) if the threshold is too high then an empty answer set
may be returned. A meaningful threshold value may be difficult to define without
at least a limited a priori knowledge regarding the nature of the data (e.g., distri-
bution of densities). To overcome this limitation, in this work, we focus on dense
subgraph discovery by taking a top-k oriented approach. More specifically, the
only input required by our methods is the number k of the dense subgraphs. The
basic benefit of this approach is that the cardinality of the answer set is always
known and is equal to k, thus, no surprises are expected regarding the number
of answers. In addition, no “wild guesses” regarding the density threshold need
to be performed by the user.

The second novelty of our research is that we focus on dynamic graph collec-
tions that take the form of a stream of graphs. More specifically, computation is
performed on a count-based sliding window of size w, defined over a stream of
graphs G1, G2, ..., Gw. New graph objects may arrive whereas old ones expire.
The value of w depends on the application. The challenge is to monitor the k
densest subgraphs induced by the graphs that are currently active in the sliding
window. This translates in performing the necessary actions when a new graph
arrives or an old one expires. Evidently, computation must be as efficient as pos-
sible to avoid significant delays during updates. Previously proposed methods
working in graph streams do not consider deletions.

There are many applications that benefit from the support of top-k dense sub-
graph discovery. In web usage mining, the links followed by users form a directed
graph. Many such graphs may be available in a streaming fashion, corresponding
to different time instances or different geographical areas. Dense subgraphs are
useful in this case because they enable community discovery. The use of the slid-
ing window enables to center our focus at the most recent data available, rather
than base the discovery process on the complete history. Mining these graphs
on-the-fly is extremely important towards continuous knowledge discovery. As a
second example, consider a large social network, where users communicate by
means of message exchange. Each graph in this case, corresponds to the inter-
actions among users for a specific time period, e.g., a day. By collecting these
graphs for a period of time, we can monitor the evolution of interactions among

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 215

users. Dense subgraphs in these graphs correspond to communities formed at
certain instances. If these communities grow in size and density, then this could
mean that an interesting topic emerges.

We note that, to the best of our knowledge, this is the first work that addresses
the problem of top-k dense subgraph discovery and consequently, the first work
that employs this concept over a stream of graphs. The rest of the paper is
organized as follows. The next section, contains a brief discussion of related work
in the area. Section 3 presents our methods in detail. A performance evaluation
study is contained in Section 4 and finally, Section 5 concludes our work and
motivates for further research in the area.

2 Related Work and Contributions

There is a significant number of research works studying the problem of dense
subgraph discovery. Material in this subject can be found in [5], whereas an
excellent survey chapter in the area is contained in [1]. The problem is considered
important due to the numerous applications interested in dense subgraphs, such
as, community discovery, genes with significant coexpression, highly correlated
items in market basket data and many more.

The majority of the algorithms proposed so far in the literature, assume a
fairly static case. For example, in [6] shingling is used to discover dense parts in
large bipartite graphs. Dense subgraphs are also used in [8] to discover important
subgraphs in a database of graphs corresponding to gene networks. Furthermore,
[13] defines a generalization of the densest subgraph problem by adding an ad-
ditional distance restriction (defined by a separate metric) to the nodes of the
subgraphs. This method was applied to a data set of genes and their annotations.

More recently, some efforts have been performed to enable graph mining over
evolving graphs [15]. In particular, to complicate things further, in many cases
it is assumed that the graph (or graphs) form a data stream. In such a case,
usually we are allowed to see the data only once, without the ability to perform
random access. In these lines, the authors in [2] discover dense subgraphs when
the graph appears in the form of an edge stream. A similar idea is studied in [4],
where there are multiple streams, one for each graph. Our work differs from the
previous approaches in several points:

(i) We are the first to provide algorithms for dense subgraph discovery in a
top-k fashion. This is very important since the user may control the answer
set and may terminate the execution at will.

(ii) There are no magic thresholds used in the algorithms. This means that
there are no risks that the answer set will be too small or too big, since
the k best subgraphs are returned, without any explicit reference to their
density. However, our techniques may enforce constraints on the density by
simply executing the top-k algorithm and reject any subgraph that does
not satisfy the density constraint.

(iii) We support dense subgraph discovery in a set of graphs, rather than in a
single graph. In particular, graphs are presented to the system in the form

216 E. Valari, M. Kontaki, and A.N. Papadopoulos

of a stream of graphs. Since it is natural to focus on the most recent data,
we apply a count-based sliding window of size w [11,16]. This means that at
any time instance there are w active graphs that are mined in a continuous
manner and thus, both insertions and deletions must be supported.

