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Abstract. The family of R-trees is suitable for storing various kinds
of multidimensional objects and is considered an excellent choice for
indexing a spatial database. Region Quadtrees are suitable for storing
2-dimensional regional data and their linear variant is used in many
Geographical Information Systems for this purpose. In this report, we
present five algorithms suitable for processing join queries between these
two successful, although very different, access methods. Two of the al-
gorithms are based on heuristics that aim at minimizing I/O cost with
a limited amount of main memory. We also present the results of exper-
iments performed with real data that compare the I/O performance of
these algorithms.

Index terms: Spatial databases, access methods, R-trees, linear quad-
trees, query processing, joins.

1 Introduction

Several spatial access methods have been proposed in the literature for storing
multi-dimensional objects (e.g. points, line segments, areas, volumes, and hyper-
volumes). These methods are classified in one of the following two categories
according to the principle guiding the hierarchical decomposition of data regions
in each method.

– Data space hierarchy: a region containing data is split (when, for example, a
maximum capacity is exceeded) to sub-regions which depend on these data
only (for example, each of two sub-regions contains half of the data)

– Embedding space hierarchy: a region containing data is split (when a certain
criterion holds) to sub-regions in a regular fashion (for example, a square
region is always split in four quadrant sub-regions)
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The book by Samet [20] and the recent survey by Gaede and Guenther [6] provide
excellent information sources for the interested reader.

A representative of the first principle that has gained significant appreciation
in the scientific and industrial community is the R-tree. There are a number of
variations of this structure all of which organize multidimensional data objects
by making use of the Minimum Bounding Rectangles (MBRs) of the objects.
This is an expression of the “conservative approximation principle”. This family
of structures is considered an excellent choice for indexing various kinds of data
(like points, polygons, 2-d objects, etc) in spatial databases and Geographical
Information Systems.

A famous representative of the second principle is the Region Quadtree. This
structure is suitable of storing and manipulating 2-dimensional regional data
(or binary images). Moreover, many algorithms have been developed based on
Quadtrees [20]. The most widely known secondary memory alternative of this
structure is the Linear Region Quadtree [21]. Linear Quadtrees have been used
for organizing regional data in Geographical Information Systems [19].

These totally different families of popular data structures can co-exist in a
Spatial Information System. For example, in his tutorial in the same conference,
Sharma [23] refers to spatial and multimedia extensions to the Oracle 8i server
that are based on the implementation of a linear quadtree and a modified R*-
tree. Each of these structures can be used for answering a number of very useful
queries. However, the processing of queries that are based on both structures
has not been studied in the literature. In this report, we present a number of
algorithms that can be used for processing joins between the two structures.

For example, the R-tree data might be polygonal objects that represent swim-
ming and sun-bathing sites and the Quadtree data a map, where black color
represents a decrease of ozon and white color represents ozon safe areas. A user
may ask which sites suffer from the ozon problem. The major problem for an-
swering such a query is to make use of the space hierarchy properties of each of
the structures, so that not to transfer in main memory irrelevant data, or not to
transfer the same data many times. Three of the proposed algorithms are simple
and suffer from such unnecessary transfers, when the buffering space provided
is limited. We also propose another two more sophisticated algorithms that deal
with this problem by making use of heuristics and achieve good performance
with a limited amount of main memory.

The organization of the paper is as follows. In Section 2, we present in brief
the families of R-trees and Linear Region Quadtrees. In Section 3, we review
join processing in spatial databases. In Section 4, we present the algorithms that
process R-Quad Joins. More specifically, in Subsections 4.1 to 4.3 we present
the three simple algorithms, in Subsection 4.4 our heuristics and the buffering
scheme used and in Subsections 4.5 and 4.6 the two sophisticated algorithms. In
Section 5, we present our experimental setting and some results of experiments
we performed with real data. These experiments compare the I/O performance
of the different algorithms. In Section 6, we summarize the contribution of this
work and discuss issues that require further research in the future.
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2 The Two Structures

2.1 R-Trees

R-trees are hierarchical data structures based on B+-trees. They are used for the
dynamic organization of a set of k-dimensional geometric objects representing
them by the minimum bounding k-dimensional rectangles (in this paper we focus
on 2 dimensions). Each node of the R-tree corresponds to the minimum rectangle
that bounds its children. The leaves of the tree contain pointers to the objects of
the database, instead of pointers to children nodes. The nodes are implemented
as disk pages.

