
A Performance Evaluation

of Spatial Join Processing Strategies�

Apostolos Papadopoulos�� Philippe Rigaux�� Michel Scholl�

� Data Engineering Lab�� Aristotle Univ�� ����� Thessaloniki� Greece�
� Cedric�CNAM� 	
	 rue St Martin� F���� Paris Cedex ��� France

Abstract� We provide an evaluation of query execution plans �QEP�
in the case of queries with one or two spatial joins� The QEPs assume
R��tree indexed relations and use a common set of spatial joins algo�
rithms� among which one is a novel extension of a strategy based on an
on�the��y index creation prior to the join with another indexed relation�
A common platform is used on which a set of spatial access methods and
join algorithms are available� The QEPs are implemented with a general
iterator�based spatial query processor� allowing for pipelined QEP exe�
cution� thus minimizing memory space required for intermediate results�

� Introduction

It is well known that the application of Database Management Systems �DBMS�
join techniques� such as sort�merge� scan and index� hash join and join indices�
to the context of spatial data is not straightforward� This is due to the fact
that these techniques� as well as B�tree�based techniques� intensively rely on the
domain ordering of the relational attributes� which ordering does not exist in
the case of multi�dimensional data�

A large number of spatial access methods �SAM� have been proposed in
the past �fteen years �VG	
� as well as a number of spatial join algorithms
�Ore
��GS
�Gun	��BKS	��LR	��PD	��HJR	�APR�	
�� some of them relying
on the adaptation of well�known join strategies to the particular requirements
of spatial joins�

These strategies have been validated through experiments on di�erent plat�
forms� with various methodologies� datasets and implementation choices� The
lack of a commonly shared performance methodology and benchmarking ren�
ders di�cult a fair comparison among these numerous techniques�

The methodology and evaluation are crucial not only for the choice of a few
e�cient spatial join algorithms but also for the optimization of complex queries
involving several joins in sequence �multi�way joins�� In the latter more general
case� the generation and evaluation of complex query execution plans �QEP� is

� Work supported by the European Union�s TMR program ��Chorochronos� project�
contract number ERBFMRX�CT
������� and by the

��

 French�Greek bilat�
eral protocol�

central to optimization� Only a few papers study the systematic optimization of
spatial queries containing multi�way joins �MP		��

The objective of this paper is two fold� �i� to provide a common framework
and evaluation platform for spatial query processing� and �ii� to use it to exper�
imentally evaluate spatial join processing strategies�

A complex spatial query can be translated into a QEP with some physical
operations such as data access �sequential or through an index�� spatial selection�
spatial join� sorting� etc� A QEP is then represented as a binary tree in which
leaves are either indices or data �les and internal nodes are physical operators�

We use as a model for spatial query processing the pipelined execution of
such QEPs with each node �operation� being implemented as an iterator �Gra	���
This execution model provides a sound framework� it encompasses spatial and
non�spatial queries� and allows to consider in an uniform setting simple and
large complex queries involving several consecutive joins� Whenever possible�
records are processed one�at�a�time and transfered from one node to the follow�
ing� thereby avoiding the storage of intermediate results�

Such an execution model is not only useful to represent and evaluate complex
queries� but also to specify and make a fair comparison of simple ones� Indeed�
consider a query including a single spatial join between two relations� The join
output is� unfortunately� algorithm dependent� Some algorithms provide as an
output a set of pairs of record identi�ers �one per relation�� others� such as the
so�called Scan and Index �SAI� strategy provide a set in which each element
is composed of a record �of the �rst relation� and the identi�er of a record in
the second relation� Then to complete the join� the former case requires two
data accesses� while only one data access is necessary in the latter case� This
example illustrates the necessity for a consistent comparison framework� The
above execution model provides such a framework�

Another advantage of this execution model is that it allows not only to com�
pare two QEPs on their time performance but also on their memory space re�
quirement� Some operations cannot be pipelined� e�g�� sorting an intermediate
result� and require the completion of an operation before starting the following
operation� Such operators� denoted blocking iterators in this paper� are usually
memory�demanding and raise some complex issues related to the allocation of
the available memory among the nodes of a QEP� In order to make a fair compar�
ison between several QEPs� we shall always assign the same amount of memory
to each QEP during an experiment�

The study performed in this paper is a �rst contribution to the evaluation
of complex spatial queries that may involve several joins in sequence �multi�way
joins�� Based on the above model we evaluate queries with one or two spatial
joins� We make the following assumptions� �i� all relations in the database are
indexed on their spatial attribute� �ii� we choose the R��tree �BKSS	�� for all
indices� �iii� the index is always used for query optimization� While the �rst
assumption is natural� the second one is restrictive� Indeed� while the R��tree
is an e�cient SAM� there exists a number of other data structures that deserve
some attention� among which it is worth noting the grid based structures derived

from the grid �le �NHS
��� The third assumption is also restrictive since it does
not take into account the proposal of several techniques for joining non indexed
relations�

The comparison of QEPs as de�ned above has been done on a common
general platform developed for spatial query processing evaluation� This platform
provides basic I�O and bu�er management� a set of representative SAMs� a
library of spatial operations� and implements a spatial query processor according
to the above iterator model using as nodes the SAMs and spatial operations
available�

The rest of the paper is organized as follows� Section � brie�y surveys the
various spatial join techniques proposed in the literature and summarizes related
work� The detailed architecture of the query processor is presented in Section ��
Section � deals with our choices for spatial join processing and the generated
QEPs� Section � reports on the experiment� the datasets chosen for the evaluation
and the results of the performance evaluation� Some concluding remarks are
given in Section ��

� Background and Related Work

We assume each relation has a spatial attribute� The spatial join between re�
lations R� and R� constructs the pairs of tuples from R� � R� whose spatial
attributes satisfy a spatial predicate� We shall restrict this study to intersect

joins� also referred to as overlap joins� Usually� each spatial attribute has for a
value a pair �MBR� spatial object representation�� where MBR is the minimum
bounding rectangle of the spatial object� Intersect spatial joins are usually com�
puted in two steps� In the �lter step the tuples whose MBR overlap are selected�
For each pair that passes the �lter step� in the re�nement step the spatial object
representations are retrieved and the spatial predicate is checked on these spatial
representations �BKSS	���

Many experiments only consider the �lter step� This might be misleading for
the following reasons� �rst one cannot fairly compare two algorithms which do
not yield the same result �for instance if the SAI strategy is used� at the end of the
�lter step� part of the record value has been already accessed� which is useful for
the re�nement step� while it is not true with the STT strategy �Gun	��BKS	����
second by considering only the �lter step� one ignores its interactions with the re�
�nement step� for instance in terms of memory requirements� We shall include in
our experiments all the operations necessary to retrieve data from disk� whether
this data access is for the �lter step� or the re�nement step� Only the evaluation
of the computational geometry algorithm on the exact spatial representation�
which is equivalent whatever the join strategy� will be excluded�

SAMs can be roughly classi�ed into two categories�

� Space driven structures� among which grids and quadtrees are very popular�
partition the tuples according to some spatial scheme independent from the
spatial data distribution of the indexed relation�

� Data�driven structures� on the other hand� adapt to the spatial data distribu�
tion of tuples� The most popular SAM of this category is the R�tree �Gut
���
The R��tree �SRF
�� the R��tree �BKSS	�� and the X�tree �BKK	�� are im�
proved versions of the R�tree� These dynamic SAMs maintain their structure
on each insertion�deletion� In the case of static collections which are not of�
ten updated� packing algorithms �RL
��KF	��LEL	� build optimal R�trees�
called packed R�trees�

Spatial joins algorithms can be classi�ed into three categories depending on
whether each relation is indexed or not�

�� no index� for the case where no index exists on any relation� several par�
titioning techniques have been proposed which partition the tuples into
buckets and then use either hashed based techniques or sweep�line tech�
niques �GS
�PD	��LR	��KS	�APR�	
��

�� two indices� when both relations are indexed� the algorithms that have been
proposed depend on the SAM used� �Ore
�� is the �rst known work on spatial
joins� It proposes a ��dimensional ordering of spatial objects� which are then
indexed on their rank in a B�tree and merge�joined� �Gun	�� was the �rst pro�
posal of an algorithm called Synchronized Tree Traversal �STT� which adapts
to a large family of spatial predicates and tree structures� The STT algo�
rithm of �BKS	�� is the most popular one because of its e�ciency� Proposed
independently from �Gun	��� it uses R��trees and an e�cient depth��rst tree
traversal of both trees for intersection joins� The algorithm is sketched below�

Algorithm STT �Node N�� Node N��
begin

for all �e� in N��
for all �e� in N�� such that e��MBR � e��MBR �� �

if �the leaf level is reached� then
output �e�� e��

else

N �

� � readPage �e��pageID�� N �

� � readPage �e��pageID��
STT�N��� N���

endif

end

Advanced variants of the algorithm apply some local optimization in order
to reduce the CPU and I�O costs� In particular� when joining two nodes� the
overlapping of entries is computed using a plane�sweeping technique instead
of the brute�force nested loop algorithm shown above� The MBRs of each
node are sorted on the x�coordinate� and a merge�like algorithm is carried
out� This is shown to signi�cantly reduce the number of intersection tests�

�� single index � when only one index exists� the simplest strategy is the Scan
And Index �SAI� strategy� a variant of the nested loop algorithm which scans
the non�indexed relation and for each tuple r delivers to the index of the other

relation a window query with r�MBR as an argument� The high e�ciency
of the STT algorithm suggests that an �on�the��y� construction of a second
index� followed by STT� could compete with SAI� This idea has inspired the
join algorithm of �LR	
� which constructs a seeded�tree on the non indexed
relation which is a R�tree whose �rst levels match exactly those of the existing
R�tree� It is shown that the strategy outperforms SAI and the naive on�the�
�y construction of an R�tree with dynamic insertion� An improvement of
this idea is the SISJ algorithm of �MP		�� An alternative is to build a packed

R�tree by using bulk�load insertions �LEL	�� Such constructions optimize
the STT algorithm since they reduce the set of nodes to be compared during
traversal� These algorithms are examples of strategies referred to as Build�
and�Match strategies in the sequel�

The complexity of the spatial join operation� the variety of techniques and
the numerous parameters involved in a spatial join render extremely di�cult the
comparison between the above proposals brie�y sketched above�

Only a few attempts have been made toward a systematic comparison of spa�
tial join strategies� �GOP�	
� is a preliminary attempt to integrate in a common
platform the evaluation of spatial query processing strategies� It proposes a web�
based rectangle generator and gives �rst results on the comparison of three join
strategies� nested loop� SAI and STT� The major limit of this experiment is that
it is built on top of an existing DBMS� This not only limits the robustness of
the results but renders impossible or ine�cient the implementation of complex
strategies� the tuning of numerous parameters and a precise analysis�

�MP		� is the �rst study on multi�way spatial joins� It proposes an itera�
tor pipelined execution of QEPs �Gra	�� for multi�way spatial joins� with three
join algorithms� one per category� namely STT� SISJ� and a spatial hash�join
technique �LR	��� An analytical model predicts the cost of QEPs� a dynamic
programming algorithm for choosing the optimal QEP is proposed� The query
optimization model is validated through experimental evaluation�

The modeling of QEPs involving one or several joins in the study reported
below follows the same pipelined iterator based approach� This execution model
is implemented on a platform common to all evaluations� This platform allows
for �ne tuning of parameters impacting the strategies performance and is general
enough to implement and evaluate any complex QEP� it is not limited to spatial
joins� Last but not least� such a model and its implementation allow for various
implementation details generally absent from evaluations reported in the litera�
ture� The relation access after a join is an example of implementation �detail�
which accounts for an extremely signi�cant part of the query response time as
shown below�

� The Query Processor

The platform has been implemented in C�� and runs on top of UNIX or Win�
dowsNT� Its architecture is shown in Fig� �� It is composed of a database and

three modules which implement some of the standard low�level services of a
centralized DBMS�

The database is a set of binary �les� Each binary �le either stores a data �le

or a SAM� A data �le is a sequential list of records� A SAM or index refers to
records in an indexed data �le through record identi�ers� The lowest level module
is the I�O module� which is in charge of reading �writing� pages from �to� the
disk� The second module manages bu�ers of pages fetched ��ushed� from �to�
the disk through the I�O module� On�top of the bu�er management module is
the query processing module� which supports spatial queries�

Binary

file

STT join

SAI join

Seeded Tree join

Sort

SegSort

FileScan

RowAccessSaM join

... ...

