
Continuous Processing of Preference Queries

in Data Streams

Maria Kontaki, Apostolos N. Papadopoulos, and Yannis Manolopoulos

Department of Informatics, Aristotle University
54124 Thessaloniki, Greece

{kontaki,papadopo,manolopo}@csd.auth.gr

Abstract. Preference queries have received considerable attention in
the recent past, due to their use in selecting the most preferred ob-
jects, especially when the selection criteria are contradictory. Nowadays,
a significant number of applications require the manipulation of time
evolving data and therefore the study of continuous query processing
has recently attracted the interest of the data management community.
The goal of continuous query processing is to continuously evaluate long-
running queries by using incremental algorithms and thus to avoid query
evaluation from scratch, if possible. In this paper, we examine the charac-
teristics of important preference queries, such as skyline, top-k and top-k
dominating and we review algorithms proposed for the evaluation of con-
tinuous preference queries under the sliding window streaming model.

1 Introduction

Recently, preference queries have significantly attracted the research interest.
Preference queries are frequently used in multicriteria decision making applica-
tions, where a number of (usually) contradictory criteria are involved to select
the most convenient answers to the user.

Assume that a customer is interested in purchasing a PDA device. Assume
further, that the customer focuses on two important characteristics of PDAs,
namely, price and weight. Unfortunately, these two criteria are frequently con-
tradictory and therefore, the number of candidates should be carefully selected.
In this example, each PDA is represented as a tuple containing two attributes
(price and weight) and the customer is interested in items that minimize these
attributes. Depending on the semantics of each attribute, in other cases the cus-
tomer may desire the maximization of the attributes in question, or any other
combination. For the rest of the discussion, we consider that smaller values are
preferable. However, most of the techniques mentioned in this paper are directly
applicable to other cases as well.

Preference queries have received considerable attention in the past, due to
their use in selecting the most preferred items, especially when the selection cri-
teria are contradictory. Skyline [5,8,29,44] and top-k [3,7,10] queries have been
thoroughly studied by the database community. Preferences have been used pre-
viously in other disciplines such as Game Theory (e.g., Pareto optimality [34])
and Computational Geometry (e.g., maximal vectors [20]).

J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 47–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

48 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

During the last years, we are witnessing a significant interest of the research
community towards continuous query processing, due to the fact that many
applications deal with data that change frequently with respect to time. In these
types of applications, the goal is to continuously evaluate the query and report
the result in real time contrary to ad-hoc query executions that are used in
traditional applications [1,12,25]. Examples of such emerging applications are
network monitoring, financial data analysis, sensor networks to name a few.

The most important property of data streams is that new tuples are contin-
uously appended and, therefore, efficient storage and processing techniques are
required to cope with high update rates. More specifically, a stream-oriented al-
gorithm should satisfy the following requirements: (a) fast response time, (b) in-
cremental evaluation, (c) limited number of data access, and (d) in memory
storage to avoid expensive disk accesses. Therefore, algorithms proposed for tra-
ditional databases are not appropriate and new methods and techniques should
be developed to fulfil the requirements posed by the data stream model.

Efficient stream processing algorithms are difficult to be designed, due to the
unbounded nature of data streams. Several models have been proposed to reduce
and bound the size of the streams. A class of algorithms focuses on the recent
past of data streams by applying the sliding window model [2,14]. This way,
only the most recent tuples (active tuples) of the data stream are considered for
query processing, whereas older tuples are not taken into account as they are
considered obsolete.

There exist two basic forms of sliding windows. In a count-based sliding win-
dow, the number of active tuples remains constant (i.e., the sliding window
contains the last W tuples) and therefore for each new tuple that arrives, the
oldest one expires. In a time-based sliding window, the number of active tuples
may vary. The expiration time of a tuple does not depend on the arrival or expi-
ration of other tuples. The set of active tuples is composed of all tuples arrived
the last T time instances. Figure 1 illustrates a count-based sliding window.

In this paper, we discuss the state-of-the-art processing techniques of the most
important preference queries in data streams under the sliding window model.

The last W values of the data stream
are considered for query processing

Fig. 1. Example of a count-based sliding window of length W=9

Continuous Processing of Preference Queries in Data Streams 49

More specifically, we study proposed methods for the continuous evaluation of
skyline and top-k queries. Moreover, we examine closely a new type of prefer-
ence query, the top-k dominating query, that recently has attracted significant
researcher interest.