It must be noted that the rectangles that surround different nodes may be
overlapping. Besides, a rectangle can be included (in the geometrical sense) in
many nodes, but can be associated to only one of them. This means that a spatial
search may demand visiting of many nodes, before confirming the existence or
not of a given rectangle.

The rules obeyed by the R-tree are as follows. Leaves reside on the same
level. Each leaf contains pairs of the form (R, O), such that R is the minimum
rectangle that contains spatially object O. Every other node contains pairs of the
form (R, P ), where P is a pointer to a child of the node and R is the minimum
rectangle that contains spatially the rectangles contained in this child. An R-tree
of class (m, M) has the characteristic that every node, except possibly for the
root, contains between m and M pairs, where m ≤ dM/2e. The root contains at
least two pairs, if it is not a leaf. Figure 1 depicts some rectangles on the right
and the corresponding R-tree on the left. Dotted lines denote the bounding
rectangles of the subtrees that are rooted in inner nodes.
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Fig. 1. An example of an R-tree

Many variations of R-trees have appeared. The most important of theses are
packed R-trees [18], R+trees [22] and R*-trees [2]. The R*-tree does not have the
limitation for the number of pairs of each node and follows a node split technique
that is more sophisticated than that of the simple R-tree. It is considered the
most efficient variant of the R-tree family and, as far as searches are concerned,
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it can be used in exactly the same way as simple R-trees. This paper refers to
simple R-trees or to R*-trees.

2.2 Region Quadtrees

The Region Quadtree is the most popular member in the family of quadtree-
based access methods. It is used for the representation of binary images, that
is 2n × 2n binary arrays (for a positive integer n), where a 1 (0) entry stands
for a black (white) picture element. More precisely, it is a degree four tree with
height n, at most. Each node corresponds to a square array of pixels (the root
corresponds to the whole image). If all of them have the same color (black or
white) the node is a leaf of that color. Otherwise, the node is colored gray and
has four children. Each of these children corresponds to one of the four square
sub-arrays to which the array of that node is partitioned. We assume here, that
the first (leftmost) child corresponds to the NW sub-array, the second to the
NE sub-array, the third to the SW sub-array and the fourth (rightmost) child to
the SE sub-array. For more details regarding Quadtrees see [20]. Figure 2 shows
an 8 × 8 pixel array and the corresponding Quadtree. Note that black (white)
squares represent black (white) leaves, while circles represent gray nodes.
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Fig. 2. An image and the corresponding Region Quadtree

Region Quadtrees, as presented above, can be implemented as main mem-
ory tree structures (each node being represented as a record that points to its
children). Variations of Region Quadtrees have been developed for secondary
memory. Linear Region Quadtrees are the ones used most extensively. A Linear
Quadtree representation consists of a list of values, where there is one value for
each black node of the pointer-based Quadtree. The value of a node is an address
describing the position and size of the corresponding block in the image. These
addresses can be stored in an efficient structure for secondary memory (such as
a B-tree or one of its variations). There are also variations of this representation
where white nodes are stored too, or variations which are suitable for multicolor
images. Evidently, this representation is very space efficient, although it is not
suited to many useful algorithms that are designed for pointer-based Quadtrees.
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The most popular linear implementations are the FL (Fixed Length), the FD
(Fixed length – Depth) and the VL (Variable length) linear implementations [21].