3 Dense Subgraphs in Graph Collections

3.1 Preliminaries

In this section, we present some fundamental concepts necessary for top-k dense
subgraph discovery. Table 1 summarizes some frequently used symbols. As men-
tioned previously, in this work, the density of a graph is defined as the average
degree over its nodes [7]. In that work, an algorithm is given to determine the
densest subgraph of a graph G. The densest subgraph G(1) of G is simply an
induced subgraph with the maximum possible density among all subgraphs of
G. More formally:

G(1) = argmax{den(g) : g � G}
The algorithm proposed by Goldberg in [7] (from now on this algorithm will

be denoted as GOLD) for the computation of the densest subgraph of a graph G
requires a logarithmic number of steps, where in each step a maxflow computa-
tion is performed. The maxflow computations are performed on an augmented
graph G′ and not on the original graph G. More specifically, G is converted
to a directed graph by substituting an edge between nodes u and v by two di-
rected edges from u to v and backwards. These edges are assigned a capacity
of 1. In addition, two artificial nodes are inserted, the source s and the sink t.
Node s is connected to all nodes in G by using directed arcs emanating from
s, whereas t is connected by adding directed arcs emanating from each node
and ending at t. The capacities of these edges are carefully selected (details in

Table 1. Basic notations used

Symbol Description

Gi the i-th graph in the stream

Vi, Ei set of vertices and set of edges of Gi

ni, mi order and size of G (NG = |VG|, MG = |EG|)
d(v) the degree of a vertex v

g � G g is an induced subgraph of G

den(G) density of graph G

C(G) the maximum core subgraph of G

G(j) the j-th densest subgraph of G

w the size of the sliding window

k number of densest subgraphs monitored

TOPK the (current) result of top-k dense subgraphs

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 217

v5

v1 v2

v3 v4

v6

v7

v8

v1 v2

v3 v4

v5

v6

v1

v2

v3 v4

v5

v6

(a) den(G(1))=9/5 (b) den(G(1))=6/4 (c) den(G(1))=7/6

Fig. 2. Densest subgraphs and their density values

[7]) in order to guarantee that the mincut computed after at most a logarithmic
number of steps, will separate the densest subgraph from the rest of the graph.
Assuming that the push-relabel maxflow algorithm is being used enhanced with
dynamic trees, the complexity for the computation of the densest subgraph is
O(log n · (2n+m) log(n2/(n+m))).

Figure 2 depicts the densest subgraph for some graphs. The edges of the dens-
est subgraph is shown bold and the nodes are gray-filled. If the density of every
subgraph of G is less than the density of G then the whole graph G is its dens-
est subgraph. Such a case is shown in Figure 2(c). Next, we state explicitly the
problem investigated in this paper:

Problem Definition: Given a dynamic stream of w graphs G1, ..., Gw and an
integer k, monitor the top-k most dense edge-disjoint subgraphs continuously,
taking into account arrivals and expirations of graph objects. �

3.2 Dense Subgraph Discovery in a Set of Graphs

In this section, we study a progressive process to determine the k densest sub-
graphs of a graph G. The usefulness of such a mechanism raises from the fact
that the user may require more dense components of the graph in a get-next fash-
ion. Consequently, the search process may terminate at any time, if adequate
and satisfactory results have been computed. This technique generalizes easily
for a set of graphs.

To compute the k densest subgraphs we proceed as follows: i) first, the densest
subgraph of G is computed, ii) the edges comprising the densest subgraph are
removed fromG, together with any nodes that become isolated, iii) if the number
of answers reported is less than k we repeat the process. According to this
process, two dense subgraphs cannot share edges. However, they may share some
nodes. To illustrate the idea, an example is given in Figure 3, where the top-2
dense subgraphs are computed. The densest subgraph G(1) of G is shown in
Figure 3(a) and its density is 9/5. By removing the edges contained in G(1)

from G (along with the isolated nodes v1, v2, v3, v4) and by applying again the
densest subgraph discovery algorithm in the reduced graph, we arrive at the
situation depicted in Figure 3(b). Therefore, the second best (densest) subgraph
is composed of the vertices v5, v6, v7, v8 and its density is 5/4.

For simplicity in the presentation, we define the operation � between a graph
G and a subgraph g � G. The result G � g is computed by removing from

218 E. Valari, M. Kontaki, and A.N. Papadopoulos

v5

v1 v2

v3 v4

v6

v7

v8

v5

v1 v2

v3 v4

v6

v7

v8

(a) densest subgraph (b) second densest subgraph

Fig. 3. The two densest subgraphs of a graph G

G all edges in g and also the nodes that become isolated after edge removal.
This process may be applied iteratively, until k dense subgraphs are reported.
According to this method, the densities corresponding to the densest subgraphs
are reported in a non-increasing order. This is very important towards progres-
sive computation of dense subgraphs since it enables an early termination (e.g.,
before k) if the density values become too low to be of interest to the user. Note,
however, that after a graph reduction process, the resulting graph may be dis-
connected. In such a case, the process is applied to each connected component
separately, until k results are obtained.

The only available tool we have to determine the k densest subgraphs is
the GOLD algorithm of [7]. This means that so far we do not have a pruning
mechanism at hand in order to discard a connected component before applying
the expensive sequence of maxflow computations. If this was possible, then a
significant number of maxflow operations could have been avoided, resulting in
a more efficient computation. To enable pruning, we will use the concept of the
maximum core of a graph [10,14].