The rest of the paper is organized as follows. Sections 2 and 3 study different
processing techniques of skyline and top-k queries respectively and give detailed
description for the most important ones. Section 4 presents the top-k dominating
query and discusses early related work on this topic. Finally, Section 5 concludes
the work and discusses future research directions.

2 Skyline Queries

The skyline query is one of the most widely used preference queries. It is based
on the dominance relationship between tuples. Assuming that smaller values
are preferable in all dimensions, the dominance relationship and the skyline are
defined as follows:

Definition 1 (dominant tuple).A tuple ti dominates another tuple tj (ti≺ tj),
if and only if ti is smaller than or equal to tj in all dimensions and it is strictly
smaller than tj in at least one of them.

Definition 2 (skyline). The skyline consists of the tuples not dominated by
any other tuple.

The key advantage of the skyline query is that it does not require any user-
defined information or parameter. Moreover, skyline queries are characterized
by the scaling invariance property, which means that if scaling is applied to
any dimension values, the result remains unchanged. On the other hand, as the
dimensionality increases, the probability for a tuple to dominate another tuple
is reduced significantly and, therefore, the number of skyline tuples increases
substantially. Overall, the skyline query does not bound the size of the output
and therefore in extreme cases it is possible that all the tuples be part of the
skyline result.

In the past decade, skyline queries are thoroughly studied for several types
of modern applications such as P2P networks [43], MANETs [15] and Web sys-
tems [4]. Moreover, methods for different types of data, such as spatial [39] and
uncertain data [35], are developed to increase efficiency of skyline query process-
ing. Additionally, several variations of the skyline have been proposed. In [44],
the authors study the skyline computation in subspaces. Another variation has
been proposed in [29] for selecting skyline tuples according to their domination
capabilities. Dominance relationships between different data sets (e.g., products
and customers) are examined in [27], where the authors proposed an organization
scheme called DADA cube, to support a number of significant query types.

The first attempt to develop an algorithm more suitable for dynamic data was
[41], where the authors presented a progressive algorithm for skyline computa-
tion. In the sequel, more sophisticated and efficient progressive methods have

50 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

Table 1. Continuous skyline algorithms

Method Query Type Window Type Multiple Queries

cnN skyline count-based yes

LookOut skyline time-based no

Lazy and Eager skyline both no

Filter and Sampling FSQW time-based no

CoSMuQ k-dominant skyline both yes

been developed [24,37,38]. These algorithms are not appropriate for continuous
evaluation but, instead, they were developed to support online user preferences
and data that are not updated frequently and only a small number of inser-
tions/deletions can be handled efficiently. Table 1 contains a brief description of
continuous skyline computation algorithms, which are studied in detail in the
next subsections.

2.1 cnN

In [28], the authors proposed a novel technique for continuous skyline query
processing. First, they provide a pruning technique to reduce the number of
elements to be stored for processing. If the data distribution is independent
and data values are always distinct, then the average number of elements that
are stored is O(logd N), where N is the maximum size of the sliding windows
and d is the number of dimensions. The survived elements RN are organized
in graphs based on the critical dominance relationship between them and these
graphs form a forest. Assume two active elements e1 and e2. Element e1 critical
dominates e2, if it is the youngest element that is older than e2 and dominates it.
Each critical dominance relationship is represented by an edge of the forest. The
forest is encoded by a set of intervals of 1-dimensional space and then skyline
query is evaluated by using stabbing queries.

In addition, a maintenance algorithm of RN and the encoded scheme of in-
tervals is provided. Then, a trigger-based incremental algorithm cnN has been
proposed to enable efficient continuous skyline processing. The proposed frame-
work supports multiple n-of-N skyline queries, i.e., skyline queries with different
sliding window size n (n ≤ N). The continuous algorithm updates the result in
O(δ) time per new data element and requires O(log s) time to update the trigger
list per result change, where δ is the number of elements changed in the current
result and s is the number of skylines elements. The main disadvantage of the
cnN algorithm is that it requires the maintenance of several structures, such as
graphs, interval tree and R∗-tree used for the survived tuples.

2.2 LookOut

Algorithm cnN handles count-based sliding windows, whereas algorithm
LookOut [33] has been proposed for time-based windows. LookOut uses a heap
to store the skyline tuples and a R∗-tree to store the active tuples of the window.