In the FL implementation, the address of a black Quadtree node is a code-
word that consists of n base-5 digits. Codes 0, 1, 2 and 3 denote directions NW,
NE, SW and SE, respectively, while code 4 denotes a do-not-care direction. If
the black node resides on level i, where n ≥ i ≥ 0, then the first n − i digits
express the directions that constitute the path from the root to this node and
the last i digits are all equal to 4. In the FD implementation, the address of a
black Quadtree node has two parts: the first part is a code-word that consists
of n base-4 digits. Codes 0, 1, 2 and 3 denote directions NW, NE, SW and SE,
respectively. This code-word is formed in a similar way to the code-word of the
FL-linear implementation with the difference that the last i digits are all equal
to 0. The second part of the address has dlog2(n+1)e bits and denotes the depth
of the black node, or in other words, the number of digits of the first part that
express the path to this node. In the VL implementation the address of a black
Quadtree node is a code-word that consists of at most n base-5 digits. Code 0 is
not used in addresses, while codes 1, 2, 3 and 4 denote one of the four directions
each. If the black node resides on level i, where n ≥ i ≥ 0, then its address
consists of n − i digits expressing the directions that constitute the path from
the root to this node. The depth of a node can be calculated by finding the
smallest value equal to a power of 5 that gives 0 quotient when the address of
this node is divided (using integer division) with this value.

In the rest of this paper we assume that Linear Quadtrees are represented
with FD-codes stored in a B+-tree (this choice is popular in many applications).
The choice of FD linear representation, instead of the other two linear repre-
sentations, is not accidental. The FD linear representation is made of base-4
digits and is thus easily handled using two bits for each digit. Besides, the sorted
sequence of FD linear codes is a depth-first traversal of the tree. Since internal
and white nodes are omitted, sibling black nodes are stored consecutively in the
B+-tree or, in general, nodes that are close in space are likely to be stored in the
same or consecutive B+-tree leaves. This property helps at reducing the I/O cost
of join processing. Since in the same quadtree two black nodes that are ancestor
and descendant cannot co-exist, two FD linear codes that coincide at all the
directional digits cannot exist neither. This means that the directional part of
the FD-codes is sufficient for building B+-trees at all the levels. At the leaf-level,
the depth of each black node should also be stored so that images are accurately
represented. In Figure 2 you can see the directional code of each black node of
the depicted tree.

3 Spatial Join Processing

In Spatial Databases and Geographical Information Systems there exists the
need for processing a significant number of different spatial queries. For example,
such queries are: nearest neighbor finding, similarity queries [16], window queries,
content based queries [24], or spatial joins of various kinds. A spatial join consists
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in testing every possible pair of data elements belonging to two spatial data sets
against a spatial predicate. This predicate might be overlap, distance within,
contain, intersect, etc. In this paper we mainly focus on the intersection spatial
join (the most widely used join type), or on spatial joins which are processed in
the same way as the intersection join.

There have been developed various methods for processing spatial joins for
spatial data using approximate geometry [13,14], two R-trees [3], PMR quad-
trees [5], seeded trees when one [9] or none [10] of the data sets does not have a
spatial index, spatial hashing [1,11,15], or sort merge join [8].

In this paper, we make the assumption that our spatial information system
keeps non-regional data in R-trees or R*-trees and regional data in Linear Region
Quadtrees, while users pose queries that involve both these two kinds of data.
For example, the non-regional data might be cities and the regional data a map
where black represents heavy clouds and white rather sunny areas. The user is
very likely to ask which cities are covered with clouds.

Most spatial join processing methods are performed in two steps. The first
step, which is called filtering, chooses pairs of data that are likely to satisfy
the join predicate. The second step, which is called refinement, examines the
predicate satisfaction for all these pairs of data. The algorithms presented in
this paper, focus on the function of the filtering step and show how a number
of pairs of the form (Quadtree block, MBR of object) can be produced (the two
members of each pair produced intersect).

4 Join Algorithms

Before join processing, the correspondence of the spaces covered by the two
structures must be established. A level-n Quadtree covers a quadrangle with
2n×2n pixels, while an R-tree covers a rectangle that equals the MBR of its root.
Either by asking the user for input, or by normalizing the larger side of the R-
tree rectangle in respect to 2n, the correspondence of spaces may be determined.
After this action, the coordinates used in the R-tree are always transformed to
Quadtree pixel locations.

Joining of the two structures can be done with very simple ways, if it is
ignored that both structures are kept in disk pages as multiway trees. These
ways fall in two categories: either we scan the entries of the B+-tree and perform
window queries in the R-tree, or we scan the entries of the R-tree and perform
window queries in the B+-tree. More specifically, we designed and implemented
the following three simple algorithms.

4.1 B+ to R Join

– Descend the B+-tree from the root to its leftmost leaf.
– Access sequentially (in increasing order) the FDs present in this leaf and for

each FD perform a range search in the R-tree (reporting intersections of this
FD and MBRs of leaves).
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– By making use of the horizontal inter-leaf pointer, access the next B+-tree
leaf and repeat the previous step.

This algorithm may access a number of FDs (and the leaves in which they reside)
that do not intersect with any data elements stored in the R-tree. Moreover, this
algorithm is very probable to access a number of R-tree nodes several times.

4.2 R to B+ Join with Sequential FD Access

– Traverse recursively the R-tree, accessing the MBRs in each node in order
of appearence within the node.

– For the MBR of each leaf accessed, search in the B+-tree for the FD of the
NW corner of this MBR, or one of its ancestors.

– Access sequentially (in increasing order) the FDs of the B+-tree until the FD
of the SE corner of this MBR, or one of its ancestors is reached (reporting
intersections of FDs and this MBR).

This algorithm may perform unnecessary accesses in both trees, while multiple
accesses in B+-tree leaves are very probable. The unnecessary accesses in the
B+-tree result from the sequential access of FDs. The following algorithm is a
variation that deals with B+-tree accessing differently.

4.3 R to B+ Join with Maximal Block Decomposition

– Traverse recursively the R-tree, accessing the MBRs in each node in order
of appearence within the node.

– For the MBR of each leaf accessed, decompose this MBR in maximal quad-
tree blocks.

– For each quadblock, search in the B+-tree for the FD of the NW corner of
this quadblock, or one of its ancestors.

– Access sequentially (in increasing order) the FDs of the B+-tree until the
FD of the SE corner of this quadblock, or one of its ancestors is reached
(reporting intersections of FDs and the respective MBR).

Although this algorithm saves many unnecessary FDs accessed, each search for a
quadblock descends the tree. Nevertheless, the same intersection may be reported
more than once. To eliminate duplicate results, a temporary list of intersections
for the current leaf is maintained.

4.4 Heuristics and Buffering Scheme

In order to overcome the unnecessary and/or duplicate accesses of the previ-
ous algorithms, we propose a number of heuristics/rationales that focus on the
opposite direction, that of increasing I/O performance.
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– heuristic 1: Process small enough parts of the R-tree space so that the join
processing of each part can be completed (in most cases) with the limited
number of FD-codes that can be kept in main memory. At the presented
form of the algorithm, each of these parts is a child of the root.

– heuristic 2: Process the children of an R-tree node in order that is close to
the order in which the FD-codes (quadtree sub-blocks) are transferred in
main memory. This order, called FD-order, is formed by sorting MBRs by
the FD-code that corresponds to their NW corner.

– heuristic 3: While processing a part of the R-tree space, keep in memory only
the FD-codes that may be needed at a later stage, drop all other FD-codes
and fill up buffer with FD-codes that are needed but were not transferred in
memory due to the buffer limit.

– heuristic 4: Use a buffer scheme for both trees that reduces the need to
transfer in memory multiple times the same disk pages (explained in detail
below).

A buffering scheme that obeys Heuristic 4 is presented graphically in Figure 3.
In detail, this scheme is as follows.
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Fig. 3. The buffering scheme

– There is a path-buffer for R-tree node-pages (with number of pages equal
to the height of the R-tree). However, the buffer pages of the R-tree buffer
are larger than the actual R-tree disk pages, because for each entry (each
MBR) an extra point is kept. This point is called START and expresses the
pixel where processing of the relevant MBR has stopped (a special value,
named MAX, specifies that processing of that MBR has been completed).
This means that during transfers from disk to memory and the opposite an
appropriate transformation of the page contents needs to be made.
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– There is a path-buffer for B+-tree node-pages (with number of pages equal
to the height of the B+-tree).

– It is assumed that the operating system keeps a large enough LRU-buffer
for disk reads. The same assumption was made in [3]. This buffer is used for
pages belonging in paths related to the current path that are likely to be
accessed again in subsequent steps of the algorithm.