Definition 1. The maximum core C(G) of a graph G is a subgraph of G con-
taining vertices with a degree at least β, where the value of β is the maximum
possible.

To illustrate the idea, an example is shown in Figure 4. A simple algorithm to
compute the maximum core performs a sequence of vertex removals, starting
with the vertices with the smallest degree. According to this process, vertices v9,
v10 and v11 will be removed first, since their degree is 1. The resulting graph is
the 2-core of G, since all vertices have a degree at least 2. Next, we remove vertex
v7, and consequently vertices v6 and v8 are also removed, because their degree
has been reduced due to the removal of v7. The resulting graph, composed of the
vertices v1, v2, v3, v4 and v5 is the 3-core of G since every vertex has a degree
at least 3. At this point, if we continue this process, we will result in an empty
graph. Therefore, the maximum core value of G is 3.

The question is how can we use the maximum core to enable pruning during
top-k dense subgraph discovery. A very interesting result has been reported in [9],
stating that the density of the maximum core of a graph G is a

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 219

v5

v1 v2

v3 v4

v6

v7

v8

v9

v10

v11

Fig. 4. The 1-core is composed of all vertices of G. The 2-core contains the vertices v1
through v7. Finally, the 3-core, which is also the maximum core, contains the vertices
v1, v2, v3, v4 and v5 (the vertices of maxcore are shown gray).

(1/2)-approximation of the density of the densest subgraph of G. This means
that the density of the densest subgraph of G is at most twice the density of
the maximum core of G. In addition, since C(G) is an induced subgraph of G,
its density is less than or equal to the density of the densest subgraph. More
formally, we have the following inequality:

2 · den(C(G)) ≥ den(G(1)) ≥ den(C(G)) (1)

According to the previous inequality, we may use the density of the maximum
core to define an upper and a lower bound on the density of the densest subgraph
of G. The next important issue, is how fast can we compute the maximum core.
By using a binary heap enhanced with a hash table for fast decrease-key oper-
ations in the heap, the previous algorithm which is based on repetitive removal
of vertices with the lowest degree requires O(m log n) comparisons, resulting in
slow computation, especially for large graphs. A more efficient algorithm has
been studied in [3], which is based on count-sort. The algorithm requires lin-
ear additional space but runs in O(m) worst case time, resulting in a very fast
maximum core computation.

Figure 5 depicts the outline of TopkDense algorithm, which computes the k
densest subgraphs of an input graph G by using pruning based on the concept
of maximum cores. The algorithm requires a priority queue PQ which accom-
modates the current connected components produced. PQ is implemented as
a binary maxheap data structure which stores entries of the form < g, C(g),
den(C(g)) >, prioritized by the density of the maxcore (the last attribute). The
k best answers are stored in A. The algorithm uses Inequality 1 in Line 6 in
order to decide if a subgraph is promising or not. In case where the upper bound
of its density is lower than the current k-th best density, obviously it must be
discarded without any further consideration. Otherwise, we should compute the
density of its densest subgraph (invocation of FindDensest() algorithm in Line
7) and then proceed accordingly (Lines 8-15).

Lemma 1. Let g1 and g2 be induced subgraphs of G such that den(g1) = den(g2)
= d. Then, if g1 and g2 have at least a common vertex, the density den(g1 ∪ g2)
of the subgraph composed of the vertices and edges of g1 and g2 is strictly larger
than d.

220 E. Valari, M. Kontaki, and A.N. Papadopoulos

Algorithm TopkDense (G, k)
Input: G initial input graph, k number of results
Output: A, set of k densest subgraphs of G

1. initialize answer set A← ∅;
2. compute the maxcore C(G) of G;
3. initialize priority queue PQ←< G,C(G), den(C(G) > ;
4. while (PQ not empty)
5. < g,C(g), den > ← PQ.deheap(); /* get the first element of the heap */
6. if (2 · den > k-th density in A) then

7. g(1) ← call FindDensest(g); /* compute densest subgraph of g */

8. if (den(g(1))> k-th density in A) then
9. remove subgraph with the k-th density from A;

10. insert g(1) in A;

11. remove g(1) from g;

12. for each component h of g � g(1)

13. C(h)← maxcore subgraph of h;
14. den(C(h)))← density of C(h);
15. PQ.enheap(< h,C(h), den(C(h)) >);
16. return A;

Fig. 5. Outline of TopkDense algorithm

Proof. Let ni and mi denote the number of vertices and edges of gi, where
i = 1, 2. Based on the definition of the density, it holds that den(g1)=m1/n1 and
den(g2)=m2/n2. Let h be the graph composed by the union of g1 and g2, i.e.,
h = g1∪g2. For the density of h we have that den(h) = (m1+m2)/(n1+n2− ε),
where ε is the number of common vertices of g1 and g2, which is strictly larger
than zero because we have assumed that the number of common vertices is at
least one. Therefore, den(h) > d and this completes the proof. ��

Based on the previous discussion, it is not hard to verify that by using this
algorithm only maximal dense subgraphs are returned. This is an important
property, because we avoid repetitive computations to discover a large dense
subgraph. It is guaranteed that the next dense subgraph returned will be maxi-
mal with respect to the number of vertices.