Continuous Processing of Preference Queries in Data Streams 51

The proposed method utilizes some attractive properties of skyline queries, such
as the transitive property. When a new tuple is inserted, we check if the new
tuple is a skyline tuple or not. The algorithm uses a best-first search on the
spatial index and discards nodes that their lower left corner does not dominate
the new tuple. When a skyline tuple expires, we check the spatial index to find
new skyline tuples. The key observation is that new skyline tuples should be
part of the skyline of the space dominated by the expired tuple. These tuples
are detected by a best-first search and then are checked further to discard tuples
that are dominated by other skyline tuples. Notice that the proposed algorithm
does not prune tuples (all the active tuples are stored in a R∗-tree), although
this is possible as we will see in the next subsection.

2.3 Lazy and Eager

In [42], two algorithms have been presented, called Lazy and Eager. We begin
our description with the first one. When a new tuple t arrives, Lazy searches
for tuples in the dominance region (DR) and the antidominance region of t to
update the skyline tuples. Region t.DR is the data space that is dominated by t,
whereas t.ADR is the area where a tuple dominating t could fall. When a skyline
tuple expires, the algorithm deletes all the expired tuples (notice that Lazy keep
stored tuples even after their expiration) and then tries to find possible skyline
tuples in the area dominated exclusively by the expired skyline tuple. Lazy and
LookOut methods are similar, since they have same operations.

To improve performance, two attractive properties of “stream skylines” have
been presented in [42]: (a) a tuple can be safely discarded if it is dominated by
an incoming tuple, and (b) a tuple can be part of skyline for at most a sin-
gle continuous time interval, which is called skyline influence time and denotes
the minimum possible time at which the tuple can be part of skyline. Algo-
rithm Eager utilizes these properties. Therefore, when a new tuple t is inserted,
Eager during the skyline update also discards the active tuples belonging to
t.DR. Then, it computes the skyline influence time of t and forms an event that
will be processed in this time. Eager compared to Lazy reduces the memory
consumption by keeping those tuples that may be inserted in the skyline, but
requires additional overhead to process the events.

2.4 Filter and Sampling

Continuous skyline queries report the skyline of the active tuples in each update.
These types of skylines are called snapshot skylines. In [47], the authors state
that snapshot skylines are not very meaningful, since in a streaming environment
the skyline tuples may change too fast, and thus, it will be more interesting to
identify tuples that are consistently part of skyline. Therefore, they introduce
a variation of snapshot skylines called frequent skyline query over a sliding win-
dow (FSQW), which returns the tuples appearing in the skylines of at least μ of
the n most recent timestamps. It is proved that an exact algorithm for FSQW
requires the exact snapshot skyline computation.

52 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

The server-client architecture is considered, where the server continuously
maintains the result. Moreover, changes to existing tuples are considered in-
stead of new tuples, i.e., each client transmit a specific tuple and changes of it.
Three algorithms have been proposed aiming at minimizing the communication
overhead instead of processing cost [47]. The first algorithm, called Filter, is an
exact algorithm and therefore can be also used for the evaluation of snapshot
skylines. Filter avoids the transmission of updates to the server if they cannot
influence the skyline. Specifically, the server computes a filter for each tuple
and an update is transmitted from the client to the server only if (a) the tuple
violates its filter, or (b) the server specifically asks the tuple. There are many
possible filters for each tuple. The authors propose a model that tries to balance
the transmissions due to filter violations and server requests.

Although Filter reduces significantly the number of updates transmitted to
the server, its performance may degrade for large and frequently updated data
sets. Algorithm Sampling has been proposed to reduce the communication over-
head by computing approximate FSQW outputs. According to Sampling, all
clients report their current status with some global probability R, which depends
on the trade-off between user-defined accuracy and overhead. Finally, an algo-
rithm, called Hybrid, has been presented that combines Filter and Sampling.
Hybrid exploits the advantages of the two algorithms and avoids their disadvan-
tages by allowing records to switch among different modes.

2.5 CoSMuQ

The number of skyline tuples depends heavily on the dimensionality of the data
set and the data distribution. The number of tuples in the skyline increases sub-
stantially with increasing dimensionality, leading to difficulties in selecting the
best object that satisfy user’s preferences. Towards eliminating the huge num-
ber of skyline tuples, a novel method has been proposed in [11], which relaxes
the dominance definition to increase the probability that a tuple will domi-
nate another. Evidently, by increasing this probability, the number of skyline
tuples is reduced. Instead of searching for ordinary skyline tuples in all dimen-
sions, k-dominant skylines are being used. Assuming that the smaller values are
preferable, the following definitions explain:

Definition 3 (k-dominant tuple). A tuple ti k-dominates another tuple tj,
if and only if ti is smaller than or equal to tj in at least k dimensions and it is
strictly smaller than tj in at least one of them.

Definition 4 (k-dominant skyline). The k-dominant skyline consists of the
tuples not k-dominated by any other tuple.

The processing techniques reported in [11] are executed in static data sets. In [21]
the continuous k-dominant skyline evaluation over sliding windows is studied.
The proposed algorithm CoSMuQ handles multiple continuous queries. Each
query may be defined in a subset of the available dimensions, since different
users are usually interested in different attributes. Moreover, the parameter k

Continuous Processing of Preference Queries in Data Streams 53

set by each query, may be different. The proposed method divides the space
in pairs of dimensions. For each pair, a grid is used to compute skyline tuples
for these dimensions. Then, the method exploits the discovered skyline tuples to
eliminate candidate k-dominant skyline tuples and it combines the partial results
to compute the final result. The proposed scheme uses only simple domination
checks, which are faster than k-dominant checks. However, in high dimensional
spaces, CoSMuQ considers a large number of grids.

3 Top-k Queries

A top-k query uses a user-defined preference function to assign scores to tuples
and rank them. Assuming that smaller values of the preference function are
preferable, the top-k query is defined as follows:

Definition 5 (top-k). Given a data set and a preference function F , a top-k
query returns the k tuples in the data set with the smallest scores according to F .

Figure 2 depicts a time instance of the sliding window (W=10) of two-dimensional
tuples. Assume that the preference function F is the sum of the values in two di-
mensions, whereas smaller values of F are preferable. A top-3 query (k=3) re-
trieves tuples t7, t8 and t3, since they have the three smallest score 5, 5 and 5.5
respectively. In this example, the skyline consists of tuples t3, t4, t5, t7 and t8,
since these tuples are not dominated by any other active tuple.

In contrast to skyline queries, top-k queries bound the output size. If two or
more tuples have the same score, then we can either: (a) report all these tuples
but we may expect more than k tuples in the result, or (b) use a tie-breaking
criterion, e.g., the value of a specific dimension. The major disadvantage of the
top-k query is that it requires a user-defined preference function. This means
that different preference functions can lead to different score assignments and

1 4

1

2

3

4

5

6
d2

d1

t9

t6
t8

t3

t5

t2
t1

t4

(a) 2-dimensional representation (b) tuples and scores

t7

t10

id d1 d2
t1 4 4.5
t2 6.5 5
t3 0.5 5
t4 5 1.5
t5 6 0.5
t6 3 4
t7 2.5 2.5
t8 1.5 3.5
t9 4.5 3
t10 5.5 5.5

F=d1+d2
8.5
7

5.5
6.5
6.5
7
5
5

7.5
11

2 3 5 6 7

Fig. 2. Example of preference queries

54 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

therefore in different results. Thus, the analysis of the results is not straight-
forward. Moreover, it is not always easy for a user to specify the appropriate
preference function, especially with growing number of dimensions.

The literature is rich in methods proposed for the efficient evaluation of top-
k queries [3,7,10,16]. Top-k queries have been studied in the context of several
database types, such as relational [3], multimedia [9] and web databases [31].
Algorithms Onion [7] and Prefer [16] have been proposed for top-k queries
in traditional databases. Onion uses the convex hulls of the database, whereas
Prefer uses sorted lists. In [10], the authors presented algorithm MPro for
the optimization of expensive predicates processing. Views are used in [13] to
answer top-k queries. All the aforementioned methods are appropriate for con-
ventional databases. There are many other methods in the bibliography but
their description is beyond the scope of this paper. An excellent survey on top-k
query processing in relational databases can be found in [18]. We continue with
the detailed description of methods proposed for continuous top-k evaluation.
A summary of the studied algorithms is given in Table 2.

Table 2. Continuous top-k methods algorithms

Method Query Type Window Type Multiple Queries

TMA and SMA top-k both yes

Distributed top-k distributed top-k time-based no

Compact Set based top-k on uncertain data time-based no

Det and Sam top-k on uncertain data time-based no

3.1 TMA and SMA

Mouratidis et al. [32] proposed two algorithms for continuous top-k query execu-
tion in sliding windows. The first one, called TMA, is based on simple observa-
tions regarding the continuous processing of top-k queries. Each top-k query has
an influence region. The influence region of a query determines the data space in
which a tuple should belong so that it may change the query result. When a new
tuple is inserted, TMA checks if the new tuple belongs to the influence region
of any query and updates its top-k respectively. When a top-k tuple expires,
a from scratch computation is performed if the new tuple does not have better
score than the expired tuple.

To overcome this disadvantage, the authors proposed the algorithm SMA,
which is based on the observation that the records appearing in some result of
top-k are the ones that belong to the k-skyband [38] in the score-time space.
Thus, the proposed algorithm transforms the problem of continuous top-k into
k-skyband maintenance. SMA restricts the skyband maintenance for a query
to tuples falling inside its influence region. It uses a balanced tree to store the
arrival time of the k-skyband tuples sorted in descending order. Moreover, it
keeps the dominance counter for each tuple t stored in balanced tree, which is
the number of tuples with better score that arrive after t. However, there may

Continuous Processing of Preference Queries in Data Streams 55

be a scenario where the skyband contains fewer than k tuples. In such a case,
the algorithm computes the skyband tuples from scratch.

3.2 Distributed Top-k

Babcock and Olston [6] proposed a distributed algorithm for top-k query pro-
cessing. The problem considered in [6], assumes a central node and a number of
monitor nodes, each one monitoring a data object. The changes of a data object
form a data stream and, therefore, multiple data streams should be processed
by the central node. The transmission of the entire data stream from a monitor
node to the central node is unnecessary. Thus, the authors proposed a scheme in
which arithmetic constraints are maintained at monitor nodes and distributed
communication happens when constraints are violated. Then, the central node
updates the top-k result and assigns new constraint to the monitor node.

The proposed algorithm is exact, i.e., the central node has the correct top-
k output in every time instance. Additionally, approximate answers have been
studied. Moreover, the algorithm aims at minimizing the network overhead. How-
ever, the proposed scheme is not fully distributed, since it uses some sort of “base
station” or “coordinator”.

3.3 Compact Set-Based Algorithms

In [19], the processing of continuous top-k queries in a sliding window over uncer-
tain data streams is examined. The challenge of processing queries on uncertain
data streams lies on high update rates and the exponential growth in the num-
ber of possible worlds induced by the uncertain data model. The paper adopts
a simple uncertain data model, where each tuple appears with a certain prob-
ability independent of other tuples. Also, it defines the Pk − topk query that
returns the k most probable tuples of being the top-k among all. Moreover, the
paper introduces the concept of compact set on which the proposed synopses are
based on.

The authors extend the problem of uncertain top-k queries on static data sets
to the case of data streams over sliding windows. First, a synopsis is presented
that can handle only insertions (i.e., landmark windows). However, handling
deletions is much more difficult and requires carefully designed synopses. The
paper proposed several space and time efficient synopses with provable bounds
to enable continuous top-k evaluation over sliding windows. Overall, the authors
proposed and evaluated five algorithms based on the compact set concept.

3.4 Det and Sam

Hua and Pay [17] also examined the continuous evaluation of top-k queries over
uncertain data streams. They proposed a novel uncertain data stream model and
introduced the continuous probabilistic threshold top-k queries. More specifi-
cally, given a probabilistic threshold top-k query, a set of uncertain data streams
and a sliding window length, the continuous probabilistic threshold top-k query

56 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

reports the set of uncertain data streams whose top-k probabilities in the sliding
window are at least p, for each time instant t.

The authors proposed four algorithms. The exact algorithm, called Det,
computes the exact answer of a continuous probabilistic threshold top-k query.
Moreover, they proposed a sampling algorithm, called Sam, which estimates the
probability that an uncertain object being ranked top-k via sampling. Proba-
bilistic guarantees are also provided. Then, Sam computes an approximation
answer based on the estimated probabilities. Additionally, quantile summary
techniques are applied to develop the space efficient versions of both algorithms.

4 Top-k Dominating Queries

Recently, an interesting alternative has been proposed [38], which combines the
dominance concept with the notion of scoring functions. This new query is called
top-k dominating query. The following definitions explain:

Definition 6 (domination power). The domination power of a tuple is the
number of tuples it dominates.

Definition 7 (top-k dominating query). A top-k dominating query retrieves
the k tuples in the data set with the highest domination power.

To clarify the definitions above, assume the example of Figure 2. A top-3 (k=3)
dominating query retrieves tuples t7, t8 and t6 with domination power 5, 4
and 3 respectively. All the other tuples have smaller domination power than 3.
Although preference queries as skyline and top-k, have been studied in a data
stream perspective, top-k dominating queries have not received adequate at-
tention for this scenario. However, the top-k dominating query is an important
decision support tool. In a sense, it combines skyline and top-k queries, resulting
in a more complex one. Practically, it preserves their advantages without shar-
ing their limitations. Top-k dominating queries use the dominant relationship
rather than a user defined score function. The determination of the appropriate
score function is not obvious, especially when the number of attributes increases.
On the other hand, top-k dominating queries use an intuitive score to rank the
tuples that can be interpreted easily by a non-expert. Moreover, top-k dominat-
ing queries bound the size of the resulting set of tuples, in contrast to skyline
queries, where the size of the result is unbounded and increases significantly as
the number of attributes grows. Additionally, they preserve the scaling invariance
property.

In skylines and top-k queries, we can use the expiration time to prune tuples
resulting in more efficient algorithms with respect to the memory requirements
and the response time. More specifically, in a skyline query, if a tuple ti is
dominated by another tuple tj and expires before tj , then it is safe to prune
tuple ti. Assume the example of Figure 2. Assume further that the pointer of
a tuple denotes its arrival time, i.e., t1.arr=1. Tuple t1 is dominated by t8 end
expires before t8, thus t1 can be safely discarded. In a top-k query, if k tuples

Continuous Processing of Preference Queries in Data Streams 57

exist with better scores than the score of a tuple ti and ti expires before them,
then it is safe to discard tuple ti. Returning to the example of Figure 2, the score
of t1 is 8.5 and there are more than 3 tuples with score better than 8.5 and expire
after t1 (e.g., t3, t4 and t5), therefore t1 can be pruned. On the other hand, top-k
dominating queries are more complicated. It is not possible to discard tuples,
even if we know that it is not possible to be in the result during their lifespan.
This is because the existence of a tuple affects the domination power of the other
tuples.

Top-k dominating queries have been addressed in [45,46,26]. In [45,46] the
authors proposed efficient algorithms to determine the top-k dominating tuples
by using an aggregate R-tree index. In [26], the authors studied efficient algo-
rithms for top-k dominating query processing in uncertain databases. A pruning
approach has been proposed to reduce the space of a probabilistic top-k dominat-
ing query and in addition, approximate queries are examined. The domination
power is also used in [36] to rank multidimensional tuples. The concept of dom-
inance score has been used by [40] towards ranking web services.

The literature is limited regarding continuous variants of top-k dominating
query processing techniques over data streams. In [23], the authors use a simple
grid-based indexing scheme to facilitate efficient search and update operations
avoiding expensive reorganization costs of dynamic hierarchical access methods.
Three algorithms are proposed. BFA is a naive approach computing all the
domination checks in each update and it is simply proposed for comparison
reasons. The algorithms EV A and ADA use an event-based approach to reduce
both the number of domination checks during an update and the number of
exact score computations as well. ADA use two optimizations regarding the
event computations achieving the decrease of the number of events processed
and, therefore, enhancing the efficiency of EV A. Subspace top-k dominating
queries are examined in [22]. A new grid-based indexing scheme is proposed,
called adaptive grid, to efficiently process subspace top-k dominating queries.
Moreover, several optimizations are proposed to enhance the query processing
mechanism. These methods are the first attempt for continuous top-k dominating
queries evaluation.

5 Conclusions and Future Work

In this paper, we review various preference queries and we discuss their differ-
ences. Moreover, we thoroughly examine the related work on continuous pro-
cessing of preference queries over sliding windows and we discuss the advantages
and the disadvantages of the proposed methods.

Skyline queries have been examined more than other preference queries in the
context of data streams. Various methods have been proposed to handle both
count-based and time-based sliding windows. However, there are many open is-
sues to be addressed. Subspace skyline queries have not been studied as well
as many widely used variations of skylines such as constrained skylines. Re-
cently, a theoretical study of skyline cardinality estimation over sliding windows

58 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

is presented in [30]. The authors estimate skyline cardinality over uniformly and
arbitrary distributed data. The results of this study can be used to optimize the
query methodology to improve memory consumption and processing cost or the
network overhead.

Although the study of continuous top-k queries has moved onto uncertain data
streams, there are many research directions that should be examined, to develop
more sophisticated and efficient methods for continuous top-k queries in certain
data. Methods, more efficient than the existing ones, are required to handle
the expiration of tuples. Distributed top-k evaluation can be enhanced further
by developing methods that have as uniformly as possible energy consumption.
Methods can exploit various characteristics of data types such as spatial data to
improve efficiency in specific modern applications.

Recently, a new alternative preference query, the top-k dominating query,
has attracted the research interest. This query is an important tool for decision
support since it provides data analysts an intuitive way for finding significant
objects. However, the related work is very limited and therefore there are many
issues on this topic to be addressed. For example, approximate evaluation is
a very promising research direction, since in many cases we are willing to trade
accuracy for speed of computation. More complicated scenarios can be also ex-
amined, such as distributed environments or multiple queries existence.

References

1. Aggarwal, C.C.: Data Streams: Models and Algorithms. Springer, Heidelberg
(2007)

2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in
Data Stream Systems. In: Proc. of PODS, pp. 1–16 (2002)

3. Bruno, N., Chaudhuri, S., Gravano, L.: Top-k Selection Queries over Relational
Databases: Mapping Strategies and Performance Evaluation. ACM TODS 27(2),
153–187 (2002)

4. Balke, W.-T., Guntzer, U., Zheng, J.X.: Efficient Distributed Skylining for
Web Information Systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D.,
Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS,
vol. 2992, pp. 256–273. Springer, Heidelberg (2004)

5. Borzsonyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: Proc. of ICDE,
pp. 421–430 (2001)

6. Babcock, B., Olston, C.: Distributed Top-k Monitoring. In: Proc. of SIGMOD, pp.
28–39 (2003)

7. Chang, Y.-C., Bergman, L.D., Castelli, V., Li, C.-S., Lo, M.-L., Smith, J.R.: The
Onion Technique: Indexing for Linear Optimization Queries. In: Proc. of SIGMOD,
pp. 391–402 (2000)

8. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with Presorting. In: Proc.
of ICDE, pp. 717–719 (2003)

9. Chaudhuri, S., Gravano, L., Marian, A.: Optimizing Top-k Selection Queries over
Multimedia Repositories. IEEE TKDE 16(8), 992–1009 (2004)

10. Chang, K.C.-C., Won Hwang, S.: Minimal Probing: Supporting Expensive Predi-
cates for Top-k Queries. In: Proc. of SIGMOD, pp. 346–357 (2002)

Continuous Processing of Preference Queries in Data Streams 59

11. Chan, C.Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: Finding k-
Dominant Skylines in High Dimensional Space. In: Proc. of SIGMOD, pp. 503–514
(2006)

12. Chaudhry, N., Shaw, K., Abdelguerfi, M.: Stream Data Management. Springer,
Heidelberg (2006)

13. Das, G., Gunopulos, D., Koudas, N., Tsirogiannis, D.: Answering Top-k Queries
Using Views. In: Proc. of VLDB, pp. 451–462 (2006)

14. Gehrke, J., Korn, F., Srivastava, D.: On Computing Correlated Aggregates over
Continual Data Stream. ACM SIGMOD Record 30(2), 13–24 (2001)

15. Huang, Z., Jensen, C.S., Lu, H., Ooi, B.C.: Skyline Queries against Mobile
Lightweight Devices in MANETs. In: Proc. of ICDE, p. 66 (2006)

16. Hristidis, V., Papakonstantinou, Y.: Algorithms and Applications for Answering
Ranked Queries Using Ranked Views. VLDB Journal 13(1), 49–70 (2004)

17. Hua, M., Pei, J.: Continuously Monitoring Top-k Uncertain Data Streams: a Prob-
abilistic Threshold Method. Distrib. Parallel Databases 26, 29–65 (2009)

18. Ilyas, I.F., Beskales, G., Soliman, M.A.: A Survey of Top-k Query Processing Tech-
niques in Relational Database Systems. ACM Comput. Surv. 40(4) (2008)

19. Jin, C., Yi, K., Chen, L., Yu, J.X., Lin, X.: Sliding Window Top-k Queries on
Uncertain Streams. In: Proc. of PVLDB, pp. 301–312 (2008)

20. Kung, H.T.: On Finding the Maxima of a Set of Vectors. Journal of the ACM 22(4),
469–476 (1975)

21. Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y.: Continuous k-Dominant Sky-
line Computation on Multidimensional Data Streams. In: Proc. of SAC, pp. 16–20
(2008)

22. Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y.: Continuous Top-k Dominat-
ing Queries in Subspaces. In: Proc. of PCI (2008)

23. Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y.: Continuous Top-k Dominat-
ing Queries. Technical Report, Aristotle University of Thessaloniki (2009)

24. Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: an Online Algo-
rithm for Skyline Queries. In: Proc. of VLDB, pp. 275–286 (2002)

25. Koudas, N., Srivastava, D.: Data Stream Query Processing: a Tutorial. In: Proc.
of VLDB, p. 1149 (2003)

26. Lian, X., Chen, L.: Top-k Dominating Queries in Uncertain Databases. In: Proc.
of EDBT, pp. 660–671 (2009)

27. Li, C., Ooi, B.C., Tung, A.K.H., Wang, S.: DADA: a Data Cube for Dominant
Relationship Analysis. In: Proc. of SIGMOD, pp. 659–670 (2006)

28. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the Sky: Efficient Skyline Compu-
tation over Sliding Windows. In: Proc. of ICDE, pp. 502–513 (2005)

29. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting Stars: the k Most Representative
Skyline Operator. In: Proc. of ICDE, pp. 86–95 (2007)

30. Lu, Y., Zhao, J., Chen, L., Cui, B., Yang, D.: Effective Skyline Cardinality Esti-
mation on Data Streams. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA
2008. LNCS, vol. 5181, pp. 241–254. Springer, Heidelberg (2008)

31. Marian, A., Bruno, N., Gravano, L.: Evaluating Top-k Queries over Web-Accessible
Databases. ACM TODS 29(2), 319–362 (2004)

32. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous Monitoring of Top-k Queries
over Sliding Windows. In: Proc. of SIGMOD, pp. 635–646 (2006)

33. Morse, M.D., Patel, J.M., Grosky, W.I.: Efficient Continuous Skyline Computation.
In: Proc. of ICDE, p. 108 (2006)

34. Osborne, M.J., Rubenstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

60 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

35. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic Skylines on Uncertain Data. In:
Proc. of VLDB, pp. 15–26 (2007)

36. Papadopoulos, A.N., Lyritsis, A., Nanopoulos, A., Manolopoulos, Y.: Domination
mining and querying. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007.
LNCS, vol. 4654, pp. 145–156. Springer, Heidelberg (2007)

37. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An Optimal and Progressive Algorithm
for Skyline Queries. In: Proc. of SIGMOD, pp. 467–478 (2003)

38. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline Computation in
Database Systems. ACM TODS 30(1), 41–82 (2005)

39. Sharifzadeh, M., Shahabi, C.: The Spatial Skyline Queries. In: Proc. of VLDB, pp.
751–762 (2006)

40. Skoutas, D., Sacharidis, D., Simitsis, A., Kantere, V., Sellis, T.: Top-k Dominant
Web Services Under Multi-Criteria Matching. In: Proc. of EDBT, pp. 898–909
(2009)

41. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient Progressive Skyline Computation. In:
Proc. of VLDB, pp. 301–310 (2001)

42. Tao, Y., Papadias, D.: Maintaining Sliding Window Skylines on Data Streams.
IEEE TKDE 18(3), 377–391 (2006)

43. Wang, S., Ooi, B.C., Tung, A.K.H., Xu, L.: Efficient Skyline Query Processing on
Peer-to-Peer Networks. In: Proc. of ICDE, pp. 1126–1135 (2007)

44. Xia, T., Zhang, D.: Refreshing the Sky: The Compressed Skycube with Efficient
Support for Frequent Updates. In: Proc. of SIGMOD, pp. 491–502 (2006)

45. Yiu, M.L., Mamoulis, N.: Efficient Processing of Top-k Dominating Queries on
Multi-Dimensional Data. In: Proc. of VLDB, pp. 483–494 (2007)

46. Yiu, M.L., Mamoulis, N.: Multidimensional Top-k Dominating Queries. VLDB
Journal 18(3), 695–718 (2009)

47. Zhang, Z., Cheng, R., Papadias, D., Tung, A.K.H.: Minimizing the Communication
Cost for Continuous Skyline Maintenance. In: Proc. of SIGMOD, pp. 495–508
(2009)

	Continuous Processing of Preference Queries in Data Streams
	Introduction
	Skyline Queries
	cnN
	LookOut
	Lazy and Eager
	Filter and Sampling
	CoSMuQ

	Top-k Queries
	TMA and SMA
	Distributed Top-k
	Compact Set-Based Algorithms
	Det and Sam

	Top-k Dominating Queries
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

