
Lifting the burden of history in adaptive ordering
of pipelined stream filters

Efthymia Tsamoura, Anastasios Gounaris, Yannis Manolopoulos

Department of Informatics, Aristotle University of Thessaloniki, Greece
{etsamour|gounaria|manolopo}@csd.auth.gr

Abstract— Ordering of commutative and correlated pipelined
stream filters in a dynamic environment is a problem of high
interest due to its application in data stream scenarios and
its relevance to many query optimization problems. Current
state-of-the-art adaptive techniques continuously reoptimize fil-
ter orderings utilizing statistics that are collected during the
execution of the query; however, both the up-to-date and the
out-of-date collected statistical data may be considered with
the consequence of not always taking effective reoptimization
decisions. In this work, we propose a technique for adaptive
filter ordering that tries to lift the burden of out-of-date s tatistical
data after detecting changes in the filter drop probabilities. To
this end, we propose a novel drop probability change detection
algorithm. The experimental evaluation shows that the proposed
technique can yield significant performance improvements while
decreasing the runtime overhead.

I. I NTRODUCTION

Nowadays, an increasing number of applications deals with
streaming data, e.g., network monitoring, online processing of
sensor data, etc. Since the queries that are submitted to a data
stream management system are usually long-running or even
continuous, the characteristics of the underlying execution
environment, as well as the characteristics of the streaming
data may be significantly different from those when the query
was initiated. This necessitates the development of adaptive
query processing techniques [1], which can be deemed as
resulting to self-optimizing query processors. The adaptive
techniques employ a three phase procedure, called adaptivity
loop: (i) they collect runtime statistics (statistics collection or
measurement update phase); (ii) they analyze the efficiency
of the current execution plan with respect to the collected
statistics (analysis phase); and (iii) they perform reoptimiza-
tion if the analysis indicates that the previously selectedplan
is inefficient (reoptimization phase).

A problem of high interest deals with the ordering of
commutative filters in a dynamic environment; this problem
relates to additional query optimization problems (e.g., multi-
way join query optimization [2], [1]). In this work, we deal
with a flavor of the problem where a single data source streams
the input tuples. The input tuples are pipelined among the
filters, while the filters are commutative and associated with
(i) processing costs and (ii) drop probabilities. In the generic
case, the drop probabilities are correlated, i.e., a filter’s drop
probability depends on the filters upstream in the ordering.The
goal is to find a filter ordering, such that the total processing
cost of the input tuples is minimized. Moreover, since the

execution environment is dynamic, a filter ordering must adapt
to the changes in the execution environment.

In order to build filter orderings that are consistent with
the varying characteristics of the execution environment,an
adaptive technique, called A-greedy, is proposed in [2]. Al-
though this technique collects runtime statistics, it may not
always take effective reoptimization decisions, because it
considers both up-to-date and out-of-date statistical data when
investigating filter reordering.

In this work, we propose a novel technique for adaptive
filter ordering that lifts the burden of out-of-date statistical data
when performing adaptive query optimization. The technique
first learns the filter drop probabilities based on runtime
collected statistical information. It then checks whetherthe
filter drop probabilities have changed. If this is the case, the
out-of-date statistical data that have been collected so far is
dropped, the filter drop probabilities are re-learned usingonly
up-to-date statistics, and the algorithm checks whether the
changes have rendered the current filter ordering suboptimal in
order to reoptimize it. As such, adaptivity decisions are based
on updated data.

The proposed technique utilizes a change detection al-
gorithm in order to learn and check for changes the filter
drop probabilities. Although several state-of-the-art change
detection algorithms can be employed for change detection,
our technique performs change detection through a novel
algorithm, called BCS, which is tailored to drop probability
learning and change detection. Its high accuracy in detect-
ing drop probability changes and its low run-time overhead
compared with state-of-the-art change detection algorithms
(e.g., [3], [4]) render BCS more suitable for general query
processing purposes.

We focus on abrupt changes. In many real life applications,
malfunction or malicious system behavior phenomena (e.g.,
network intrusion) exhibit abrupt change patterns ([5]). For
example, regarding network intrusion detection applications
([5]), many network attacks, such as denial of service, lead
to a high and abrupt increase in the total number of packets
that are transmitted to the victim machine. As such, any filter
with respect to the number of packets may experience abrupt
changes in its drop probability. The evaluation results show
that, in scenarios where abrupt changes in filter drop proba-
bilities occur, the proposed technique can significantly improve
the performance of the resulting filter ordering compared to
A-greedy while decreasing the runtime overhead.

The paper is organized as follows. Section II provides
background information related to A-greedy ([2]), defines the
problem that we deal with and gives a motivating example.
Section III presents the new change detection algorithm BCS
and Section IV presents the complete technique into which
BCS is encapsulated. The experimental evaluation is done in
Section V. Section VI briefly presents the related work and,
finally, Section VII concludes the paper.