3.3 Dense Subgraphs in a Stream of Graphs

In this section, we extend the idea of top-k dense subgraph discovery in order
to handle dynamic graph collections and more specifically, a stream of graphs.
We center our attention in the case of a count-based sliding window, where we
are interested only in the w most fresh graph objects. Therefore, if a new graph
object is inserted in the collection, the oldest graph object must be deleted.
Notice that the top-k dense subgraph set may contain subgraphs of different

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 221

graphs. Without lost of generality, we assume that at each time instance only one
new graph object arrives and only the oldest one expires. Arrivals and expirations
of more graphs are handled similarly.

The monitoring process of top-k dense subgraphs consists of i) the initializa-
tion phase and ii) the maintenance phase. The initialization involves the com-
putation of the top-k dense subgraphs for the first w graphs. This is performed
only once, and the maintenance phase can be used to achieve this by disabling
expirations. For this reason, we focus only on the maintenance phase.

Assume that at time instance t we have w graphs denoted as Gt−w+1, Gt−w+2,
..., Gt. We store the active graphs (i.e., graphs belonging to the current win-
dow) in a FIFO list with respect to their timestamps. In addition, we keep the
top-k dense subgraph set separately. When an update occurs, the current time
increases by one and a new graph Gt+1 is inserted in the window. Since a count-
based sliding window is used, the graph Gt−w+1 expires. The maintenance phase
should update the top-k set in order to reflect the changes of the window.

The naive approach begins with the discovery of the densest subgraph of the

new graph Gnew and if its density den(G
(1)
new) is greater than the current k-

th best density then G
(1)
new is inserted into TOPK and the method continues

similarly for each connected component h of Gnew �G
(1)
new. Next, it deletes the

expired graph Gold. Notice that the removal of Gold may reduce the number
of densest subgraphs. Assume that k′ ≤ k is the cardinality of the answer set
after the removal of Gold and its subgraphs. If k′ = k no more operations are
required. On the other hand, if k′ < k, the naive approach should scan all active
graphs to find the remaining k− k′ densest subgraphs in order to retain the size
of the answer set. Notice that, during this process the examined subgraphs may
have been computed during the insertion of the corresponding original graph,
but this does not hold for all of them. Thus, it is possible that additional densest
subgraph computations may be required.

The naive approach invokes too many unnecessary densest subgraph com-
putations. The proposed method tries to reduce the number of time consuming
operations. We examine separately the insertion of the new graph and the expira-
tion of the oldest one. Thus, our proposed method can handle different number
of insertions/expirations in each update, with minimal modifications. We can
modify the TopkDense algorithm to enable the insertion of Gnew . Instead of ini-
tializing the answer set (Line 1 of Figure 5), we give the current answer set as a
parameter in TopkDense. The proposed method reduces the number of densest
subgraph computations, because it uses as a pruning criterion the density of
the maximum core subgraph (Line 6 of Figure 5). The method is correct, i.e. if
there exists a subgraph of Gnew that has one of the highest k densities, it will
be inserted in the answer set.

For the expiration of a graph, we distinguish two cases: i) the expired graph
Gold has at least one of the k-th densest subgraphs and ii) none of its subgraphs
is part of TOPK. For the latter case, it is sufficient to remove Gold from the
list with the active graphs. However, if Gold has at least one subgraph belonging
to TOPK, further operations are needed to update correctly the answer set.

222 E. Valari, M. Kontaki, and A.N. Papadopoulos

Table 2. Last seven graphs of a stream and the density of their three densest subgraphs

G1 G2 G3 G4 G5 G6 G7

den(G
(1)
i) 18.0 25.2 20.2 30.8 22.2 26.2 17.6

den(G
(2)
i) 16.1 23.1 18.7 21.4 16.4 20.6 14.5

den(G
(3)
i) 14.5 18.4 16.3 15.6 13.2 18.5 12.7

First, we remove the subgraphs of Gold from the answer set. Assume that k− k′

densest subgraphs are deleted. A simple approach is to scan the active graphs
to find the substitute subgraphs. Remember, we reduced the number of densest
subgraph discovery during the insertion of a new graph with the invocation
of TopkDense algorithm. The cost to compute the densest subgraphs that are
missing is prohibitive. The proposed method uses again Inequality 1 to handle
this case efficiently. For a graph G, if 2 · den(C(G)) < k-th density, G can
be omitted from further consideration. More specifically, the method forces the
insertion of the first k′ subgraphs into TOPK. Next, the method tries to improve
the answer set by scanning the remaining graphs. For each graph G, if G(1) is
not available, we check if 2 · den(C(G)) < k-th density, then we omit G and we
proceed with the next graph. Otherwise, we compute G(1). If den(G(1)) ≥ k-th
density, we insert G(1) into TOPK and we proceed with the component of the
residual graph.

To clarify the proposed method, we give an example. Assume the stream of
graphs of Table 2. Moreover, assume that w = 5, k = 4 and the current time
is 5. The current window contains the first five graphs. The TOPK consists of

G
(1)
4 , G

(1)
2 , G

(2)
2 and G

(1)
5 . Assume now, that graph G6 arrives. The densities of

the three densest subgraphs of G6 are given in Table 2. The proposed method
computes the density of the maximum core subgraph den(C(G6)) = 20.2. It
holds that 2 · den(C(G6)) > k-th density, therefore the method computes the

densest subgraph G
(1)
6 of G6 and its density den(G

(1)
6) = 26.2. Thus G

(1)
6 is

included in TOPK. We proceed with the residual graph. For each component
hi, we compute the density of the maximum core subgraph. Since 2·den(C(h1)) =
2 · 10.5 < k-th density, hi is not further considered. The removal of G1 does not
affect the TOPK set and therefore it is straight-forward.

Now, assume that graph G7 arrives and den(C(G7)) = 10.0. The method
computes the maximum core subgraph and its density. Since 2 · den(C(G7)) < k
no further action are needed. However, due to arrival of G7, graph G2 expires.
We should update TOPK because now has only two densest subgraphs. The
proposed method examines the first graph G3 and includes the first two densest

subgraphs, i.e. G
(2)
3 and G

(3)
3 , to TOPK. Next, for each available graph (initial or

component of a residual) is examined the density of the maximum core subgraph.
If this density is less than the half of the k-th density, the graph is omitted. On
the other hand, the naive approach computes the densest subgraphs of every
available graph. The proposed method is denoted as StreamTopkDense. In the
sequel, we propose two enhancements in order to further improve efficiency.

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 223

Examination Order of Candidate Graphs. The most time consuming part
of StreamTopkDense is the case where an element of TOPK expires, because
multiple densest subgraph discovery operations may be invoked. The first en-
hancement tries to reduce the number of examined graphs by means of a suitable
examination order. In the proposed method, we favor graphs that have a max-
imum core subgraph with high density. We expect that during the answer set
improvement, the number of examined graphs will be reduced. In order to achieve
this, we use a priority queue to define the examination order of active graphs.

The maximum possible density maxden(G) of a graph G is used as the key to
insert G in the priority queue. We define maxden(G) as den(G(1)) if G(1) is avail-
able or 2 · den(C(G)) otherwise. The priority queue contains entries of the form
< G,maxden(G) >. For two graphs G1 and G2, if maxden(G1) > maxden(G2),

then it is not necessary that den(G
(1)
1) > den(G

(1)
2). Therefore, if G is at the

top of the priority queue and it holds that maxden(G) ≥ k-th density, then we
should further examine G before we insert it into TOPK. If G(1) is available (i.e.,
maxden(G) = den(G(1))), we insert G to the answer set immediately. Otherwise,
we compute the subgraph G(1) and then we check its density to determine if its
inclusion in TOPK is necessary. The method extracts and examines the top of
the priority queue, until a graph G is found for which it holds that maxden(G)
is less than the current k-th best density.

Graph Pruning. The second enhancement of StreamTopkDense algorithm iden-
tifies graphs that cannot be included in TOPK and discards them in order to
reduce processing time and memory requirements. The key observation is that
a graph can be part of top-k if it belongs to the answer set of the (k-1)-skyband
query in the 2-dimensional space (time, density of densest subgraph). A similar
approach has been followed in [11].

A δ-skyband query reports all the objects that are dominated by at most
δ other objects [12]. In our case, the maximization of the expiration time and
the maximization of the density, determine the domination relationship between
graph objects, i.e., a graph H dominates another graph G if H has larger expi-
ration time and H has a more dense subgraph than G. The use of graph pruning
does not introduce false dismissals, according to the following lemma.

Lemma 2. A graph G could not be part of TOPK, if there are at least k sub-
graphs which have greater density than that of the densest subgraph of G and
their expiration times are greater than the expiration time of G.

Proof. Assume that there are k subgraphs with density greater than that of the
densest subgraph G(1) of a graph G and these subgraphs expire later than G.
Even in the case where all the current top-k graphs are expired before G, any
densest subgraph of G will never be part of TOPK since during its lifetime
always exist k subgraphs with greater density. ��
It is evident that Lemma 2 can also be used to prune computed densest subgraphs
from further consideration. In order to enable the use of δ-skyband, we keep a
counter G.c for each graph in the active window. When the initial graph is

224 E. Valari, M. Kontaki, and A.N. Papadopoulos

d
e
n
s
it
y

expiration time

G
1
 (1,3)

G
4
 (4,4)

G
3
 (3,7)

G
5
(5,1)

G
9
 (9,7)

G
2
 (2,4.5)

G
8
 (8,3)

G
10

 (10,4)

G
7
 (7,6)

G
6
 (6,5)

G
11

 (11,8)

Counters

before after

G
1

G
2

G
3

G
11

G
10

G
9

G
8

G
7

G
6

G
5

G
4

6

2

0

2

-

0

0

1

0

1

5

-

3

0

3

0

1

0

2

0

2

6

Fig. 6. Graph pruning example

inserted for the first time in the window, we initialize its counter to zero. Then,
we scan all active graphs and for each graph G we increase by one G.c, if the
density of the densest subgraph of the new graph is greater than that of G. We
preserve a graph G as long as G.c is less than k. If G.c = k then we can safely
discard G from the active window, since it does not belong to the (k-1)-skyband
set and therefore cannot be part of the answer throughout its lifetime.