I/O module

Flush Fetch

Buffer Manager

Buf. pool 1
...

Buf. pool n

write read

openFile

closeFile

getPage

pinPage
...

Query Processor

SAM + join algorithms

QEP

Iterators

Database

Fig� �� Platform architecture

Database and Disk Access

The database �data �les and SAM� is stored in binary �les divided into
pages whose size is chosen at database creation� A page is structured as a header
followed by an array of �xed�size records which can be either data records or
index entries� The header and record sizes depend on the �le� By knowing the
record size� one can compute the number of records per page and the data �le
size�

Each page is uniquely identi�ed by its PageID �� bytes�� A record is identi�
�ed by a RecordID �
 bytes� which is a pair �PageID� offset� where offset

denotes the record o�set in the page�

�� Data �les are sequential collections of pages storing data records� In the cur�
rent setting� a record basically is a binary representation of a spatial object�
From the query processing point of view� the most important information
stored in a record is its geometric key� which is� throughout this experiment�
its MBR� A data �le can either be accessed sequentially �FileScan in the
sequel� � or by RecordID �RowAccess in the sequel�� It is important to note
that the data�les are not clustered on their geometric representation �i�e��
objects close in space are not necessarily close on disk��

�� SAMs are structured collections of IndexEntry� An index entry is a pair
�Key� RecordID�� where Key denotes the geometric key �here the MBR�
and RecordID identi�es a record in the indexed data �le� The currently
implemented SAMs are a grid �le� an R�tree� an R��tree and several packed
R�trees� In the sequel� each data�le is indexed with an R��tree�

Bu�er management

The bu�er manager handles one or several bu�er pools� a data �le or index
�SAM� is assigned to one bu�er pool� but a bu�er pool can handle several indices�
This allows much �exibility when assigning memory to the di�erent parts of a
query execution plan� The bu�er pool is a constant�size cache with LRU or FIFO
replacement policy �LRU by default�� Pages can be pinned in memory� A pinned
page is never �ushed until it is unpinned�

Currently� all algorithms requiring page accesses uniformly access these pages
through the interface provided by the bu�er manager� In particular� spatial join
algorithms share this module and therefore cannot rely on a tailored main mem�
ory management or a specialized I�O�s policy unless it has already been imple�
mented in this module�

Query processing module

One of the important design choices for the platform is to allow for any ex�
perimental evaluation of query execution plans �QEP� as generated by database
query optimizers with an algebraic view of query languages� During optimization�
a query is transformed into a QEP represented as a binary tree which captures
the order in which a sequence of physical algebraic operations are going to be
executed� The leaves represent data �les or indices� internal nodes represent alge�
braic operations and edges represent data�ows between operations� Examples of
algebraic operations include data access �FileScan or RowAccess�� spatial selec�
tions� spatial joins� etc� As mentioned above we use as a common framework for
query execution� a demand�driven process with iterator functions �Gra	��� Each
node �operation� is an iterator� This allows for a pipelined execution of multiple
operations� thereby minimizing the system resources �memory space� required
for intermediate results� data consumed by an iterator� say I� is generated by
its son�s� iterator�s�� say J� Records are produced and consumed one�at�a�time�
Iterator I asks iterator J for a record� Therefore the intermediate result of an
operation is not stored in such pipelined operations except for some speci�c
iterators called blocking iterators� such as sorting�

This design allows for simple QEP creation by �assembling� iterators to�
gether� Consider the QEP for a spatial join R � S implemented by the simple
scan�and�index �SAI� strategy �Fig� ��a�� scan R �FileScan�� for each tuple r in
R� execute a window query on index IS with key r�MBR� This gives a record
ID RecordID� �� Finally read the record with id RecordID� in S �RowAccess��

� As a matter of fact each index �leaf� access returns an IndexEntry� i�e�� a pair �MBR�
RecordID�� For the sake of simplicity� we do not show this MBR on the �gures�

The re�nement step not represented in the �gure can then be performed on the
exact spatial object available in Record� and Record��

SIIR

a. A scan-and-index join

S

b. A build and match join

R

R

<Record1, Record2>

<Record1, RecordID2>

RecordID2

R I

S

next next

next

S

Record1

<Record1, Record2>

<Record1, RecordID2>

<RecordID1, RecordID2>

RecordID2RecordID1FileScan WindowQuery

RowAccess RowAccess

RowAccess

STT Join

Build

Sort

SAI Join SegSort

Fig� �� Query execution plans

This is a fully pipelined QEP� therefore the response time �e�g�� the time to
get the �rst record� is minimal� It is sometimes necessary to introduce blocking

iterators in a QEP which require the consumption of all input data before any
output is possible� Then signi�cant memory is necessary for intermediate results�

As an example� one can introduce a Sort blocking iterator in the QEP of
Fig� ��a in order to sort the data �ow output by the SAI join on the PageID of
the RecordID� component� This allows to access only once the pages of S instead
of issuing random reads to get the S records� which might lead to several accesses
to the same page� However no record can be delivered to the user before the join
is completely processed�

As a more complex �and realistic� example� consider the QEP of Fig� ��b� It
implements a di�erent join strategy� an index already exists on S� another one
is built on the �y on R �iterator Build��� and an STT join is executed� Such a
join delivers pairs of RecordID� hence two further RowAccess� one per relation�
are necessary to complete the query �re�nement step�� Build is blocking� the
join cannot be started before index IR has been completely built� In addition�
the maximal amount of available memory should be assigned to this iterator to
avoid as much as possible to �ush pages on disk during index construction�

It may happen that a QEP relies on several blocking iterators� In that case
the management of memory is an important issue� Consider the QEP of Fig� ��b�
The STT node delivers pairs of RecordID� �ri� si�� which resembles the join index
upon non clustered data� as described in �Val
�� The naive strategy depicted
in Fig� ��b alternates random accesses on the data�les R and S� then the same
page �either in R or S� will be accessed several times� which leads to a large

�
R can be an intermediate result delivered by a sub�QEP�

number of page faults� The following preprocessing algorithm is proposed in
�Val
� and denoted segmented sort �SegSort� in the sequel� ��� allocate a bu�er
of size B� ��� compute the number n of pairs �Record��RecordID�� which can
�t in B� ��� load the bu�er with n pairs �RecordID�� RecordID��� ��� sort on
RecordID�� ��� access relation R and load records from R �now the bu�er is
full�� ��� sort on RecordID�� load records from S� one at a time� and perform
the re�nement step� Repeat from step ��� until the source �STT join in that
case� is exhausted� Hence� this strategy� by ordering the pairs of records to be
accessed� saves numerous page faults�

The resulting QEP includes two blocking iterators �Build and SegSort� be�
tween which the available bu�er memory must be split� Basically there are two
strategies for memory allocation for such QEPs�

�� Flush intermediate results� This is the simplest solution� the total bu�er
space M allocated to the QEP is assigned to the Build iterator� the result of
the join �STT� is �ushed onto disk and the total space M is then reused for
SegSort� The price to be paid is a possibly very large amount of write and
read operations onto �from� disk for intermediate results�

�� Split memory among iterators and avoid intermediate materialization� Each
of the iterators of the QEP is assigned part of the global memory space M�
Then intermediate results are kept in memory as much as possible but less
memory is available for each iterator �BKV	
�ND	
��

� Spatial Join Query Processing

Using the above platform� our objective is to experimentally evaluate strategies
for queries involving one or several spatial joins in sequence�

Fig� � illustrates two possible QEPS for processing query R� � R� � � � � Rn�
using index I�� I�� � � � In�� which both assume �i� the optimizer tries to use as
much as possible existing spatial indices when generating QEPs and �ii� that
the n�way join is �rst evaluated on the MBRs ��lter step� and then on the ex�
act geometry� an n�way join is performed on a limited number of tuples of the
cartesian product R� � R� � ���Rn �re�nement step� requiring n row accesses��
Both QEPS are left�deep trees �Gra	��� In such trees the right operand of a join
is always an index� as well as the left operand for the left�most node� Another
approach� not investigated here� would consists in an n�way STT� i�e�� a synchro�
nized traversal of n R�trees down to the leaves� See �MP		� for a comprehensive
study�

The �rst strategy �Fig� ��a� is fully pipelined� a STT join is performed as the
left�most node� and a SAI join is executed for the following joins� at each step
a new index entry �MBR� RecordID� is produced� The MBR is the argument
of a window query for the following join� The result is a tuple i�� i�� � � � in of
record id� the records are then retrieved with RowAccess iterators� one for each
relation� in order to perform the re�nement step on the n�way join but on a
limited number of records� The second strategy �Fig� ��b� uses instead of SAI
the Build�and�Match strategy�

I
1

I
2

I
3

I
n

Rn

I
1

I
n

I
2

I
3

R1

R1

IBuildI

...

...SAI

SAI

...

...

Build

STT STT

Match

Match

RowAccess

RowAccess

RowAccess

a. A left-deep tree with pipelined iterators b. A left-deep tree with blocking iterators

Fig� �� Two basic strategies for left�deep QEPs

Evidently� the QEPs shown in Fig� � are extreme cases� Depending on the
estimated size of output�s�� a merge of both strategies can be used for a large
number of joins� More importantly� the re�nement step can be done prior to
the completion of the query if it is expected that the candidate set contains a
large number of false hits� By computing the re�nement step in a lazy mode� as
suggested in Fig� �� the cardinality of intermediate results is larger �because of
false hits� but the size of records is smaller�

We do not consider the case of bushy trees since they involve joins algorithms
upon non�indexed relations� As an example of bushy�tree QEP� consider the
following QEP for the join of � relations R�� R�� R�� R�� R� and R� are joined
using STT as well as R� and R�� The two �non�indexed� intermediate results
must then be joined� In the case of n�� �only one or two joins� which will be
considered here� only left�deep trees can be generated�

Join strategies

We describe in this section the three variants of the same strategy called
Build�and�Match �Fig� ��b� which consists in building on the �y an index on a
non indexed intermediate relation and to join the result with an indexed relation�
When the structure built is an R�tree� then the construction is followed by a
regular STT join� The rationale of such an approach is that even though building
the structure is time consuming� the join behind is so e�cient that the overall
time performance is better than applying SAI� Of course the building phase is
implemented by a blocking iterator and requires memory space�

STJ

The �rst one is the Seeded Tree Join �STJ� �LR	
�� This technique consists in
building from an existing R�tree� used as a seed� a second R�tree called seeded

R�tree� The motivation behind this approach is that tree matching during the
join phase should be more e�cient than if a regular R�tree were constructed�
During the seeding phase� the top k levels of the seed are copied to become the
top k levels of the seeded tree� The entries of the lowest level are called slots�

During the growing phase� the objects of the non indexed source are inserted
in one of the slots� a rectangle is inserted in the slot that contains it or needs
the least enlargement� Whenever the bu�er is full� all the slots which contain at
least one full page are written in temporary �les�

Copy

Seeding tree Seeded tree

Slots

temp. file

Grown subtree

a. The seeding phase b. The growing phase c. Build and cleanup phase

Fig� �� Seeded tree construction

When the source has been exhausted� the construction of the tree begins� for
each slot� the objects inserted in the associated temporary �les �as well as the
objects remaining in the bu�er� are loaded to build an R�tree �called a grown

subtree�� the slot entry is then modi�ed to point to the root of this grown subtree�
Finally a cleanup phase adjusts the bounding boxes of the nodes �Fig� ��� as in
classical R�trees�

The grown subtrees may have di�erent heights� hence the seeded tree is not
balanced� It can be seen as a forest of relatively small R�trees� one of the expected
advantages of the method is that the construction of each grown subtree is done
in memory�

There is however an important condition to ful�ll� the bu�er must be large
enough to provide at least one page to each slot� If this is not the case� the pages
associated to a slot will be read and written during the growing phase� thus
rendering the method ine�ective�

STR

The second Build�And�Match variant implemented� called Sort�Tile�Recursive
�STR�� constructs on the �y a STR packed R�tree �LEL	�� We also experimented
the Hilbert packed R�tree �KF	��� but found that the comparison function �based
on the Hilbert values� was more expensive than the centroid comparison of STR�

The algorithm is as follows� First the rectangles from the source are sorted�

by x�coordinate of their centroid� At the end of this step� the size N of the
dataset is known� this allows to estimate the number of leaf pages as P � dN�ce
where c is the page capacity� The dataset is then partitioned into dpP e vertical
slices� The dpP e�c rectangles of each slice are loaded� sorted by the y�coordinate

� The sort is implemented as an iterator which carries out a sort�merge algorithm
according to the design presented in �Gra
���

of their center� grouped into runs of length c and packed into the R�tree leaves�
The upper levels are then constructed according to the same algorithm� At each
level� the nodes are roughly organized in horizontal or vertical slices �Fig ����

load/merge

sort/flush

sorted

output

a. The sort phase b. Rtree level

y slice

x slice

2 ...

3

1 4

Leaves

input Buffer

...

Fig� �� STR tree construction

SaM

The third Build�And�Match variant called Sort�and�Match �SaM� is novel� It
uses the STR algorithm but the construction is stopped at the leaf level� and
the pages are not written onto disk� As soon as a leaf l has been produced� it is
joined to the existing R�tree IR� a window query with the bounding box of l is
generated which retrieves all IR leaves l� such that l�MBR intersects l��MBR� l
and l� are then joined with the plane�sweep algorithm already used in the STT
algorithm�

An interesting feature of this algorithm is that� unlike the previous ones� it
does not require the entire structure to be built before the matching phase thus
saving the �ushing of this structure onto disk� resulting in much faster response
time�

� Performance Evaluation

The machine used throughout the experiments is a SUN SparcStation � with
�� MB of memory� running SunOS ���� We use in our experiments synthetic
datasets� created with the ENST rectangle generator �GOP�	
�� This tool� gen�
erates a set of rectangles according to a statistical model whose parameters �size�
coverage� distribution� can be speci�ed� The � following statistical models were
used sharing the same �D universe �map��

�� Counties �called Biotopes in �GOP�	
�� simulates a map of counties� rectan�
gles have a shape and location uniformly distributed� and the overlap �ratio
between sum of the areas of the rectangles and map area� is �����

� Available at http���www�inf�enst�fr� bdtest�sigbench��

Nb records Pages Size �MB	

	�K ��
 ��
��K ��
 ���
��K 	���
��
��K ���� 	��
��K ���� ���

Data
les

Dataset Pages Levels Root entries

COUN	� �
 	 ��
COUN�� ��� � �
COUN�� ��� � �
COUN�� ��� � �
COUN�� ��	 � �

R�trees

Fig� �� Database sample

�� Cities �GOP�	
� simulates a map of cities� the map contains small rectangles
whose shape is normally distributed �around the square shape� and whose
location is uniformly distributed� The overlap is equal to ���

�� Roads simulates a map of roads� rectangles location and shape is uniform as
in Counties but overlap is �����

For each of the statistical models� � datasets have been generated� with a
size ranging from �� ��� to ��� ��� objects referred to as DATxx� where DAT
is in COUN� CIT� ROA and xx ranges from �� to ���� For example� COUN��
stands for Counties with �� ��� rectangles�

Join strategies are evaluated on the query Cities � Counties in the case of
single joins and the query Cities � Counties � Roads for two�way joins�

We assume a page size of �K and a bu�er size ranging from ���K ���� pages�
to ��
MB ��� pages�� The record size is ��
 bytes and the bu�er policy is LRU�
Fig� � gives some statistics on the generated database �data �le and index�� Only
the information on Counties is reported� Indeed the sizes do not depend on the
statistical model� so Cities and Roads have almost identical characteristics� The
fanout �maximum number of entries�page� of an R tree node is ��	� We give the
number of entries in the root since it is an important parameter for the seeded
tree construction�

The main performance criteria are �i� the number of I�O� i�e�� the number of
calls �page faults� to the I�O module and �ii� the CPU consumption�

The latter criteria depends on the algorithm� It is either measured as the
number of comparisons �when sorting occurs�� or the number of rectangle in�
tersections �for join� or the number of unions �for R�tree construction�� see Ap�
pendix A� The parameters chosen are the bu�er size� the data set size and of
course� the variants in the query execution plan and the join algorithms�

Single Join

When there is a single join in the query and both relations are indexed� a
good candidate strategy is STT� Part of our work below is related to a closer
assessment of this choice� To this end� we investigate the behavior of the can�
didate algorithms for single joins� namely SAI and STT� Fig� gives for each
algorithm� the number of I�Os as well as the number of rectangle intersection

tests �NBI�� for a bu�er set to ��� pages �� MB�� STTRA stands for a QEP
where the join is followed by a RowAccess operator� while STT is a stand alone
join� Indeed� SAI and STTRA deliver exactly the same result� namely pairs of
�Record� RecordID�� while STT only yields pairs of RecordID�

As expected� the larger the dataset� the worse is SAI performance� both in
I�Os and NBIs� There is a signi�cant overhead as the R tree size is larger than
the available bu�er� This is due to the repeated execution of window queries
with randomly distributed window arguments�

STT outperforms SAI with respect to both I�Os and NBI� But as explained
above� the comparison to be done is not between SAI and STT but between SAI
and STTRA� Then� looking at Fig� � the number of I�Os is of the same order
for the two algorithms� Furthermore� it is striking that the RowAccess cost is
more than one order of magnitude larger than the join itself for STT �e�g�� for
a dataset size of ���K� there are ��� ��� I�Os while the join phase costs only �

	� I�Os�!