– The last buffer, called FD-buffer, is not a page buffer but one that holds the
FDs needed for the processing of the current R-tree part. Each entry in this
buffer contains also a level mark (LM), that is a number that expresses the
level of the current R-tree path at which and below which the related FD
might be needed for join processing. The size of this buffer is important for
the I/O efficiency of the sophisticated algorithms.

Note that, the three simple algorithms described above can be easily made
more effective by using a path-buffer and an LRU-buffer for each tree. As will be
demonstrated in the experimentation section, by using adequately large LRU-
buffers, the performance of the simple algorithms is comparable to that of the
sophisticated ones.

The searching method used in the algorithms is as follows. When, for a point
belonging in an R-tree MBR, the existence of a Linear Quadtree code that covers
this point (its block contains this point) needs to be determined, we search the
B+-tree for the maximum FD-code M that is smaller than or equal to the FD-
code P of the pixel related to this point. If M = P and depth(M) = depth(P ),
then this specific black pixel exists in the Quadtree. If M ≤ P , depth(M) <
depth(P ) and the directional codes of M and P coincide in the first depth(M)
bits, then M is a parent of P (it represents a block that contains P ). This
searching method is used in lines 32 and 47 of the “One level FD-buffer join” and
“Many levels FD-buffer join” algorithms, respectively. In the following, these two
algorithms, which are designed according to the above heuristics, are presented.

4.5 One Level FD-Buffer Join

In very abstract terms, this algorithm works as follows:

– Process the children of the R-tree root in FD-order.
– Read as many FDs as possible for the current child and store them in FD-

buffer.
– Call recursively the Join routine for this child.
– When the Join routine returns, empty the FD-buffer and repeat the previous

two steps until the current child has been completely checked.
– Repeat for the next child of the root.

The Join routine for a node works as follows:

– If the node is a leaf, check intersections and return.
– If not (this is a non-leaf node), for each child of the node that has not

been examined in relation to the FDs in FD-buffer, call the Join routine
recursively.
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In pseudo-code form this algorithm is as follows:

01 insert R-tree root in path-buffer;
02 for every MBR x in R-tree root
03 START(x) := NW-corner-of(x);
04 order MBRs in R-tree root according to FD of their START;
05 for every MBR x in R-tree root, in FD-order
06 while START(x) < MAX begin
07 | read-FDs-in-buffer(x);
08 | R-Quad-Join(node of x);
09 | remove every FD from FD-buffer;
10 end;

11 Procedure R-Quad-Join(Z: R-tree node);
12 begin
13 if Z is not in path-buffer
14 insert Z in path-buffer;
15 if Z is internal then begin
16 | for every MBR x in Z
17 | START(x) := NW-corner-of(x);
18 | order MBRs in Z according to FD of their START;
19 | for every MBR x in Z, in FD-order
20 | if START(x) < START(MBR of Z) begin
21 | | START(x) := first pixel of x after the last FD accessed,

| | or MAX (if no such pixel exists);
22 | | if START(x) 6= MAX or at least one FD in FD-buffer intersects x
23 | | R-Quad-Join(node of x);
24 | end;
25 end
26 else
27 check and report possible intersection of MBR of Z and

every FD in FD-buffer;
28 end;

29 Procedure read-FDs-in-buffer(Z: MBR);
30 begin
31 while START(Z) < MAX and FD-buffer not full begin
32 | search in QuadTree for FD f covering START(Z) or

| for the next FD (in FD-order);
33 | if no FD was accessed
34 | f := MAX;
35 | if f intersects Z
36 | store f in FD-buffer;
37 | START(Z) := first pixel of Z after f, or MAX (if no such pixel exists);
38 end;
39 end;

In Figure 4, a simple example demonstrating the simultaneous subdivision of
space by a Quadtree for an 8×8 image (thin lines) and part of an R-tree (thick
dashed lines) is depicted. The Quadtree contains two black quadrangles (the
two dotted areas), Q1 and Q2. The MBR of the root of the R-tree is rectangle
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C
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Q1

Q2

NW-corner-of(B) = 003, level(B) = 1

SE-corner-of(B) = 301

NW-corner-of(C) = 003, level(C) = 0

SE-corner-of(C) = 031

Q1 = 000, level = 1

Q2 = 031, level = 0

............................................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................... R-tree
data

Quadtree
data

Fig. 4. An example showing Quadtree (thin lines) and R-tree (thick dashed
lines) subdivision of space.

A. However, in Figure 4, only one of the children of this root is depicted, the
one with MBR B. Moreover, a child of B is depicted, the one with MBR C.
We suppose that C is a leaf of the R-tree and it has no intersection with the
other children of B (not shown in the figure). Consider a trivial situation, where
the FD-buffer of the algorithm presented above can host one FD-code and the
corresponding level mark (LM), only. Let’s trace the most important steps of a
partial run of this algorithm for this specific case.

1 START(B) = 003; (l.3)
2 read-FDs-in-buffer(B); (l.7)
3 search reaches Q1 (l.32)
4 FD-buffer: f = 000 (l.36)
5 START(B) = 012; (l.37)
6 R-Quad-Join (B); (l.8)
7 Since B is internal... (l.15)
8 START(C) = 003; (l.17)
9 C is the first MBR in B (l.18)
10 Since START(C) < START(B)... (l.20)
11 START(C) = 012; (l.21)
12 R-Quad-Join(C); (l.23)
13 Since C is a leaf... (l.15)
14 report intersection of C and Q1; (l.27)
15 R-Quad-Join(C) returns; (l.28)
16 Other children of B are processed (l.19)
17 R-Quad-Join(B) returns; (l.28)
18 remove 000 from FD-buffer; (l.9)
19 read-FDs-in-buffer(B); (l.7)
20 search reaches Q2 (l.32)
21 FD-buffer: f = 031 (l.36)
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22 START(B) := 032; (l.37)
23 R-Quad-Join (B); (l.8)
24 Since B is internal... (l.15)
25 START(C) = 003; (l.17)
26 C is the first MBR in B (l.18)
27 Since START(C) < START(B)... (l.20)
28 START(C) = MAX; (l.21)
29 R-Quad-Join(C); (l.23)
30 Since C is a leaf... (l.15)
31 report intersection of C and Q2; (l.27)
32 R-Quad-Join(C) returns; (l.28)
33 Other children of B are processed (l.19)
34 R-Quad-Join(B) returns; (l.28)
35 remove 031 from FD-buffer; (l.9)

The run of the algorithm continues with the next loop for B. The interested
reader can trace the same example with FD-buffer size equal to 2 and note
the differences. This algorithm only fetches and releases FDs at the level of the
children of the root. For such a case, the LM for each FD is not necessary to be
kept in the FD-buffer.

4.6 Many Levels FD-Buffer Join

This algorithm, follows the same basic steps, however, it releases from the FD-
buffer the FDs that will no longer be needed in the current phase of the algorithm
as soon as possible and fills it up. Again, in very abstract terms, this algorithm
works as follows:

– Process the children of the R-tree root in FD-order.
– Read as many FDs as possible for the current child and store them in FD-

buffer.
– Call recursively the Join routine for this child.
– When the Join routine returns, repeat the previous two steps until the cur-

rent child has been completely checked.
– Repeat for the next child of the root.

The Join routine for a node works as follows:

– If the node is a leaf, remove from FD-buffer all FDs that will not be needed
in the current phase of the algorithm, check intersections and return.

– If not (this is a non-leaf node), for each child of the node that has not been
examined in relation to the FDs in FD-buffer, mark the FDs that only affect
the results for this child and call the Join routine recursively.

– When all the children of the node have been examined, reorder them and
repeat the previous step until all the children have been examined with the
current state of the FD-buffer.

– Remove from FD-buffer all FDs that will not be needed in the current phase
of the algorithm and return.
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Due to the possibility to remove FDs from FD-buffer at any level, an extra
variable, called NEXT, that keeps track of the pixel where fetching of FDs has
stopped is needed in this algorithm. In pseudo-code form the algorithm is as
follows:

01 insert R-tree root in path-buffer;
02 for every MBR x in R-tree root
03 START(x) := NW-corner-of(x);
04 order MBRs in R-tree root according to FD of their START;
05 for every MBR x in R-tree root, in FD-order begin
06 | NEXT := NW-corner-of(x);
07 | while START(x) < MAX begin
08 | | read-FDs-in-buffer(node of x);
09 | | R-Quad-Join(node of x);
10 | end;
11 end;

12 Procedure R-Quad-Join(Z: R-tree node);
13 begin
14 if Z is not in path-buffer
15 insert Z in path-buffer;
16 if Z is internal node then begin
17 | for every MBR x in Z
18 | START(x) := first pixel of x ≥ START(MBR of Z),

| or MAX (if no such pixel exists);
19 | order MBRs in Z according to FD of their START;
20 | repeat-flag := True;
21 | while repeat-flag begin;
22 | | repeat-flag := False;
23 | | for every MBR x in Z, in FD-order
24 | | if START(x) ≤ SE-corner-of(last FD accessed) and

| | START(x) 6= MAX begin
25 | | | repeat-flag := True;
26 | | | if FD-buffer not empty
27 | | | for every f in FD-buffer with LM(f) = level-of(Z)

| | | such that x is intersected by f and
| | | SE-corner-of(f) < START(y), ∀ y 6= x intersected by f

28 | | | LM(f) := level-of(node of x);
29 | | | if at least one FD in FD-buffer intersects x begin
30 | | | | R-Quad-Join(node of x);
31 | | | | read-FDs-in-buffer(Z);
32 | | | end
33 | | | else
34 | | | START(x) := first pixel of x after the last FD accessed, or

| | | MAX (if no such pixel exists);
35 | | end;
36 | | order MBRs in Z according to FD of their START;
37 | end;
38 end
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39 else
40 check and report possible intersection of MBR in Z and every

FD f in FD-buffer, such that SE-corner-of(f) ≥ START(MBR of Z);
41 START(MBR of Z) := first pixel of MBR of Z after the last FD accessed, or

MAX (if no such pixel exists);
42 remove from FD-buffer every FD f with LM(f) = level-of(Z);
43 end;

44 Procedure read-FDs-in-buffer(Z: R-tree node);
45 begin
46 while NEXT < MAX and FD-buffer not full begin
47 | search in QuadTree for FD f covering NEXT

| or for the next FD (in FD-order);
48 | if no FD was accessed
49 | f := MAX;
50 | if f intersects the active MBR in the top path-buffer node begin
51 | | LM(f) := level-of(top path-buffer node) - 1;
52 | | while LM(f) > level-of(Z) and f intersects only the active MBR

| | in the next lower path-buffer node
53 | | LM(f) := LM(f) - 1;
54 | | store f in FD-buffer
55 | end;
56 | NEXT := first pixel of the active MBR in the top path-buffer node after f,

| or MAX (if no such pixel exists);
57 end;
58 end;

5 Experimentation

We performed experiments with Sequoia data from the area of California. The
point data correspond to specific country sites, while regional data correspond
to three different categories: visible, emitted infrared and reflected infrared spec-
trums. We performed experiments for all the combinations of point and regional
data. The query used for all experiments is the intersection join query between
these two kinds of data: “which country sites are covered with colored regions?”.

There were many parameters that varied in these experiments. Each pixel
of the regional data had a range of 256 values. Each image was converted to
black and white by choosing a threshold accordingly so as to achieve a requested
black-white analogy. This analogy ranged between 20% and 80%. The images
in our experiments were 1024×1024 and 2048×2048 pixel large. The cardinality
of the point set was 68764. The page size for both trees was 1024 bytes. Under
these conditions, both R and B+ trees had 4 levels (including the leaf level). The
FD-buffer size for the two sophisticated algorithms ranged between 150 and 2500
FDs. The LRU-buffer size for each tree ranged between 0 and 40 pages.