Due to the use of Inequality 1 we do not have all the densest subgraphs and
therefore their corresponding densities. The question is how we can use the max-
core subgraph and its density, if the densest subgraph has not been computed?
There are two cases to study: the densest subgraph is not available either for
the new graph or for an existing active graph. To preserve the precision of the
proposed method, we use the minimum possible density of the new graph and
the maximum possible density maxden of the other existing graphs. The mini-
mum possible density, minden(G), is defined as den(G(1)), if G(1) is available,
or den(C(G)) otherwise.

Figure 6 gives an example of δ-skyband pruning. Assume that the current
time is 10, thus the most recent graph is G10. We transform each active graph,
which is not part of TOPK, to (density, expiration time)-space by using the
pair < maxden, exptime >. The values of these attributes are shown in paren-
theses in Figure 6. When a new graph arrives (graph G11), we use the pair
< minden, exptime > to update the counters of the other active graphs. The
left column shows the counters c of the graphs before update while right col-
umn shows them after update. Moreover, we discard G1 and its counter, we
set G11.c = 0 and we use the pair < maxden, exptime > to transform G11 to
(density, expiration time)-space. For k = 1, assume that G9 contains the most
densest subgraph. Due to Lemma 2, it is sufficient to store graphs G3, G7 and
G11 (i.e., graphs with G.c ≤ 0). The remaining graphs can be discarded.

Recall that the density of the densest subgraph is used to prune graphs, since
it affects the value of the counters of existing graphs. By using the minimum
possible density of the new graph and the maximum possible density for all other
existing graphs, we ensure that we do not prune graphs which are part of the

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 225

(k-1)-skyband and therefore the proposed method does not introduce any false
dismissals. We integrate both enhancements in StreamTopkDense algorithm. The
new algorithm is denoted as StreamTopkDense*.

4 Performance Evaluation Study

In the sequel, we report some representative performance results showing the
efficiency of the proposed techniques. All algorithms have been implemented in
JAVA and the experiments have been conducted on a Pentium@3.2GHz.

To study the performance of the algorithms we have used both synthetic and
real-life data sets. The synthetic graphs have been generated by using the Gen-
Graph tool [17]. This generator produces graphs according to power law degree
distributions. In particular, GenGraph generates a set of n integers in the interval
[dmin, dmax] obeying a power law distribution with exponent a. Therefore, ac-
cording to the degree distribution produced, a random graph is generated. The
default values for the parameters of the generator are: a ∈ [1.5, 2.5], dmin = 1,
dmax = 1% of the number of vertices. The synthetic data set contains 10,000
graphs each with at most 1500 vertices. The real-life data set, AS-733, contains
733 daily instances (graphs) representing autonomous systems from University
of Oregon. The real data set is available for download by the SNAP website at
http://snap.stanford.edu/data/as.html.

We study the performance of the algorithms by varying the most important
parameters, such as the window size (w) and the number of results (k). We
examined several features of the algorithms, such as computational time, the
time required for maxflow computations, number of maxcore computations, etc.
The computational cost is represented by the running time. All measurements
correspond to the total number of updates required, and this translates to w
updates required to shift the whole window w times. The default values for the
parameters, if not otherwise specified, are: w = 2000 and k = 10. The straight-
forward approach, which performs GOLD invocations directly, is denoted as BFA
(brute-force algorithm).

4.1 Performance of Exact Algorithms

Figure 7 depicts the performance of the algorithms for the synthetic data set,
for several values of k. As expected, the straight-forward solution (BFA) shows
the worst performance due to the excessive number of GOLD invocations. Since
GOLD requires O(log n) maxflow computations, the cost is dominated by the
method implementing the maxflow. In particular, it is observed that the runtime
of BFA does not heavily depend on the number of results (k). BFA performs a
significant number of maxflow computations, as shown in 7(b). However, many
of these maxflow computations are executed on small graphs and thus, they
are fast. In contrast, a maxflow computation over a larger graph is more costly.
Note also, that the y axis is in logarithmic scale and thus, small changes are not
easily detected. On the other hand, StreamTopkDense and StreamTopkDense∗

226 E. Valari, M. Kontaki, and A.N. Papadopoulos

Table 3. Evaluation of pruning

Parameter k StreamTopkDense StreamTopkDense+ StreamTopkDense∗

k = 1 120 91 89/2040

k = 3 26 6 5/1986

k = 10 48 14 8/1984

k = 25 156 32 30/1961

k = 50 341 240 190/1962

perform much better. In particular, StreamTopkDense∗ shows the best overall
performance since the two optimizations applied have a significant impact in
cost reduction, as shown later.

This is also depicted in Figure 8 which shows the performance of the two
stream-based algorithms. Algorithm BFA is excluded from any further experi-
ment since its performance is by orders of magnitude inferior. Again, it is evident
that the optimizations applied to StreamTopkDense manage to reduce the num-
ber of maxcore computations, the number of heap operations and the number
of invocations of the GOLD algorithm. Another important feature of Stream-
TopkDense* is that it requires significantly less storage than the other algo-
rithms. This is illustrated in Figure 8(d) which shows the memory requirements
in MBytes vs. the window size. Note that in comparison to the simple version of
the stream-based algorithm, the advanced one manages to keep storage require-
ments low. Since many graphs are pruned due to the application of the skyband
technique, the number of graphs that must be kept in memory is reduced.

In addition, Table 3 shows the performance of the pruning techniques. Specifi-
cally, we can see the number of graphs which we consider to find dense subgraphs
that can participate in the Top k for each algorithm over the total number of
updates. The first column shows the pruning results of the StreamTopkDense
algorithm. In this algorithm, the computations are reduced by using the density

 10000

 100000

 10 20 30 40 50

ru
nt

im
e

(s
ec

)

k

StreamTopkDense*
StreamTopkDense

BFA

(a) runtime (sec)

 10000

 100000

 10 20 30 40 50

m

ax
flo

w
 c

om
pu

ta
tio

ns

k

StreamTopkDense*
StreamTopkDense

BFA

(b) maxflow computations

Fig. 7. Comparison of algorithms for different values of k (synthetic data set)

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 227

0

20

40

60

80

100

120

140

1000 1500 2000 2500 3000

he

ap
 o

pe
ra

tio
ns

window size (w)

StreamTopkDense*
StreamTopkDense

(a) heap updates (sec)

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

1000 1500 2000 2500 3000

m

ax
co

re
 c

om
pu

ta
tio

ns

window size (w)

StreamTopkDense*
StreamTopkDense

(b) maxcore computations

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 1000 1500 2000 2500 3000

G

O
LD

 in
vo

ca
tio

ns

window size (w)

StreamTopkDense*
StreamTopkDense

(c) GOLD invocations

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1000 1500 2000 2500 3000

M
B

yt
es

window size (w)

StreamTopkDense*
StreamTopkDense

(d) memory requirements

Fig. 8. Comparison of algorithms wrt window size (synthetic data set)

of the maximum core subgraph as a pruning criterion. The second column shows
the pruning capabilities of StreamTopkDense+, which is the basic algorithm en-
hanced by a priotity queue to determine the examination order of active graphs.
As expected, StreamTopkDense+ examines less graphs than the basic algorithm.
Finally, the third column presents the pruning power of StreamTopkDense∗ which
uses the skyband pruning technique in addition to the priority queue. As ex-
pected, the number of examined graphs (i.e., the number of graphs that we must
apply the exact density computation) is smaller for StreamTopkDense∗ than the
other two methods. In addition, the third column represents also the number
of graphs which are pruned by the skyband pruning technique. A graph that is
pruned is also removed from the priority queue, resulting in reduced memory
requirements (as shown in Figure 8(d)).

In conclusion, StreamTopkDense∗ shows the best performance both in terms
of running time and memory requirements. The reason for this is threefold: i)
the reduction of the number of GOLD computations (which consequently reduces
the number of maxflow computations), ii) the use of an appropriate examination
order for the graphs resulting in a more effective pruning and iii) the use of the
skyband to exclude graphs and subgraphs from further consideration.

228 E. Valari, M. Kontaki, and A.N. Papadopoulos

1

10

100

1000

10000

100000

1e+006

1e+007

10 20 30 40 50

ru
nt

im
e

(s
ec

)

k

StreamTopkDense*
ApproximateCore

(a) runtime for synthetic data set

20

40

60

80

100

10 20 30 40 50

ac
cu

ra
nc

y
%

k

Approximate-Core

(b) accuracy for synthetic data set

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 20 30 40 50

ru
nt

im
e

(s
ec

)

k

StreamTopkDense*
Approximate-Core

(c) runtime for real data set

20

40

60

80

100

10 20 30 40 50

ac
cu

ra
nc

y
%

k

Approximate-Core

(d) accuracy for real data set

Fig. 9. Runtime-accuracy trade-off for synthetic and real data sets

4.2 Trading Accuracy for Speed

In many cases, it is important to get the answers as quickly as possible, even
if the accuracy of the result is not perfect. The importance of quickly answers
is more obvious when the data is from real applications.Toward this direction,
we study the performance of an approximation algorithm, which uses only the
core computation to determine the set of graphs containing the top-k dense
subgraphs. The accuracy of the algorithm is defined as the percentage of the
graphs containing the k densest subgraphs that have been reported over the set
of the correct subgraphs.