II. BACKGROUND AND PROBLEM FORMULATION

Let the query to be evaluated be a conjunction ofN
commutative filtersF1, ..., FN , to be applied to the tuples
from a streaming relation. The execution plan forms a linear
ordering of all filters. We denote the per tuple cost of the filter
placed in thei-th position of the current ordering byc(i),
and the probability that a tuple does not satisfy the condition
of the filter in thei-th position, and thus drops the tuple, by
d(i). Since, in most real applications, the drop probabilities are
correlated, we also define the conditional probabilityd(i|i−1),
which corresponds to the probability that the filter placed at
the i − th position will drop a tuple from the input stream,
given that this tuple was not dropped by any of the filters that
are placed up to thei − th position in the current ordering.
For simplicity, we assume that the per tuple processing costs
c(i), 1 ≤ i ≤ n are the same; extensions of our technique to
the generic case where costs differ are straightforward andare
omitted due to space restrictions.

As shown in [2], minimizing the total cost is recast as the
problem of building an ordering that, for each positioni in
the ordering, satisfies the so-called greedy invariant given by:

d(i|i − 1) ≥ d(j|i − 1), 1 ≤ i ≤ j ≤ N

Since the actual filter drop probabilities are not known a
priori, they are estimated after collecting runtime statistics. In
particular, in A-greedy, which is the most advanced solution
to this problem to date, every input tuple that is rejected by
at least one of the input filter is probabilistically chosen for
profiling [2]. If an input tuple is chosen for profiling, it is
virtually processed by the input filters and it is recorded in
anN attribute tuple, calledprofile tuple, which denotes which
of the filters eventually drop the specific tuple and which not;
if the i − th input filter drops the profiled tuple, then the
i− th attribute is true; otherwise it is false. The profile tuples
are stored in a fixed-size sliding windowW , called profile
window. A-greedy utilizes the contents ofW to estimate the
conditional drop probabilities of the input filters. For example,
the drop probabilityd(j|i), 1 ≤ i < j ≤ N is approximated by
the total number of the profile tuples that are currently stored
in W which are rejected by thej − th filter in the ordering
and are not rejected by any of the filters that are placed up to
the (i + 1)− th position in the current ordering (the reader is
referred to [2] for full details).

A problem encountered when selecting a profile window
of static size is that data (i.e., profile tuples) may co-exist
for which the same input filters have significantly different
drop probabilities. The coexistence of such inconsistent,in

terms of statistics, profile tuples can lead to wrong filter drop
probability estimates and subsequently to wrong or delayed
re-optimization decisions.

Example 1:Assume that there exist two independent filters
F1 and F2, for which the drop probabilities change abruptly
at one point (e.g., they depend on a day period). Also assume
that the input stream consists of 100,000 tuples, every input
tuple is used for statistics collection and the profile window is
large enough to store all tuples. During the first 50,000 tuples,
filter F1 unconditionally drops a tuple with constant proba-
bility 0.925, while F2 drops a tuple with constant probability
0.05. A-greedy converges to the optimal orderingF1F2, since
exploiting the profile tuples that have been added toW so
far, it can easily be derived that the drop probability ofF1

is higher than that ofF2. For the last 50,000 tuples the drop
probability of F1 becomes 0.15 and the drop probability of
F2 becomes 0.6. Although the optimal ordering now becomes
F2F1, A-greedy cannot proceed to reoptimization, because the
out-of-date contents ofW bias the maintained drop probability
estimates towards the initial ordering.�

In the above example, if we were able to detect the stream
points where the drop probabilities of the filters have changed
and subsequently erase the tuples of the profile window that
arrived before the change, then an adaptive ordering algorithm
would be capable of converging to the optimal ordering. This
is exactly what our proposal is capable of doing.

III. T HE BCS CHANGE DETECTION ALGORITHM

In this section, we present a new online algorithm dedicated
to drop probability change detection, called BCS. We first
divide the profile window into non-overlapping segments of
size k, and for each new segment, we estimate the drop
probabilities taking into account only the segment contents.
Since we assume fixed sized sliding profile windows, these
estimates are produced periodically and they are fed to the
change detection algorithm. We denote thej-th such estimate
as d̂j .