In the following, some characteristic results of the large number of experi-
ments performed for images of 2048×2048 pixels from the visible spectrum are
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Fig. 5. The performance of the five algorithms as a function of LRU-buffer size
for 50% (upper diagram) and 80% (lower diagram) black images.

depicted. Note that, since n = 11, an FD for such an image requires 2 × 11 +
dlog2(11 + 1)e = 26 bits. In the upper (lower) part of Figure 5 the number of
disk accesses during join for each of the five algorithms, when images are 50%
(80%) black, as a function of LRU-buffer size is shown. More specifically, “one-
500 FDs” stands for “One level FD-buffer join” with FD-buffer holding up to 500
FDs, “many-500 FDs” for “Many levels FD-buffer join” with FD-buffer holding
up to 500 FDs, “R-B seq” for “R to B+ Join with sequential FD access”, “R-B
max” for “R to B+ Join with maximal block decomposition” and “B-R” for
“B+ to R Join”. It is evident that R to B+ Join with sequential FD access has
the worst performance which is not improved as the LRU-buffers size increases.
Nevertheless, R to B+ Join with maximal block decomposition and B+ to R
Join gets improved and achieves comparable performance to the sophisticated
algorithms as the LRU-buffers size increases. The two sophisticated algorithms
perform well, even for small LRU-buffers.
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To study the situation more closely, in Figure 6 we present performance
results for the two simple algorithms that have better performance and two ver-
sions (for FD-buffer size equal to 500 and to 1500 FDs) of the sophisticated
algorithms. The diagram on the upper (lower) part corresponds to 50% (80%)
black images. We can easily see that the sophisticated algorithms perform very
well for a wide range of LRU- and FD-buffers sizes, while the two simple algo-
rithms achieve comparable, or even better, performance than the sophisticated
ones, when the LRU-buffers size increases.
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Fig. 6. The performance of two of the simple and two versions of the sophisti-
cated algorithms as a function of LRU-buffer size for 50% (upper diagram) and
80% (lower diagram) black images.

Finally, in Figure 7 the performance of sophisticated algorithms for various
kinds of images as a function of a combination of LRU-buffers size and FD-
buffers size is depicted. Many levels FD-buffer join performs slightly better than
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One level FD-buffer join for all cases. Note that the difference gets smaller when
FD-buffer size increases.
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Fig. 7. The performance of the sophisticated algorithms as a function of LRU-
and FD-buffers sizes for 20%, 50% and 80% black images.

6 Conclusions

In this report, we presented five algorithms for processing of joins between two
popular but different structures used in spatial databases and Geographic In-
formation Systems, R-trees and Linear Region Quadtrees. These are the first
algorithms in the literature that process joins between these two structures.
Three of the algorithms are simple, but suffer from unnecessary and/or repeated
disk accesses, when the amount of memory supplied for buffering is limited. The
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other two are more sophisticated and are based on heuristics that aim at mini-
mizing the I/O cost of join processing. That is, they try to minimize the transfer
to main memory of irrelevant data or the multiple transfer of the same data.
Moreover, we presented results of experiments performed with real data. These
experiments investigate the I/O performance of the different join algorithms.

The presented results show that

– better performance is achieved when using the sophisticated algorithms in a
system with small LRU-buffer. For example, in a system with many users,
where buffer space is used by many processes, the sophisticated algorithms
are the best choice. Besides, the sophisticated algorithms are quite stable.
That is, their performance is not heavily dependent on the increase of avail-
able main memory.

– When there is enough main memory (when the LRU-buffer is big enough),
one of the simple algorithms, the B+ to R Join algorithm, performs very
well.

Intuition leads us to believe that the sophisticated algorithms are expected to
perform better for data that obey unusual distributions, since they are designed
to partially adapt to the data distribution.

The presented algorithms perform only the filtering step of the join. Pro-
cessing of the refinement step requires the choice and use of Computational
Geometry algorithms [12,17], which is among our future plans in the area of this
topic. Each choice should take into account not only worst-case complexity, but
expected sizes of data sets, average case complexity and multiplicative constant
of complexity as well, for each alternative. In addition, these algorithms could
be tested on other kinds of data, e.g. making use of R-trees as a storage medium
for region data as well. Moreover, we plan to elaborate the presented heuristics
even further and/or examine different policies of page replacement (other than
LRU) so as to improve performance, or master the worst case behavior of the
join algorithms (when they deal with “pathological” data, deviating from the
usual situations in practice). Another route of research would be to examine the
parallel processing of this kind of joins, based on ideas presented in [4].
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