The results of this study are given in Figure 9, where both the runtime and
the accuracy are reported for the synthetic as well as the real-life data set. As
shown, the runtime of the approximation algorithm is several orders of magni-
tude smaller than that of the exact one, because the approximation algorithm
does not perform any maxflow computations, whereas each core computation is
performed in linear time with respect to the number of edges. The performance
of the algorithms is similar for the synthetic and the real-life data set. Based
on the runtime comparison, the approximate algorithm can be applied when the
arrival rate is large, and thus, each new graph must be processed as efficiently

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 229

as possible. The quality of the approximation is at least 70% for all experiments
conducted, whereas it reaches 90% in the real-life data set as k grows to 50.

5 Concluding Remarks

Dense subgraph discovery is considered an important data mining task. Although
similar to clustering, dense subgraph discovery has evolved as a separate prob-
lem because the requirements are fairly different than clustering. In this paper,
we presented stream-based algorithms for continuous monitoring of the k dens-
est subgraphs from a dynamic collection of graphs. The proposed algorithm,
StreamTopkDense∗ is the most efficient variation, because it has the lowest run-
ning time and shows the lowest memory consumption. The key issues in the
design of our proposal have as follows: i) the maxcore is used to define an upper
bound on the density of a subgraph, ii) a priority queue is used to enforce a par-
ticular examination order of the graphs and iii) the skyband concept is applied
(as in [11]) to reduce the number of graphs that should be considered.

In addition to the study of exact algorithms, we studied the performance of an
approximation algorithm, which uses solely the concept of maxcore to determine
the set of graphs containing the top-k dense subgraphs. This algorithm offers an
accuracy of at least 70%, whereas its running time is orders of magnitude better
than that of the exact algorithms.

We point out that this is the first work that performs dense subgraph discovery
in a top-k fashion. This technique alleviates the requirement for posing density
constraints which are sometimes difficult to provide, especially when the graph
collection evolves and graph properties change over time.

There are several interesting directions for future work. The first one, involves
the use of graph summaries in order to reduce the size of the graphs. This means
that we are willing to sacrifice accuracy in favor of a more efficient computation.
A second direction is the adaptation of the methods in [2,4] to work in a top-k
scenario, without the requirement of density constraints.

References

1. Aggarwal, C., Wang, H.: Managing and mining graph data. Springer (2010)
2. Aggarwal, C., Li, Y., Yu, P.S., Jin, R.: On dense pattern mining in graph streams.

In: Proceedings of the 36th VLDB Conference, pp. 975–984 (2010)
3. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of net-

works. CoRR, cs.DS/0310049 (2003)
4. Chen, L., Wang, C.: Continuous subgraph pattern search over certain and uncertain

graph streams. IEEE Transactions on Knowledge and Data Engineering 22(8),
1093–1109 (2010)

5. Cook, D.J., Holder, L.B. (eds.): Mining graph data. Wiley (2007)
6. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive

graphs. In: Proceedings of the 31st VLDB Conference, pp. 721–732 (2005)
7. Goldberg, A.V.: Finding a maximum density subgraph. Technical Report CSD-84-

171, University of Berkeley (1984)

230 E. Valari, M. Kontaki, and A.N. Papadopoulos

8. Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense subgraphs
across massive biological networks for functional discovery. Bioinformatics 21(1),
i213–i221 (2005)

9. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. Journal of Algorithms 17(2),
222–236 (1994)

10. Luczak, T.: Size and connectivity of the k-core of a random graph. Discrete Math-
ematics 91(1), 61–68 (1991)

11. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries
over sliding windows. In: Proceedings of the ACM SIGMOD Conference, pp. 635–
646 (2006)

12. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in
database systems. ACM Transactions on Database Systems 30(1), 41–82 (2005)

13. Saha, B., Hoch, A., Khuller, S., Raschid, L., Zhang, X.-N.: Dense Subgraphs with
Restrictions and Applications to Gene Annotation Graphs. In: Berger, B. (ed.)
RECOMB 2010. LNCS, vol. 6044, pp. 456–472. Springer, Heidelberg (2010)

14. Seidman, S.B.: Network structure and minimum degree. Social Networks 5, 269–
287 (1983)

15. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: GraphScope: parameter-free
mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 687–696
(2007)

16. Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. IEEE
Transactions on Knowledge and Data Engineering 18(3), 377–391 (2006)

17. Viger, F., Latapy, M.: Efficient and Simple Generation of Random Simple Con-
nected Graphs with Prescribed Degree Sequence. In: Wang, L. (ed.) COCOON
2005. LNCS, vol. 3595, pp. 440–449. Springer, Heidelberg (2005)

	Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections
	Introduction
	Related Work and Contributions
	Dense Subgraphs in Graph Collections
	Preliminaries
	Dense Subgraph Discovery in a Set of Graphs
	Dense Subgraphs in a Stream of Graphs

	Performance Evaluation Study
	Performance of Exact Algorithms
	Trading Accuracy for Speed

	Concluding Remarks
	References