The RowAccess iterator in the QEP implementing STTRA� reads the pages
at random� Then a large number of pages are read more than once� The number
of I�Os depends both on the bu�er size and on the record size �here ��
� which
is rather low� and can be estimated according to the model in �Yao��

Since STT�s performance �without RowAccess� is not very sensitive to an
increase in the index size� it should not be very sensitive to a decrease in memory
space� This justi�es that most of the bu�er space available should be dedicated
to the RowAccess iterator in order to reduce its extremely large cost�

Dataset size

�� ��� �� ��� �� ��� �� ���

I�Os NBI I�Os NBI I�Os NBI I�Os NBI

SAI
 �� �� �
 ��� 	� �

 � 	�� 	� ��	 � ��� �� ���
STTRA �� ��� 	 ��� �
 �	� � ��� � �� � �� �� � � �
�

STT ��� 	 ��� ��� � ��� ��� � �� �
� � �
�

Result size� � 	�� � ��� 		� ��	 	�� ���

Fig� � Left�most node� join Cities�Counties� bu�er size � 	�� pages

To reduce the number of data�le accesses� we insert in the QEP a SegSort
iterator before the RowAccess� Pages whose ids are loaded in the SegSort bu�er
can then be read in order rather than randomly� The e�ciency depends on the
size SGB of this bu�er�

Fig�
 displays the number of I�Os versus the data size� for SAI and STT�
for several values of the parameter SGB� The total bu�er size is ��� pages� and
is split into a bu�er dedicated to SegSort and a �global� bu�er whose size is ���
� SGB� STT�xx stands for the STT join where SGB�xx� In order to compare
with the results of Fig� � we only access one relation� The larger SGB� the
larger the gain� This is due to the robustness of STT performance with respect

to bu�er size� its performance is not signi�cantly reduced with a small dedicated
bu�er size�

Fig� �� SegSort experiment

Figure
 illustrates the gain from sorting the pages to be accessed� for a large
data set size� the gain with STT���� is almost �� compared to STTRA�

In conclusion� the combination of STT with a SegSort operator �or any other
mean to reduce the cost of random I�Os� for instance spatial data clustering�
outperforms SAI�

We now compare the performance of the � Build�And�Match candidate algo�
rithms �STJ� STR and SaM�� Both the Build and the Match phases are consid�
ered� but we do not account for any FileScan� In other words� as stressed above�
we restrict to the case where the join is executed on an intermediate result in
which each tuple is produced one at a time�

Figure 	�a displays the cost of the � algorithms for � data set sizes� The case
of STJ deserves some discussion� Note �rst that it is very unlikely that we can
copy more than the root of the seeding tree because of the large fanout ���	�
of the R tree� Indeed� in copying the �rst level also� the number of slots would
largely exceed the bu�er size�

In copying only the root� the number of slots may vary between � and ��	�
Actually� in our database the root is either almost full �dataset size ��K� or
almost empty �dataset size � ��K�� See Figure ��

I�Os CPU

Total

Fig� �� Build and match joins

When the number of slots is large� one obtains a large number of grown R�
trees �one per slot� whose size is small� Then the memory utilization is very low�
an almost empty root with � or � leaves�� If the number of slots is small� then
there is a small number of large R�trees� each of them requiring a signi�cant
construction time� In all cases� the CPU construction cost is high� although the
I�Os cost is low because each grown subtree can be built in memory�

STR and SaM are extremely e�cient with small dataset sizes ���K�� Indeed
the construction of the index is entirely done in main memory� Even for large
data sets� SaM is very e�cient� Compared to STR� the number of rectangle
intersections is the same� but since the tree is not constructed the number of
I�Os is smaller� the more the data set size increases �it is �� � smaller than for
STR with a dataset size greater than
�K��

During the match phase� SaM is also e�cient� in fact it can be seen as a
sequence of window queries� with two major improvements� �i� leaves are joined�
and not entries� hence one level is saved during tree traversal� and �ii� more
importantly� two successive leaves are located in the same part of the search
space� Therefore the path in the R�tree is likely to be already loaded in the
bu�er�

� We do not pack the roots of grown subtrees� as proposed in �LR
��� This renders the
data structure and implementation complex� and has some further impact on the
design of the STT�

We now test the robustness of the algorithms performance with respect to
the bu�er size� In Figure ��� we measure the performance of the algorithms by
joining two ���K datasets and letting the bu�er size vary from ��� pages ����K�
to �� pages ���
 MB�� RowAccess is not taken into account� We do not include
the cost of STJ for the smallest bu�er size since bu�er thrashing cannot be
avoided in that case�

Fig� ��� JOIN Cities ��K � Counties ��K� varying bu�er

Looking at Figure ��� the following remarks are noteworthy� �i� the sort�based
algorithms bene�t from large bu�ers� this is less clear for STJ� �ii� as expected�
STT performance is robust with respect to bu�er size� this is important since
algorithms whose memory requirement is known and reasonable in size allow for
more �exibility when assigning memory among several operators� as shown in
the next section� Observe also that when the Build phase can be performed in
memory� the Join phase of SaM outperforms STT� �iii� the larger the bu�er size�
the more SaM outperforms the two other Build�And�Match strategies� while its
gain over STR is only ��� for small bu�er size� it reaches three for a bu�er
capacity of �� pages�

Two way joins

This section relies on the above results for the evaluation of QEPs involving
two joins� In the sequel� the left�most node of the QEP is always an STT al�
gorithm performed on the two existing R trees �on Cities and Counties� which
delivers pairs of index entries �i�� i��� The name of a join algorithm denotes the

��K ���K

Fig� ��� Two way joins

second join algorithm� which takes the result of STT� builds a structure and
performs the join with the index on Roads�

Note that in that case one does not save a RowAccess with SAI for the
re�nement step� Indeed as the Build�And�Match strategies� SAI reads as an
entry only an index entry �RecordID�MBR� from the STT join� The result is� in
all cases� a set of triplets of index entries�

The datasets Counties� Cities and Roads� have equal size� and a �xed bu�er
of ��� pages has been chosen� We make the experiments for the medium size of
��K and the larger size of ���K� The latter � way�join yields
�� �� records�
while the former ��� �� records�

Figure �� gives the response time for SAI and the three variants of Build�
And�Match algorithms� Let us look �rst at SAI performance� For a small dataset
size ���K�� the index �ts in memory� and only few I�Os are generated by the
algorithm� However the CPU cost is high because of the large number of inter�
section tests� For large dataset sizes� the number of I�Os is huge� rendering this
algorithm de�nitely not the right candidate�

STJ outperforms SAI for large datasets� But its performance is always much
below that of SaM and STR� The explanation of this discrepancy is the following�
For a ��K size� the �rst level of the seeding tree could be copied� resulting into
�� slots� The intermediate result consists of ��� �� entries� So� there is an
average of ��� entries per slot� each subtree includes a root with an average of
two leaves� leading to a very bad space utilization� A large number of window
queries are generated due to the unbalance of the matched R�tree� In the case
of ���K datasets� only
 slots can be used� and the intermediate result consists
of �

�� records� Hence we must construct a few� large R�trees� which is very
time consuming�

SaM signi�cantly outperforms STR� mostly because it saves the construction
of the R�tree structure� and also because the join phase is very e�cient� It is
worth noting� �nally� that SAI is a good candidate for small datasets sizes�
although its CPU cost is still larger� One should not forget that SAI is� in that
case� the only fully pipelined QEP� Therefore the response time is very short� a

parameter which can be essential when the regularity of the data output is more
important than the overall resource consumption�

Discussion
By considering complete QEPs� including the I�O operations for the re�ne�

ment step� we were able to identify the bottlenecks and the interactions between
the successive parts of a QEP�

The e�ciency of the commonly accepted STT algorithm is natural� an index
is a small� structured collection of data� so joining two indices is more e�cient
than other strategies involving the data �les� The counterpart� however� is the
cost of accessing the records after the join for the re�nement step� whose cost
is often ignored in evaluations� although several papers report the problem �see
for instance �PD	�� and the recent work of �AGPZ		��� It should be noted that
in pure relational optimization� the manipulation of RecordID lists has been
considered for a long time to be less e�cient than the �indexed� nested loop join
�BE�� Even nowadays� the ORACLE DBMS does use a SAI strategy in the
presence of two indices �Ora�� In the context of spatial databases� though� SAI
provides a prohibitive cost as soon as the index size is larger than the bu�er
and the number of window queries is high� Whenever STT is chosen� we face
the cost of accessing the two relations for the re�nement step� When data is not
spatially clustered� the present experiment suggests to introduce a scheduling of
row accesses through a speci�c iterator� We used the algorithm of �Val
�� but
other techniques are available �Gra	��� The combination of STT and SegSort

outperforms SAI for large datasets� in part because of the robustness of STT
with respect to the bu�er size�

For two�way joins� the same guidelines should apply� Whenever we intend
to build an index for subsequent matching with an existing R�tree� the build
algorithm performance should not degrade when there is a shortage of bu�er
space� since most of the available space should be dedicated to the costly access to
records after the join� We experimented three such Build�And�Match strategies� a
top�down index construction �STJ�� a bottom�up index construction �STR� and
an intermediate strategy which avoids the full index construction �SaM�� Several
problems were encountered with STJ� while the classical solutions based on
sorting appear quite e�ective� They provide a simple� robust and e�cient solution
to the problem of organizing an intermediate result prior to its matching with an
existing index� The SaM algorithm was shown to be a very good candidate� it can
be carried out with reasonably low memory space and provides the best response
time since its Build phase is not completely blocking� records are produced before
the build phase is completed�

� Conclusion and Future Work

The contribution of this paper is three fold� �i� provide an evaluation platform
general enough to experimentally evaluate complex plans for processing spatial
queries and to study the impact on performance of design parameters such as
bu�er size� �ii� show that in build�and�match strategies for spatial joins it was

not necessary to completely build the index before the join� this resulted into a
join strategy called SaM that was shown in our experiment to outperform the
other known build�and�match strategies� �iii� show that physical operations that
occur in the query execution plan associated with a join strategy have a large
impact on performance� For example� we studied the impact of record access
after the join� which is a very costly operation�

The performance evaluation stressed the importance of memory allocation
in the optimization of complex QEPs� The allocation of available bu�er space
among the �blocking� operators of a QEP� although it has been addressed at
length in a pure relational setting� it is still an open problem� We intend to
re�ne our evaluation by studying the impact of selectivity and relation size on
the memory allocation� Some other parameters such as the data set distribution
or the placement of the record access in the QEP may also have some impact�
The aim is to exhibit a cost model simple enough to be used in an optimization
phase to decide for memory allocation�

References

�AGPZ

� D� Abel� V� Gaede� R� Power� and X� Zhou� Caching Strategies for Spatial
Joins� GeoInformatica�

� To appear�

�APR�
�� L� Arge� O� Procopiuc� S� Ramaswami� T� Suel� and J� Vitter� Scalable
Sweeping Based Spatial Join� In Proc� Intl� Conf� on Very Large Data
Bases�

��

�BE��� M� Blasgen and K� Eswaran� Storage and access in relational databases�
IBM System Journal�
���

�BKK
�� S� Berchtold� D� Keim� and H��P� Kriegel� The X�tree� An Index Structure
for High�Dimensional Data� In Proc� Intl� Conf� on Very Large Data Bases�

��

�BKS
�� T� Brinkho�� H��P� Kriegel� and B� Seeger� E�cient Processing of Spatial
Joins Using R�Trees� In Proc� ACM SIGMOD Symp� on the Management
of Data�

��

�BKSS
�� N� Beckmann� H�P� Kriegel� R� Schneider� and B� Seeger� The R�tree � An
E�cient and Robust Access Method for Points and Rectangles� In Proc�
ACM SIGMOD Intl� Symp� on the Management of Data� pages �		����

��

�BKSS
�� T� Brinkho�� H�P� Kriegel� R� Schneider� and B� Seeger� Multi�Step Process�
ing of Spatial Joins� In Proc� ACM SIGMOD Symp� on the Management of
Data� pages
��	���

��

�BKV
�� L� Bouganim� O� Kapitskaia� and P� Valduriez� Memory Adaptative Schedul�
ing for Large Query Execution� In Proc� Intl� Conf� on Information and
Knowledge Management�

��

�GOP�
�� O� Gunther� V� Oria� P� Picouet� J��M� Saglio� and M� Scholl� Benchmarking
Spatial Joins �A La Carte� In Proc� Intl� Conf� on Scienti�c and Statistical
Databases�

��

�Gra
�� G� Graefe� Query evaluation techniques for large databases� ACM Comput�
ing Surveys� 	��	��������

��

�GS��� R�H� G�uting and W� Schilling� A Practical Divide�and�Conquer Algorithm
for the Rectangle Intersection Problem� Information Sciences� �	�
��	�

���

�Gun
�� O� Gunther� E�cient Computation of Spatial Joins� In Proc� IEEE Intl�
Conf� on Data Engineering� pages ����
�

��

�Gut��� A� Guttman� R�trees � A Dynamic Index Structure for Spatial Searching� In
Proc� ACM SIGMOD Intl� Symp� on the Management of Data� pages ������

���

�HJR
�� Y��W� Huang� N� Jing� and E�A� Rudensteiner� Spatial Joins Using R�trees�
Breadth��rst Traversal with Global Optimizations� In Proc� Intl� Conf� on
Very Large Data Bases�

��

�KF
�� I� Kamel and C� Faloutsos� On Packing Rtrees� In Proc� Intl� Conf� on
Information and Knowledge Management �CIKM��

��

�KS
�� N� Koudas and K� C� Sevcik� Size separation spatial join� In Proc� ACM
SIGMOD Symp� on the Management of Data�

��

�LEL
�� S� Leutenegger� J� Edgington� and M� Lopez� STR� a Simple and E�cient
Algorithm for Rtree Packing� In Proc� IEEE Intl� Conf� on Data Engineering
�ICDE��

��

�LR
�� M��L� Lo and C�V� Ravishankar� Spatial Hash�Joins� In Proc� ACM SIG�
MOD Symp� on the Management of Data� pages 	���	���

��

�LR
�� M��L� Lo and C�V� Ravishankar� The Design and Implementation of Seeded
Trees� An E�cient Method for Spatial Joins� IEEE Transactions on Knowl�
edge and Data Engineering� ����

�� First published in SIGMOD�
��

�MP

� N� Mamoulis and D� Papadias� Integration of spatial join algorithms for
joining multiple inputs� In Proc� ACM SIGMOD Symp� on the Management
of Data�

�

�ND
�� B� Nag and D� J� DeWitt� Memory Allocation Strategies for Complex De�
cision Support Queries� In Proc� Intl� Conf� on Information and Knowledge
Management�

��

�NHS��� J� Nievergelt� H� Hinterger� and K�C� Sevcik� The Grid File� An Adapt�
able Symmetric Multikey File Structure� ACM Transactions on Database
Systems�
��������
���

�Ora� Oracle � Server Concepts� Chap�
 �The Optimizer�� Oracle Technical
Documentation�

�Ore��� J� A� Orenstein� Spatial Query Processing in an Object�Oriented Database
System� In Proc� ACM SIGMOD Symp� on the Management of Data� pages
�	������
���

�PD
�� J�M� Patel and D� J� DeWitt� Partition Based Spatial�Merge Join� In Proc�
ACM SIGMOD Symp� on the Management of Data� pages 	�
�	���

��

�RL��� N� Roussopoulos and D� Leifker� Direct Spatial Search on Pictorial
Databases Using Packed R�Trees� In Proc� ACM SIGMOD Symp� on the
Management of Data� pages ��	��
���

�SRF��� T� Sellis� N� Roussopoulos� and C� Faloutsos� The R Tree� A Dynamic
Index for Multi�Dimensional Objects� In Proc� Intl� Conf� on Very Large
Data Bases �VLDB�� pages �������
���

�Val��� P� Valduriez� Join Indices� ACM Trans� on Database Systems� 	�	��	��
	���
���

�VG
�� V�Gaede and O� Guenther� Multidimensional Access Methods� ACM
Computing Surveys�

�� available at http���www�icsi�berkeley�edu� oliv�
erg�survey�ps�Z�

�Yao��� S� B� Yao� Approximating Block Accesses in Data Base Organizations�
Communication of the ACM� 	�����
���

Appendix A

We give below a simple cost model for estimating the response time of an al�
gorithm �query�� which includes both I�Os and CPU time� For the I�O time
calculation� we just assume that each I�O� i�e�� that each disk access has a �xed
cost of ��msec� Therefore� if nbio denotes the number of I�Os� the time cost �in
seconds� due to the disk is�

Tdisk � nb io � ���� ���

In order to estimate CPU time� we restricted to the following operations� rect�
angle intersections� rectangle unions and sort comparisons� The parameters are
then� �a� the number of rectangle intersections nb inter� �b� the number of num�
ber comparisons nb comp and �c� the number of rectangle unions nb union�
Since we consider a two�dimensional address space �generalizations are straight�
forward�� each test for rectangle intersection costs four CPU instructions �two
comparisons per dimension�� Also� each rectangle union costs four CPU instruc�
tions� Finally� each comparison between two numbers costs one CPU instruction�
If MIPS denotes the number of instructions executed in the CPU per second�
then the time for each operation is calculated as�

Tinter �
nb inter � �
MIPS

� ���� ���

Tunion �
nb union � �
MIPS

� ���� ���

Tcomp �
nb comp

MIPS
� ���� ���

The CPU cost is thus estimated as

Tproc � Tinter � Tunion � Tcomp ���

In addition to the above CPU costs� we assume that each read or write opera�
tion contributes to a CPU overhead of ���� CPU instructions for pre and post
processing of the page�

Tprep �
nb io � ����
MIPS

� ���� ���

The total CPU cost is then

TCPU � Tprep � Tproc ��

The response time of a query is then estimated as�

Tresponse � TCPU � Tdisk �
�

