
Noname manuscript No.
(will be inserted by the editor)

Spectral Clustering for Link Prediction in Social Networks

with Positive and Negative Links

Panagiotis Symeonidis · Nikolaos Mantas

the date of receipt and acceptance should be inserted later

Abstract Online social networks (OSNs) recommend new friends to registered
users based on local features of the graph (i.e. based on the number of common
friends that two users share). Real OSNs (e.g. Facebook) do not exploit all network
structure. Instead, they consider only pathways of maximum length 2 between a
user and his candidate friends. This can limit the accuracy of prediction. On the
other hand, there are global approaches, which detect the overall path structure
in a network, being computationally prohibitive for huge-size social networks. In
this paper, we provide friend recommendations, by performing multi-way spectral

clustering, which uses information obtained from the top few eigenvectors and
eigenvalues of the normalized Laplacian matrix and computes a multi-way parti-
tion of the data. As a result, it produces a less noisy matrix, which is smaller and
more compact than the original one, focusing on main linking trends of the social
network. Thus, we are able to provide fast and more accurate friend recommenda-
tions. Moreover, spectral clustering compared to traditional clustering algorithms,
such as k-means and DBSCAN, which assume globular (convex) regions in Eu-
clidean space, is more flexible, in capturing the non-connected components of a
social graph and a wider range of cluster geometries. We perform an extensive
experimental comparison of the proposed method against existing link prediction
algorithms, the k-means and two-way nCut clustering algorithms, using synthetic
and three real data sets (Hi5, Facebook and Epinions). Our experimental results
show that our SpectralLink algorithm outperforms the local approaches, the k-
means and two-way nCut clustering algorithms in terms of effectiveness, whereas
it is more efficient than the global approaches. We show that a significant accuracy
improvement can be gained by using information about both positive and negative
edges.
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1 Introduction

Online social networks (OSNs) such as Facebook.com1, Myspace2, Hi5.com3, etc.
contain gigabytes of data that can be mined to make predictions about who is a
friend of whom. OSNs gather information on users’ social contacts, construct a
large interconnected social network, and recommend other people to users based
on the network structure.

Link Prediction in social networks, tries to infer new interactions among mem-
bers of a social network that are likely to occur in the near future. Notice that
there is a difference between the Link Prediction and the Edge Sign Prediction prob-
lems [22]. The latter knows that there is a link between two nodes and tries to
predict its sign. In contrast, Link Prediction predicts if a link will occur between
two nodes.

This paper focuses on the Link Prediction problem. There are two main ap-
proaches [24] that handle it. The first approach is based on local features of a
network, focusing mainly on the nodes structure; the second approach is based on
global features, detecting the overall path structure in a network. For instance, as
an example of a local approach, as shown in Figure 1, Facebook.com or Hi5.com
use the following style of recommendation for recommending new friends to a tar-
get user U1: “People you may know : (i) user U7 because you have three common
friends (users U5, U6, and U10) (ii) user U4 because you have two common friends
(users U2 and U3) (iii) user U9 because you have one common friend (user U8)
. . . ”. The list of recommended friends is ranked based on the number of common
friends each candidate friend has with the target user.

U1

U2

U3

U4

U5

U6

U7

U8U9

U10

Fig. 1 Social Network Example.

In this paper, we provide friend recommendations, by performing multi-way

spectral clustering, which uses information obtained from the top few eigenvectors
and eigenvalues of the normalized Laplacian matrix and computes a multi-way
partition of the data.

Compared to approaches which are based on local features of a network (i.e.
Common Neighbors index or else known as FOAF algorithm, Adamic/Adar index,

1 http://www.facebook.com
2 http://www.myspace.com
3 http://www.hi5.com
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Jaccard Coefficient, etc. - for more details see Section Related Work), we provide
friend recommendations, by exploiting the normalized Laplacian matrix of the
social graph, which captures the overall network structure. Instead, they consider
only pathways of maximum length 2 between a target user and his candidate
friends, which results to lower accuracy prediction as will be shown experimentally
later.

Compared to global approaches (i.e Katz status index, RWR algorithm, Sim-
Rank algorithm etc.), which also operate on the overall structure of a network
(i.e. initial adjacency matrix), our method is more efficient. The reason is that,
our method is based on the top few eigenvectors and eigenvalues of the normal-
ized Laplacian matrix, requiring less time and space complexity than the global
algorithms, as will be shown in Section 4.4. Solving a standard eigenvalue problem
for all eigenvectors takes O(n3) operations, where n is the number of nodes in
a graph. This becomes impractical for applications with n on the order of mil-
lions. However, real social networks have often the following properties [33]: 1)
The graphs are often only locally connected and the resulting eigensystem is very
sparse, and 2) only the top few eigenvectors are needed for graph partitioning.
These special properties of our problem can be fully exploited by an eigensolver
called the Lanczos method [13], resulting to faster time complexity than global
algorithms.

Compared to traditional clustering algorithms, such as k-means and DBSCAN,
which make explicit or implicit assumptions that clusters form globular (convex)
regions in Euclidean space, the normalized laplacian matrix has some desirable
properties that make it more suitable for real social networks, which often have
non-connected components with non-globular shapes. Firstly, it is positive semi-
definite with k non-negative real-valued eigenvalues 0 = λ1 ≤ . . . ≤ λk. The num-
ber of 0 eigenvalues equals the number of the connected components in a graph.
Thus, spectral clustering is more flexible than k-means, in capturing (i) the non-
connected components of a social graph, and (ii) a wider range of cluster geometries
and shapes [37].

The contributions of our approach are summarized as follows: (i) For the first
time, to the best of our knowledge, spectral clustering has been used for providing
friend recommendations in OSNs. (ii) We provide more accurate friend recommen-
dations than local approaches and k-means, by detecting a wider range of network
structure and cluster geometries. This reveals the latent associations between users
of a social network, as will be shown experimentally later. (iii) We provide higher
efficiency than the global approaches. Our approach, by performing dimensional-
ity reduction of the normalized Laplacian matrix, results to a smaller and more
compact graph matrix than the original one, as will be also shown experimentally.
(iv) We define two new node similarity measures that exploit local and global char-
acteristics of a network. In particular, we calculate the similarity between nodes
that belong in the same cluster and similarity between nodes that belong in dif-
ferent clusters. (v) Compared to the bulk of research on social networks that has
focused almost exclusively on positive interpretations of links between people, we
also study the interplay between positive and negative relationships. (vi) We per-
form extensive experimental comparison of the proposed method against existing
link prediction algorithms, the k-means and two-way nCut clustering algorithms,
using synthetic and three real data sets.
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The rest of this paper is organized as follows. Section 2 summarizes the related
work, whereas Section 3 briefly reviews preliminaries in graphs employed in our
approach. A motivating example, the proposed approach, an extension for signed
networks and its complexity analysis, are described in Section 4. Experimental
results are given in Section 5. Section 6 discusses important issues of our proposed
method. Finally, Section 7 concludes this paper.

2 Related work

The mainstreaming class of algorithms for link prediction, known as similarity-
based algorithms, are classified into local, quasi-local, and global approaches [27].
The local approaches focus mainly on the local nodes structure, whereas the global
approaches, detect the overall path structure in a network. Quasi-local approaches
traverse paths of a limited length between a target user and his candidate friends.

There is a variety of local-based similarity measures [24,25], which are node-
dependent (i.e. Common Neighbors index or else known as FOAF [6] algorithm,
Adamic/Adar [2] index, Jaccard Coefficient, etc.) for analyzing the “proximity” of
nodes in a network. Common Neighbors index, also known as Friend of a Friend
algorithm (FOAF) [6], is adopted by many popular OSNs, such as facebook.com
and hi5.com for the friend recommendation task. FOAF is based on the common
sense that two nodes vx, vy are more likely to form a link in the future, if they
have many common neighbors. In addition to FOAF algorithm, there are also more
complicated local-based measures such as Jaccard Coefficient and Adamic/Adar
index. Jaccard Coefficient [24] is a commonly used similarity metric in Information
Retrieval. To measure proximity between two nodes vx and vy, Jaccard Coefficient
measures the ratio of the number of common neighbors between vx and vy to
the number of non-common neighbors. Adamic/Adar index [2], which is based on
Jaccard Coefficient, measures how strongly “related” two web pages are. To do
this, it exploits features of the web pages and defines a similarity measure between
them, by refining the simple counting of common features (Jaccard Coefficient) by
weighting rarer features more heavily. In the same direction, Davis et al. [9] intro-
duced a novel probabilistically weighted extension of the Adamic/Adar measure
for heterogenous information networks. Recently, Tsourakakis et al. [36] proposed
a simple algorithm that for making link recommendations in online social networks
by recommending those links that create as many triangles as possible.

There is a variety of global approaches [24] which are path-dependent (i.e
Katz [20] status index, RWR [30] algorithm, SimRank [19] algorithm, the commute
time [12] algorithm etc.). Leo Katz [20] introduced a status index derived from
sociometric analysis. His method computes the important and influential nodes in
a social network. He also used the concept of attenuation in influence transmitted
through intermediaries nodes. RWR algorithm [30] (Random Walk with Restart
algorithm) is based on a Markov-chain model of random walk through a graph.
RWR considers a random walker that starts from node vx and chooses randomly
among the available edges every time, except that before making a choice, with
probability c he goes back to node vx (restart). Thus, the relevance score of node
vx with respect to node vy is defined as the steady-state probability rvx,vy that
the random walker will finally stay at node vy.
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To provide a good tradeoff of recommendation accuracy (global approaches)
and computational complexity (local approaches), there are also introduced vari-
ations of global approaches, which traverse only paths of a limited length. These
approaches are known as quasi-local approaches [27]. For example, truncated
Katz [27] (tKatz) is a truncated version of Katz [20] algorithm that chooses to
stop after reaching paths of a maximum length ℓmax. In the same direction, Syme-
onidis et al. [31] provides friend recommendations by exploiting paths of greater
length than local approaches do (e.g. FOAF considers only pathways of maximum
length 2 between a user and his candidate friends).

Spectral clustering, is a popular modern clustering algorithms. Its efficacy is
mainly based on the fact that it does not make any assumptions on the form of the
clusters [33,37]. This property comes from the mapping of the original space to an
eigensystem. Due to this virtue, Spectral clustering is applied in many different
research areas, such as bioinformatics [16] for clustering biological sequence data
and computer imaging [33] for image segmentation.

There are two categories of spectral clustering algorithms based on the num-
ber of eigenvectors they use. The first category [33] uses a matrix of affinities
between nodes and clusters the nodes based on the second smallest eigenvector
of the Laplacian matrix. Then, recursively uses the second smallest eigenvector
to further partition these clusters. The second category, which is similar to our
method, directly computes a multi-way partition of the data [28,29]. In particu-
lar, it selects the top k eigenvectors and their corresponding eigenvalues. Then,
it extracts the clusters by finding the approximate equal elements in the selected
eigenvectors using any clustering algorithm e.g. k-means. Recently, Yan et al. [37]
proposed a general framework for fast approximate spectral clustering in which a
distortion-minimizing local transformation is first applied to the data. This frame-
work is based on a theoretical analysis that provides a statistical characterization
of the effect of distortion on the mis-clustering rate. Moreover, Abbassi and Mir-
ronki [1] proposed a spectral method for designing a recommender system for
blogs. However, the fact that they do not weight differently the similarities be-
tween nodes that belong to the same cluster and nodes that belong to different
clusters is questionable. Finally, Jerome Kunegis and Andreas Lommatzsch [21]
proposed a unified framework for learning link prediction and edge weight predic-
tion functions in large networks, based on the transformation of a graph’s algebraic
spectrum.

The novelty of our approach compared to existing approaches is as follows: (i)
Recently, extensive empirical analysis has demonstrated that FOAF [6] algorithm,
performs better than other complicated variants [25] such as Adamic-Adar index
and Jaccard Coefficient. Thus, we compare our method against FOAF algorithm
as representative of the local-based measures, and as will be experimentally shown
later, our method outperforms FOAF algorithm in terms of accuracy. The rea-
son is that we do not take into account only pathways of length 2 to compute
similarity between any pair of nodes in an OSN. Instead, we perform a dimen-
sionality reduction of the entire social graph, which reveals the latent associations
between the nodes of the graph. (ii) In comparison to global algorithms, such as
the Katz index [20] and the Random Walk with Restart (RWR) algorithm [30],
our method is more efficient. This means, that our method, which is based on the
top few eigenvectors and eigenvalues of the normalized Laplacian matrix, requires
less time and space complexity than global algorithms. We have compared our
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method against RWR, as representatives of the global algorithms, and as will be
shown experimentally later, our method outperforms RWR in terms of accuracy
and time complexity. (iii) In comparison to traditional clustering algorithms, such
as k-means and DBSCAN, our method is more flexible, because it captures (i)
the non-connected components of a social graph, and (ii) a wider range of cluster
geometries and shapes [37]. Thus, it results in better friend recommendations. We
have compared our method against k-means, as representatives of the clustering
algorithms, and as will be shown experimentally later, our method is more effective
than k-means.

Besides the aforementioned link prediction algorithms that are based solely on
the graph structure, there are alternative methods that exploit other data sources
such as messages among users, co-authored paper, common tagging etc. For in-
stance, Ido Guy et al. [14], proposed a novel user interface widget for providing
users with recommendations of people. Their people recommendations were based
on aggregated information collected from various sources across IBM organiza-
tion (i.e. common tagging, common link structure, common co-authored papers
etc.). Chen et al. [6] evaluated four recommender algorithms (Content Match-
ing, Content-plus-Link, FOAF algorithm and, SONAR) to help users discover
new friends on IBM’s OSN. Lo and Lin [26] proposed two algorithms, denoted
as weighted minimum message ratio (WMR) and weighted information ratio (WIR),
respectively, which generate a friend list based on real-time message interaction
among members of an OSN. Furthermore, Agarwal and Bharadwaj [3] proposed
a collaborative filtering framework for friends recommendation in social networks
based on their interaction intensity and adaptive user similarity.

There are also other methods [4,22] that try to solve the link prediction prob-
lem as a binary classification problem, where the two class labels are the existence
or not of a link between two nodes. These methods usually exploit several non-
topological features (e.g. overlap of interest between two authors, keyword match
count between author’s publications etc.) For example, Hasan et al. [4] compared
well-known classification algorithms (decision tree, k-NN, multilayer perceptron,
SVM, RBF network) and found that they improve the accuracy of link prediction
substantially. In comparison to the above methods, we focus only on recommenda-
tions based on the link structure of an OSN (i.e. we use features based on network
topology only) and thus, we will exclude them from our experimental comparison.

3 Preliminaries in Graphs

A graph G = (V, E) is a set V of vertices and a set E of edges such that an edge
joins a pair of vertices. In this paper, G will always be a general undirected and
unweighted graph as shown in Figure 1. G expresses friendships among users of an
OSN and will be used as our running example, throughout the paper.

The adjacency matrix A of graph G is a matrix with rows and columns labelled
by graph vertices, with a 1 or 0 in position (vi, vj) according to whether vi and vj

are friends or not. For an undirected graph, the adjacency matrix is symmetric.
In Figure 2, we present the resulting adjacency matrix A of graph G. Notice that
in A we use zeros along the diagonals, to depict that a node is not connected to
itself. In case of a large graph G, it is important to note that its adjacency matrix
A can be characterized by high dimensionality and sparsity.
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U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

U1 0 1 1 0 1 1 0 1 0 1

U2 1 0 0 1 0 0 0 0 0 0

U3 1 0 0 1 0 0 0 0 0 0

U4 0 1 1 0 0 0 0 0 1 0

U5 1 0 0 0 0 0 1 0 0 0

U6 1 0 0 0 0 0 1 0 0 0

U7 0 0 0 0 1 1 0 0 0 1

U8 1 0 0 0 0 0 0 0 1 0

U9 0 0 0 1 0 0 0 1 0 0

U10 1 0 0 0 0 0 1 0 0 0

Fig. 2 Adjacency matrix A of graph G.

The spectral algorithms are based on eigenvectors of Laplacians, which are a
combination of the adjacency and the degree matrix. The normalized laplacian
matrix of graph G is computed by Equation L = D− 1

2 × (D - A) × D− 1

2 , where
D is the degree matrix of graph G. The normalized laplacian matrix L is positive
semi-definite and has n non-negative real-valued eigenvalues 0 = λ1 ≤ . . . ≤ λn.
As shown in Figure 3, we have computed the corresponding normalized laplacian
matrix of our running example.

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

U1 0.186 0.177 0.177 0 0.177 0.177 0 0.177 0 0.177

U2 0.177 0.375 0 0.224 0 0 0 0 0 0

U3 0.177 0 0.375 0.224 0 0 0 0 0 0

U4 0 0.224 0.224 0.300 0 0 0 0 0.224 0

U5 0.177 0 0 0 0.375 0 0.224 0 0 0

U6 0.177 0 0 0 0 0.375 0.224 0 0 0

U7 0 0 0 0 0.224 0.224 0.300 0 0 0.224

U8 0.177 0 0 0 0 0 0 0.375 0.250 0

U9 0 0 0 0.224 0 0 0 0.250 0.375 0

U10 0.177 0 0 0 0 0 0.224 0 0 0.375

Fig. 3 Normalized Laplacian matrix L of graph G.

Table 1 presents the most important symbols and their corresponding defini-
tions, which are used frequently in the sequel.

4 The Proposed Approach

In this section, through a motivating example we first provide the outline of our
approach, named SpectralLink. Next, we analyze the steps of the proposed algo-
rithm.
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Symbol Description

G undirected and unvalued graph
V set of graph nodes (vertices)
E set of graph edges
A adjacency matrix of graph G

D degree matrix of graph G

L normalized laplacian matrix of graph G

ui eigenvector of L
λi eigenvalue of L
vi graph node
ei graph edge
sim(vi, vj) similarity between nodes vi and vj

n number of vertices in graph G

Table 1 Symbols used throughout the study.

4.1 Outline

Here, we describe how SpectralLink is applied on OSNs and how the recommen-
dation of friends is performed according to the detected associations.

When using an OSN, users explicitly declare their friends so that they are able
to share information items with them (i.e. photos, news etc.) After some time, the
social network accumulates a set of connection data (graph of friendships), which
can be represented by an undirected graph similar to that of Figure 1.

Our SpectralLink approach finds similarities between nodes in an undirected
graph constructed from these connection data. The SpectralLink algorithm uses
as input the connections of a graph G and outputs a similarity matrix between
any two nodes in G. Therefore, friends can be recommended to a target user u

according to their weights in the similarity matrix.
In the following, to illustrate how our approach works, we apply the Spec-

tralLink algorithm to our running example. As illustrated in Figure 1, 10 users
are connected in a graph. If we have to recommend a new friend to U1, then there
is no direct indication for this task in the original adjacency matrix A, as shown
in Figure 2. However, after performing the SpectralLink algorithm, we can get
a similarity matrix between any two nodes of graph G and recommend friends
according to their weights.

Firstly, SpectralLink computes the first k eigenvectors u1, . . . , uk with the cor-
responding λ1, . . . , λk eigenvalues of L based on Equation L×U = λ×U , where U

matrix has columns the eigenvectors u1, . . . , uk and nodes vi ∈ R, with i = 1, . . . , n,
correspond to the i-row of U . In our running example, we compute the first k=2
eigenvectors and λ = 2 eigenvalues of L, respectively, as shown in Figure 4a and
Figure 4b.

Secondly, we cluster nodes vi of U with the k-means algorithm into clusters
C1, . . . , Ck. In our running example, k is equal to 2. Thus, we will partition data
in 2 clusters. In Figure 5a, we present vector IDX with i = 1, . . . , n rows, which
correspond to the assignment of a node vi in one of the two clusters. Thus, node U1

is assigned in cluster C1, node U2 is assigned in cluster C2, etc. Moreover, based
on the k-means algorithm, we can compute the centroids of each cluster. This
information is shown, in Figure 5b. Based on the distances of each node from each
cluster centroid we can define matrix D, which is shown in Figure 5c. Vector IDX
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u1 u2

1 -0.440 0.072

2 -0.291 -0.220

3 -0.291 -0.220

4 -0.325 -0.426

5 -0.295 0.304

6 -0.295 0.304

7 -0.334 0.453

8 -0.285 -0.244

9 -0.278 -0.417

10 -0.295 0.304

(a)

λ1 0.892 

λ2 0.750 

(b)

Fig. 4 In our running example, we computed the (a) first k=2 eigenvectors and (b) the first
λ = 2 eigenvalues of L.

and matrix D will be used in the next step of SpectralLink in order to calculate the
similarity between nodes that belong to the same cluster and similarity between
nodes that belong to different clusters.

User Cluster

U1 1

U2 2

U3 2

U4 2

U5 1

U6 1

U7 1

U8 2

U9 2

U10 1

(a)

x y

Centroid_C1 -0.734 0.624

Centroid_C2 -0.703 -0.697

(b)

C1 C2

U1 0.144 0.412

U2 0.783 0.009

U3 0.783 0.009

U4 1.053 0.010

U5 0.005 1.011

U6 0.005 1.011

U7 0.027 1.145

U8 0.843 0.003

U9 1.115 0.020

U10 0.005 1.011

(c)

Fig. 5 For our running example, we computed the (a) vector IDX which assigns each ui

node in a specific cluster, (b) the coordinates in the 2-D space of each cluster centroid and (c)
matrix D with the distances of each node from the centroid of each cluster.

Moreover, in Figure 6a, we present the 10 nodes of our running example, in the
2-dimensional space based on the first 2 eigenvectors of L matrix. Additionally,
in Figure 6b, we present the resulting partition of the 10 nodes of graph G in
2 clusters. Thus, the nodes that are assigned in cluster C1 = {U2,U3,U4,U8,U9},
whereas the nodes that are assigned in cluster C2 = {U1,U5,U6,U7,U10}. As shown,
the partition of k-means is in accordance with the visual representation in the
2-dimensional space of the nodes in Figure 6a.

Thirdly, to quantify the similarity between nodes, we are based on triangle
inequality which states that for any triangle the sum of the lengths of any two sides
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(a)

�

(b)

Fig. 6 For our running example, we present the (a) 2-D space plot of nodes of graph G based
on the second eigenvector of L and (b) the resulting partition of the 10 nodes of graph G in 2
clusters.

must be greater than the length of the remaining side. Since we have calculated
matrix D with the distances of each node from the centroid of each cluster, based
on triangle inequality the distance (i.e. dissimilarity) between any pair of nodes
i and j is bounded in this space: |D(i, IDX(i)) − D(j, IDX(j))| ≤ dist(i, j) ≤

D(i, IDX(i)) + D(j, IDX(j)).
For similarity bounded by 0 and 1, when similarity is one (i.e. exactly similar),

the distance (dissimilarity) is zero and when the similarity is zero (i.e. very differ-
ent), the dissimilarity is one. Thus, to quantify the similarity between nodes that
belong to the same cluster, SpectralLink uses Equation 1:

SimSC(i, j) = 1 − |D(i, IDX(i)) − D(j, IDX(j))| (1)

The intuition behind Eq. 1 is that if the lower bound of the reverse triangular
inequality (i.e. |D(i, IDX(i)) − D(j, IDX(j))|) is very small (i.e. close to 0) then
the similarity between nodes i and j will be very high (close to 1). In our running
example the similarity between nodes U1 and U7 that belong to same cluster C1

based on Equation 1 is : 1 − |0.144 − 0.027| = 0.883.
Moreover, to quantify the similarity between nodes that belong to different

clusters we use Equation 2:

SimDC(i, j) =
1

1 + D(i, IDX(j)) + D(j, IDX(i))
, (2)

where SimDC(i, j) is bounded in [0,1]. Thus, in our running example the sim-
ilarity between nodes U1 and U4 that belong to different clusters based on Equa-
tion 2 is : 1

1+D(1,2)+D(4,1)
= 1

1+0.412+1.053 = 0.405. It is obvious that Equation 1

promotes similarity between nodes that belong to the same cluster. In contrast,
Equation 2 penalizes similarities between nodes that belong to different clusters.
Notice that for the friend recommendation task, we have to rank similarities and
recommend those friends that have the highest similarity with the target user. It
is obvious that most of recommended friends should be within the same cluster
with the one that the target user belongs to. There will be recommended friends
from different clusters when the number of recommendations exceeds the number
of users that are in the same cluster with the target user.

In Figure 7, we present the similarities of user U1 with other nodes. For read-
ability reasons, we put zero values to already adjacent nodes. In our running
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example, as shown in Figure 7, user U1 would receive user U7 as friend recommen-
dation. The resulting recommendation is reasonable, because U1 has 3 common
friends with user U7. In contrast, U1 has only 2 common friends with user U4. That
is, the SpectralLink approach is able to capture the associations among the graph
data objects. The associations can then be used to improve the friend recommen-
dation procedure, as will be verified by our experimental results.

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

U1 0.000 0.000 0.000 0.405 0.000 0.000 0.883 0.000 0.395 0.000

Fig. 7 In our running example, similarities between U1 and other users. It presents the pos-
sibility of two users being friends.

4.2 The SpectralLink Algorithm

In this section, we describe our SpectralLink algorithm in detail. Our Spectrallink
algorithm computes node similarity for a node vi with each node vj in a graph G.

As shown in Figure 8, our SpectralLink algorithm is based on matrix L of a
graph G. It takes the first k eigenvectors u1, . . . , uk of L. Then, based on these
eigenvectors it clusters nodes v1 . . . vn of graph G with k-means algorithm. Next,
based on the distances of each node vi from the nearest cluster centroid it calculates
similarities between a test user node and the other nodes in graph G. Finally, for
a test user (node) we rank the calculated similarities with other users (nodes) and
recommend to him the top ranked nodes as his possible friends.

4.3 Extending SpectralLink for Signed Networks

In this Section, we derive variants of SpectralLink that apply to networks with
weighted edges, including the case of edges with negative weights (signed net-
works).

In signed networks edges have positive (+1) as well as negative (-1) weights.
Such signed graphs arise for instance in social networks (i.e. Epinions.com, Shash-
dot Zoo, etc.) where negative edges denote distrust instead of trustiness. In such
signed graphs, SpectralLink algorithm, can be adjusted accordingly. Firstly, we
can use an alternative definition of diagonal degree matrix [17,21] by using the

absolute diagonal degree matrix Dii=
n
∑

j=1

∣

∣Aij

∣

∣. Thus, Dii is defined as the sum of

the absolute weights of incident edges. This means that if all edge weights are in
{+1,−1}, Dii is simply the number of nodes adjacent to the node i, regardless of
edge signs.

Then, we can define the signed normalized Laplacian matrix, by giving L =
D− 1

2 × (D - A) × D− 1

2 . As the unsigned normalized Laplacian matrix, the signed
normalized Laplacian matrix is positive semi-definite (i.e., it has non-negative
eigenvalues, where its smallest eigenvalue is zero) and it can therefore be used as
a kernel.
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Algorithm SpectralLink (v, G, A, n, k)
Input

v: the selected node
G: an undirected and unweighted graph
A: adjacency matrix of graph G,
n: number of node of graph G,
k: number of clusters

Output

vvj
: similarity between node v

with each node vj in G

1. Compute the diagonal degree matrix D with elements:

Dii=
n∑

j=1

Aij

2. Compute the normalized Laplacian matrix:

L = D
−

1

2 × (D - A) × D
−

1

2

3. Find the first k eigenvectors u1, . . . , uk of L

4. Let matrix U ∈ R contain u1, . . . , uk eigenvectors
as columns and nodes vi ∈ R, with i = 1, . . . , n,
correspond to the i-row of U

5. Cluster the nodes vi with k-means algorithm into
clusters C1, . . . , Ck

6. For node v compute its similarity
with each node vj that belongs in the same cluster
based on Equation 1

7. For node v compute its similarity
with each node vj that belongs to a different cluster
based on Equation 2

Fig. 8 The SpectralLink algorithm.

However, when a signed graph is unbalanced (i.e., each connected component
contains a cycle with an odd number of negatively weighted edges), then the signed
normalized Laplacian matrix can be positive-definite (i.e., it has only positive
eigenvalues). Notice that based on the assumption of multiplicative transitivity of
the structural balance theory [15,22], an unbalanced graph cannot be partitioned
into two sets with all negative edges across the sets and positive edges within
the sets. Moreover, if the smallest eigenvalue of a graph is greater than zero it
characterizes the amount of conflict in a graph, which is an indication of how well
can be clustered the nodes of the graph.

Structural balance theory [15], considers the possible ways in which triangles
on three individuals can be signed. Triangles with three positive signs exemplify
the principle that “the friend of my friend is my friend”, whereas those with one
positive and two negative edges capture the notions “the enemy of my friend is
my enemy”, “the friend of my enemy is my enemy”, and the “enemy of my enemy
is my friend”. Concretely, this means that if vk forms a triad with the edge (vi,vj),
then structural balance theory posits that vi,vj should have that sign that causes
the triangle on vi,vj ,vk to have an odd number of positive signs, just as each of
the principles above have a odd number of occurrences of the word “friend”. In
other words, sim(vi,vj) = sim(vi,vk) * sim(vi,vk), as shown in Figure 9.



Title Suppressed Due to Excessive Length 13

vj

vkvi

+1

+1

+1

vj

vkvi

-1

+1

-1

vj

vkvi

+1

-1

-1

vj

vkvi

-1

-1

+1

Fig. 9 The prediction of the sign of edge vi,vj (red edge) based on the Structural Balanced
Theory.

Figure 9 shows only the cases where a triangle is balanced. In particular, a
triangle of three positive edges and a triangle of one positive and two negative
edges are both balanced. On the other hand, a triangle of two positive and one
negative edge is not balanced, as is a triangle of three negative edges. Notice that,
in an unbalanced triangle, the multiplicative transitivity of the structural balance
theory [15,22] does not hold.

4.4 Complexity Analysis

Solving a standard eigenvalue problem for all eigenvectors takes O(n3) operations,
where n is the number of graph nodes. This becomes impractical for applications
with n on the order of millions. However, real social networks have often the fol-
lowing properties: 1) The graphs are often only locally connected and the resulting
eigensystems are very sparse, and 2) only the top few eigenvectors are needed for
graph partitioning. These special properties of our problem can be fully exploited
by an eigensolver called the Lanczos method [13]. The time complexity of a Lanc-
zos algorithm is O(m × n) + O(m × M(n)), where m is a usually small constant
number of matrix-vector computations required, n is the number of nodes in a
graph, and M(n) is the cost of a matrix-vector computation of L × x, where L is
the normalized Laplacian matrix and x is an eigenvector.

5 Experimental Evaluation

In this Section, we compare experimentally our SpectralLink algorithm with 7
other link prediction algorithms. In particular, we use in the comparison the K-
means, the Two-way Ncut Clustering [33], the Friend of a Friend [6], the Adamic
and Adar [2], the Random Walk with Restart [30], the Katz [20] status index, and
the Regularized commute-time [11] algorithms. All algorithms were implemented
in Matlab.

5.1 Algorithms Settings

In this following, we present basic information of the algorithms that will be com-
pared experimentally with our proposed method:
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K-means clustering algorithm: Given a set of nodes (v1, v2, . . . ,vn) of a
graph G and its adjacency matrix, k-means aims to partition the n nodes into
k sets (k < n) C=(C1, C2,. . . , Ck) so as to minimize the within-cluster sum of
squared error(SSE), as shown by Equation 3:

SSE =
k
∑

i=1

∑

vx∈Ci

dist(vx, ci)
2
, (3)

where vx is a node in cluster Ci, ci is the centroid point for cluster Ci and
dist is the standard Euclidean distance between two nodes in Euclidean space.
k-means chooses k initial centroids, where k is a user-specified parameter, namely,
the number of clusters desired. Each node is then assigned to the closest centroid,
and each collection of nodes assigned to a centroid is a cluster. The centroid of each
cluster is then updated based on the nodes assigned to the cluster. This procedure
is repeated until no node changes cluster, or equivalently, until the centroids remain
the same. After the clusters formation, for a node vi compute its similarity with
each node vj that belongs in the same cluster based on Equation 1. Moreover,
for a node vi compute its similarity with each node vj that belongs to a different
cluster based on Equation 2.

Two-way Ncut clustering algorithm: Given a set of nodes (v1, v2, . . . ,vn) of
a graph G, and its adjacency matrix, two-way normalized cut (two-way Ncut) algo-
rithm aims to bipartition the n nodes so as to minimize the Normalized Cut [33]. In
particular, two-way Ncut solves the generalized eigenvalue problem for the second
smallest eigenvalue, as shown by Equation 4:

(D − A)y = λDy, (4)

where D is a diagonal matrix, A is the adjacency matrix, λ is the second small-
est eigenvalue and y is the second smallest eigenvector. Two-way Ncut uses the
eigenvector with the second smallest eigenvalue to bipartition the graph, and de-
cides if the current partition should be subdivided again by checking Ncut variable
(i.e. if it is below a pre-specified value).

Friend of a Friend algorithm: The Friend of a Friend (FOAF) algorithm [6]
relies on the number of friends that two nodes vx and vy have in common, as shown
by Equation 5:

score(vx, vy) := |Γ (vx) ∩ Γ (vy)| (5)

where score(vx, vy) is the number of common friends of vx and vy, and Γ (vx), Γ (vy)
are the sets of their neighbors. The candidates are recommended to vx in decreas-
ing order of their score.

Adamic/Adar algorithm: Adamic and Adar [2] proposed a distance measure
to decide when two personal home pages are strongly “related”. In particular, they
computed features of the pages and defined the similarity between two pages x, y

as follows:
∑

z
1

log(frequency(z))
, where z is a feature shared by pages x, y. This

refines the simple counting of common features by weighting rarer features more
heavily. The similarity between nodes vx and vy, can be computed by Equation 6:

score(vx, vy) =
∑

z∈Γ (vx)∩Γ (vy)

1

log |Γ (z)|
(6)
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where Γ (vx), Γ (vy) are the sets of neighbors of vx and vy.

Random Walk with Restart Algorithm: Random Walk with Restart algo-
rithm [35,30] considers a random walker that starts from node vx, and chooses
randomly among the available edges every time, except that, before he makes a
choice, with probability α, he goes back to node vx (restart). The similarity matrix
(i.e. Kernel) between nodes of a graph, can be computed by Equation 7:

KernelRWR = (I − αP )−1 (7)

where I is the identity matrix and P is the transition-probability matrix.

Katz status index algorithm: Katz [20] defines a measure that directly sums
over all paths between any pair of nodes in graph G, exponentially damped by
length to count short paths more heavily. The similarity between nodes vx and vy,
can be computed by Equation 8:

score(vx, vy) =
∞
∑

ℓ=1

β
ℓ ·

∣

∣

∣
paths

ℓ
vx,vy

∣

∣

∣
, (8)

where
∣

∣

∣
pathsℓ

vx,vy

∣

∣

∣
is the number of all length-ℓ paths from vx to vy.

The Regularized Commute-Time kernel: The Regularized Commute-Time
kernel [11] performs a regularization on the commute-time kernel [12]. Thus, in-
stead of taking the pseudoinverse of the Laplacian matrix (i.e. L+), which is not
invertible, a simple regularization framework is applied that replaces L+ with
D − αA. The similarity matrix (i.e. Kernel) between nodes of a graph, can be
computed by Equation 9:

KernelRCT = (D − αA)−1 (9)

where D is a diagonal matrix containing the outdegrees of the graph nodes, A

is the adjacency matrix with α ∈ [0,1].

Table 2 summarizes the algorithms used in the experimental evaluation. The
second column of Table 2 provides an abbreviation of each algorithm name. Most
algorithms require the tuning of a parameter, which is shown in the last two
columns of Table 2.

Table 2 The algorithms used in the comparison with their parameters and test values.

Algorithm Abbreviation Equation Parameter Test Values

SpectralLink SpectralLink (1,2) k 100, 200, 300, ..., 5000
K-means K-means (3) k 100, 200, 300, ..., 5000

Two-way Ncut Clustering [33] Ncut (4) Ncut 2−24, 2−52

Friend of a Friend [6] FOAF (5) - -
Adamic/Adar [2] AA (6) - -

Random Walk with Restart [30,35] RWR (7) α 10−6, 10−5, ..., 0.99
Katz Status Index [20] Katz (8) β 0.05,0.005,0.0005

Regularized Commute Time [11] RCT (9) α 10−6, 10−5, ..., 0.99
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5.2 Real and Synthetic Evaluation Data Sets

To evaluate the examined algorithms, we have used synthetic and three real data
sets from Facebook, Hi5 and the Epinions web sites. We crawled the graph data
from the Facebook and Hi5 web sites at two different time periods. In particular,
we crawled the Facebook web site on the 30th of October 2009 and on the 15th of
December 2010. Our data crawling method was the following: For each user u, we
traverse all his friends and then traverse the friends of each of u’s friends etc. From
the first crawl of Facebook web site we created a training data set with 3694 users
(network size N = 3.694, number of edges E=13692), denoted as Facebook 3.7K4,
where the initial starting node of our crawling was a random user in Germany.
From the second crawl of Facebook web site we created the probe data set with the
same users by only preserving 3912 new emerged edges among them. We followed
the same crawling procedure from the Hi5 web site. From the first crawl of Hi5
web site we created a training data set with 63329 users and 88261 edges among
them, denoted as Hi5 63K5, where the initial starting node of our crawling was
a random user in the US. From the second crawl of Hi5 web site we created the
probe data set with the same users by only preserving 16512 new emerged edges
connecting them. The graph data from the first crawl are used to predict the
new links emerging in the second crawl. Moreover, we use in our comparison the
Epinions6 132K data set, which is a who-trusts-whom social network that consist
of positive and negative edges. A positive edge implies trust whereas a negative
edge implies distrust. Notice that we have also run experiments with a human
protein-protein interaction network [18] and the results are similar and analogous
with those that will be presented in the following for the friendship social networks.

The size of real online social networks is huge. For instance, Facebook has
over 500 million users with an average of roughly 100 friends each. To study the
algorithms’ computational complexity performance, we used synthetic networks
models of different sizes.

In contrast to purely random (i.e., Erdos-Renyi) graphs, where the connections
among nodes are completely independent random events, our synthetic model
ensures dependency among the connections of nodes. This is in accordance with
characteristics of friendship social networks, such as Balance (Friend of a Friend)
and Homophily (Birds of a feather) Theories [10]. We used the generator proposed
in [34] and created 2 synthetic data sets based on different network sizes n (50000,
100000), by keeping an identical m nodes degree equal to 50 and for both data
sets (p is fixed to 0.2). Finally, we calculated several topological properties of the
derived synthetic and the real data set which are presented in Figure 10.

5.3 Experimental Protocol and Evaluation Metrics

As already described in Section 5.2, in our evaluation we consider the division of
Facebook 3.7K and Hi5 63K data sets into two sets, according to the exact time
stamp of the links downloaded: (i) the training set ET is treated as known infor-
mation and, (ii) the probe set EP is used for testing. No information in the probe

4 http://delab.csd.auth.gr/∼symeon/facebook.txt
5 http://delab.csd.auth.gr/∼symeon/hi5.txt
6 http://www.trustlet.org/wiki/Downloaded Epinions dataset
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TOPOLOGICAL PROPERTIES: 

N = total number of nodes 

E = total number of edges 

ASD = average shortest path distance between node pairs 

ADEG = average node degree 

LCC = average local clustering coefficient  

GD = graph diameter (maximum shortest path distance) 

 

Data-Set N E ASD ADEG LCC GD 

Hi5 63K 63329 88261 7.18 2.78 0.02 19 

Facebook 3.7K 3694 13692 4.23 7.21 0.11 10 

Epinions 132K 131828 841372 1.78 6.38 0.24 14 

Synthetic 50K 50000 1250000 5.65 50 0.11 12 

Synthetic 100K 100000 2500000 8.72 50 0.05 15 

Fig. 10 Topological properties of the synthetic and the real data set.

set is allowed to be used for prediction. It is obvious that ET ∩ EP = ⊘. For each
user that has at least one new friend in EP we generate friend recommendations
based on his friends in ET . Then, we average the results for each user and compute
the final performance of each algorithm.

Epinions and Synthetic data sets do not have time stamps of the edges. The
performance of the algorithms is evaluated by applying double cross-validation (in-
ternal and external). Each data set was divided into 10 subsets. Each subset (EP )
was in turn used for performance estimation in the external cross-validation. The
9 remaining subsets (ET ) were used for the internal cross-validation. In particular,
we performed an internal 9-fold cross-validation to determine the best values of
the algorithms’ needed parameters. We chose as values for the parameters those
providing the best performance on the internal 9-fold cross-validation. Then, their
performance is averaged on the external 10-fold cross-validation. The presented
results, based on two-tailed t-test, are statistically significant at the 0.05 level.

We use the classic precision/recall metric as performance measure for friend
recommendations. For a test user receiving a list of n recommended friends (top-n
list), precision and recall are defined as follows:

Precision is the ratio of the number of relevant users in the top-n list (i.e., those
in the top-n list that belong to the future set of friends of the target user) to
n.

Recall is the ratio of the number of relevant users in the top-n list to the total
number of relevant users (all friends in the future set of the target user).

Moreover, since we provide to a target user u a top-n list of friends, it is
important to consider the order of the presented friends in this list. That is, it is
better to have a correct guess in the first places of the recommendation list. Thus,
we use the Mean Average Precision (MAP) to emphasize ranking of relevant
users higher. We define MAP by Equation 10:

MAP =
1

|N |

|N |
∑

u=1

1

ru

ru
∑

k=1

Precisionu@k (10)

where N is the number of users in the test data set, ru is the number of relevant
users to a user u and Precisionu@k is the precision value at the k-th position in the
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recommendation list for u. Notice that MAP takes into account both precision and
recall and is geometrically referred as the area under the Precision-Recall curve.

Furthermore, we use the AUC statistic to quantify the accuracy of prediction
algorithms and test how much better they are than pure chance, similarly to
the experimental protocol followed by Clauset hierarchical structure [7]. AUC is
equivalent to the area under the receiver-operating characteristic (ROC) curve [7].
It is the probability that a randomly chosen missing link (a link in EP ) is given a
higher similarity value than a randomly chosen non-existent link (a link in U −ET ,
where U denotes the universal set). In the implementation, among n times of
independent comparisons, if there are n′ times the missing link having higher
similarity value and n′′ times the missing link and nonexistent link having the
same similarity value, we define AUC by Equation 11:

AUC =
n′ + 0.5 × n′′

n
(11)

If all similarity values are generated from an independent and identical distri-
bution, the accuracy should be about 0.5. Therefore, the degree to which the accu-
racy exceeds 0.5 indicates how much better the algorithm performs than chance.
This is also explained thoroughly at the end of Section 5.7.

5.4 Sensitivity Analysis for the SpectralLink Algorithm

In this Section, we study the sensitivity of SpectralLink accuracy performance in
a synthetic and a real network (i) with different k number of clusters and (ii) with
different controllable sparsity.

In Section 4.2, one of the required input values for the SpectralLink algorithm
is the number k of clusters. To improve our recommendations in terms of effective-
ness, it is important to fine-tune the k variable. For the synthetic 50K data set, we
examine the performance of MAP metric when we recommend a top-3 friend list
(i.e. %MAP@3) vs. different values of k. Figure 11a illustrates MAP for varying k

values in the synthetic 50K data set. As expected, the best MAP performance of
SpectralLink is attained with k = 1000 clusters. The reason is the average nodes
degree (ADEG) of the 50K data set, which is equal to 50. Thus, with a number
k=1000 of clusters, we get an average cluster size, which corresponds to ADEG of
this data set. In the following, we keep k = 1000 as the default initial value for the
SpectralLink algorithm for this data set.

For the Facebook 3.7K data set, we follow the same tuning procedure. Fig-
ure 11b illustrates MAP values for varying number k of clusters. The best result is
attained for k = 500. Once again, the initial k number is analogous to ADEG (i.e.
7.21) and the network size (i.e. 3694/7.21 = 512). We have to notice that the num-
ber of selected clusters could reduce the gains over the predicting accuracy. This
means that our method requires a fine-tuning on the number of selected clusters.
However, the final number of selected clusters can be easily estimated by dividing
the N number of nodes in a graph with ADEG.

Next, we measure the accuracy that SpectralLink attains, with different con-
trollable sparsity. To examine the accuracy performance of SpectralLink in terms
of different network sparsity, we have created for the 50K synthetic data set 5
different sparsity cases, by changing the m number of friends that a node has (50,
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Fig. 11 MAP diagrams for data sets (a) Synthetic 50K, and (b) Facebook 3.7K.

60, 70, 80, 90), as shown in Figure 12a. As expected, with k increasing, the MAP
increases too.
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Fig. 12 MAP diagram for the synthetic 50K and the Facebook 3.7 data sets presenting the
increase in MAP values when a larger amount of neighbors is known for a data set. The data
sets represented are the (a) Synthetic 50K, and (b) Facebook 3.7K.

For the Facebook 3.7K data set, we also examine 5 different sparsity cases, by
changing the m number of friends that a node has (i.e. 3, 4, 5, 6, 7), as shown in
Figure 12b. As expected, the best MAP value is attained when we consider more
adjacent nodes (i.e. m equal to 7). This is reasonable since the ADEG of Facebook
3.7K data set is equal to 7.21. SpectralLink can predict more effectively new friends
for larger m values, since in such cases the network density is increased.

5.5 Accuracy Comparison of SpectralLink with other methods

In this Section, we compare SpectralLink against K-means, Two-way Ncut, FOAF,
AA, Katz, RWR, and RCT algorithms. Table 3 presents the MAP values of the
tested algorithms for the Facebook 3.7K and Hi5 63K data sets, respectively,
when we recommend three friends. As shown, SpectralLink outperforms the other
algorithms in both real data sets. The reason is that SpectralLink outperforms
K-means, because it takes into consideration also the degree of connectivity of a
graph. Moreover, SpectralLink is more flexible than k-means, because it captures
a wider range of cluster geometries and shapes and not only cyclic clusters. As
also shown, SpectralLink outperforms Two-way Ncut because the latter relies only
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on the second eigenvector, cutting the subsequent eigenvectors, which might be
perfect partitioning vectors. Furthermore, RWR, Katz and RCT traverse globally
the social network, failing to capture adequately the local characteristics of the
graph. Finally, FOAF and AA fail to provide accurate recommendations because
they exploit only local characteristics of the graph. Notice that MAP values are
high for Facebook 3.7 data set. The main reason is the topological characteristics
of the graph (i.e. high LCC and small ASD). It can be considered as a small-world
network [5]. That is the network is strongly localized with most of paths being of
short geographical lengths. Thus, all algorithms can more easily find a short path
that connects a pair of nodes, and recommend friends that are near the target’s
user neighborhood. In contrast, the overall performance of tested algorithms is sig-
nificantly decreased with the Hi5 63K data set. The main reason is the topological
characteristics of Hi5 63K data set (i.e. high ASD=7.18 and small ADEG=2.78).
Based on this characteristics, Hi5 63K cannot be considered as a small-world net-
work. Thus, it is not well-connected and results in lower recommendation accuracy.

Algorithm Facebook 3.7K Hi5 63K

SpectralLink 0.395 0.161

K-means 0.334 0.115
Two-way Ncut 0.365 0.135

FOAF 0.105 0.021
AA 0.125 0.054

RWR 0.225 0.085
Katz 0.205 0.075
RCT 0.315 0.121

Table 3 MAP values of all algorithms for the real data sets.

5.6 Time Comparison of SpectralLink with other Methods

In this Section, we compare SpectralLink, K-means, Two-way Ncut, FOAF, AA,
Katz, RWR, and RCT algorithms in terms of efficiency using two synthetics and
two real data sets. We have created 2 synthetic data sets based on different network
sizes n (50000, 100000), by keeping an m nodes degree equal to 50 for both data
sets. Then, we measured the clock time for the off-line parts of all algorithms. The
off-line part refers to the average computation time for calculating the similarities
for a target node. The results are presented in Table 4.

As shown, SpectralLink outperforms two-way Ncut. The reason is that two-
way Ncut is computationally wasteful, since it is a recursive algorithm and only
the second eigenvector is used in each bipartition. Moreover, SpectralLink outper-
forms RWR, Katz and RCT, which presents the worst time complexity because
it calculates the inverse of an n × n matrix, whereas SpectralLink performs cal-
culations on the decomposed normalized Laplacian matrix. As expected, FOAF
outperforms the other algorithms due to its simpler complexity. However, as al-
ready shown in Section 5.5, FOAF performs the worst results in terms of accuracy
prediction. This means, that it is not suitable for the friend recommnedation task,
even if FOAF presents small time complexity.
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Algorithm Synthetic Synthetic Facebook Hi5

50K 100K 3.7K 63K

SpectralLink 0.456 sec 0.825 sec 0.085 sec 0.562 sec
K-means 0.532 sec 1.152 sec 0.105 sec 0.745 sec

Two-way Ncut 0.499 sec 0.987 sec 0.098 sec 0.652 sec
FOAF 0.150 sec 0.280 sec 0.029 sec 0.179 sec

AA 0.164 sec 0.298 sec 0.036 sec 0.197 sec
RWR 0.833 sec 1.621 sec 0.135 sec 1.106 sec
Katz 0.945 sec 1.711 sec 0.152 sec 1.198 sec
RCT 0.897 sec 1.653 sec 0.145 sec 1.156 sec

Table 4 Time comparison of all tested algorithms for the synthetic and real data sets.

5.7 SpectralLink Effectiveness in Signed Networks

In this Section, we present the accuracy performance of SpectralLink when we
take into account positive and negative links of a signed network, i.e. extended
Epinions 132K data set.

We will use as comparison partner in our experiments, a model proposed by
Jure Leskovec et al. [22] that applies featured-based classification for predicting
links. In particular, their model uses the logistic regression as a classifier, which is
trained based on local topological graph features, and predicts whether there exists
an edge between a pair of nodes or not (two class labels). These features/variables
take into account the existence of negative links. Based on Status theory [23,22],
the positive nodes’ in-degree deg+

in(x) and the negative nodes’ in-degree deg−out(x)
of a node x increase its status. In contrast, the positive nodes’ out-degree deg+

out(x),
and the negative nodes out-degree deg−in(x) decrease its status. Thus, by exploit-
ing these features we can run a logistic regression model to predict new friends
based on the existence of edges that imply enmity or distrust. We have to notice
that Leskovec et al. [23,22] concentrate in the “Edge Sign Prediction” problem.
However, their model can be also applied in the “Link Prediction” problem. Hence-
forth, their method that takes into account only positive links is denoted as LR(+),
whereas their method that takes into account both positive and negative links is
denoted LR(+,−). In our model, we have two different variants of SpectralLink:
The first variation considers only positive links and is denoted as SpectralLink(+).
The second variation considers both positive and negative links and is denoted as
SpectralLink(+,−).

Figure 13a presents the precision and recall diagram for both versions of Spec-
tralLink and LR, whereas Figure 13b presents the AUC accuracy statistic. Both
Figures show that SpectralLink(+,−) outperforms SpectralLink(+). The reason
is that SpectralLink(+,−) exploits positive and negative links. This means that
if we use information about negative edges for predicting the presence of positive
edges we get an accuracy improvement of SpectralLink predictions. These results
clearly demonstrate that there is, in some settings, a significant improvement to
be gained by using information about negative edges, even to predict the presence
or absence of positive edges. Finally, SpectralLink(+,−) outperforms LR(+,−).
The reason is that it exploits the normalized Laplacian matrix of the social graph,
which captures the overall network structure. In contrast, LR(+,−) focuses only
on local topological graph characteristics (e.g. nodes’ degree).
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Fig. 13 Accuracy performance of SpectralLink and LR in terms of (a) precision/recall and
(b) AUC statistic.

6 Discussion

A basic problem of social networks is data sparsity [32]. Data sparsity can be
increased by the so-called “losing links”. That is, users of social networks usually
remove friends from their friends’ list, when they do not anymore keep contacts
with them. However, the prior probability of a link is typically quite small for
building a statistical model. To overcome this limitation, we studied a synthetic
network model with controllable sparsity. As it was experimentally shown, a higher
network sparsity harms all algorithms’ accuracy performance.

Real networks have many complex structural properties [8], such as degree
heterogeneity, the rich-club phenomenon, the mixing pattern, etc. These network
properties are not considered by our synthetic network model, since they are out
of the scope of this paper. However, our synthetic network model can be easily
extended to better resemble real networks. For example, by applying the degree
heterogeneity index [8] with a probability p, a synthetic network with different
level of degree heterogeneity can be composed.

This paper concerns unweighted and undirected networks. However, our algo-
rithm can be easily extended to more general cases. For example, we can handle
the directed networks by replacing the original adjacency matrix A by an asym-
metric one. Also, this paper concerns the prediction problem in static networks.
In reality, many networks are continuously evolving, and the links created in dif-
ferent times should be assigned with different weights. Our algorithm could deal
with weighted networks by replacing A by a weighted matrix.

Finally, notice that in our running example, we have assumed the existence of
a well-connected component. However, in real social networks a graph is not fully
connected. This means that we can calculate a similarity between nodes, which
belong to the same connected component, whereas we compute zero values for
pairs of nodes belonging to different components. To overcome this limitation, we
could connect the different components with an artificial link.
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7 Conclusions

In this paper, we introduced a framework that uses multi-way spectral clustering
to provide friend recommendations in OSNs. We compared our method with well-
known link prediction algorithms, the k-means and the two-way nCut clustering
algorithms, using two synthetic and three real data sets (Hi5, Facebook and Epin-
ions). We have shown that our SpectralLink algorithm provides more accurate and
fast friend recommendations. In future, we indent to improve friend recommenda-
tions by combining explicit with implicit social networks. Implicit social networks
provide valuable information by similar users’ who co-comment on written posts,
co-rate products and co-participate in groups.
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