We start from considering an existing method, namely the
CUSUM one, which is one of the first methods introduced
in the literature for change detection [6]. CUSUM assumes
that we know the probability distributions of the data prior
and after a change in drop probability, and these probabilities
distributions are denoted asP0 andP1, respectively. CUSUM
relies on the observation that, upon receiving a new drop
probability estimatêdj , if the current distribution isP0, then
the probability thatd̂j is produced underP0 is higher than
P1(d̂j) and the vice versa, and thus the log-likelihood ratio
ln(P1(d̂j)/P0(d̂j)) shows a negative drift before change, and
a positive drift after the change. Thus, every time a new item
d̂j arrives, the CUSUM algorithm updates a cumulative sum
Sj as follows:

Sj =

{

Sj−1 + ln
P1(d̂j)

P0(d̂j)
, Sj−1 + ln

P1(d̂j)

P0(d̂j)
> 0

0, otherwise,

}

(1)

whereS0 = 0. If a probability distribution change fromP0

to P1 occurs, then the values of the log-likelihood ratios that

are estimated as new data items arrive are positive, and thus
the cumulative sumSj continuously increases. The CUSUM
method assumes that, if the sum of the log-likelihood ratios
computed so far exceeds a certain thresholdh > 0, then a
change in the underlying data distribution is detected andP1

becomes the new base probability distribution. Otherwise,the
above procedure continues by cumulating the newly computed
log-likelihood ratios. CUSUM is rather effective in detecting
changes [6] but it requires the availability of the probability
distributionsP0, P1, which makes it inapplicable to online sce-
narios. An online variant of the original CUSUM is proposed
in [7] that is based on the assumption that theP0 and P1

distributions are normal.
However, in our case, we have strong evidence that drop

probabilities better fit a beta distribution [8]. Thus we develop
an online version of CUSUM that assumes beta distributions,
and we term this method as BCS (for online Beta distribution-
based Cumulative Sum). In BCS, a training step is firstly
adopted to derive the parameters of the base (i.e., prior to
change) beta distribution. After that, the original test inEq.
(1) is employed. The exact phases of the BCS algorithm are
as follows:

Train step: The training phase requires a setD of drop
probability estimates of sizem = |D|. As the number of data
that is used during the training phase increases, the actual
filter drop probability distribution is learned more accurately
at the expense of a longer training period. In that phase we
derive for the parametersα andβ of the base beta distribution,
their single-value estimatesα|D| andβ|D| and their associated
confidence intervals[αlo αup] and [βlo βup], assuming a
confidence level ofζ. More details are given in Section V-
A. After finishing the training phase, the cumulative sum in
Eq.(1) is set to 0.

Change detection step: Every time a drop probability es-
timate d̂j is supplied to BCS, the mean valueµj and the
standard deviationσj of the j > m drop probability estimates
seen so far (including those of the training set) are computed:

µj = µj−1 + (d̂j − µj−1)/j (2)

σj =

√

(j − 1)σ2
j−1 + (d̂j − µj−1)(d̂j − µj)

j
(3)

and theαj andβj parameters of the beta distribution are then
computed by

αj = (µj(1 − µj)/σj − 1)µj (4)

βj = (µi(1 − µj)/σj − 1) (1 − µj) (5)

If αj or βj do not lie within the confidence intervals estimated
during the training step, then it is assumed that the itemd̂j

is produced by a different beta distributionBeta(αj , βj) and
Sj is updated following Eq.(1), whereP0 = Beta(α|D|, β|D|)
andP1 = Beta(αj , βj). If Sj exceeds the thresholdh, then a
change is detected and a changepoint is reported. In order
for the BCS algorithm to be operational again, a training
phase must be applied with a new training set, since the

previously found confidence intervals of the beta distribution
are estimated using past data items.

Neither CUSUM nor BCS can determine the most prob-
able changepoint, i.e., although they are capable of detect-
ing changes, they cannot provide any information regarding
the most probable changepoint. In order to overcome this
limitation, we assume that the change is initiated at the
ν − th most recent drop probability estimate that has been
supplied, whereν > 0 is an empirically configured parameter.
Finally, thresholdh is empirically set in order to maximize the
ability in detecting changes, while keeping the faulty detected
changes as low as possible. The impact of these parameters is
evaluated in Section V-A.

The runtime computational complexity of BCS isO(1),
as each time a new drop probability estimate is fed to the
algorithm, the mean value and the standard deviation of the
estimates seen so far are incrementally computed (see Eq.(2)
and Eq.(3)). As such, BCS’s runtime overhead is significantly
lower with respect to other state-of-the-art change detection
methods, e.g., [3], [4].

IV. T HE PROPOSED ADAPTIVE TECHNIQUE

The rationale behind the proposed technique is that, when
at least one filter drop probability changes, then all of the
profile tuples that are currently stored in the profile window
and correspond to data that has arrived before the occurred
change is considered to be out-of-date. For this reason, every
time BCS detects a drop probability change, the technique
erases the out-of-date data of the profile window and the filter
drop probabilities are relearned utilizing the data tuplesleft in
W . Each drop probabilityd(j|i), 1 ≤ i ≤ j ≤ N , is checked
for changes with the help of a different instance BCS.

As mentioned already, the drop probability estimates that
are fed to the BCS algorithm to perform change detection
are estimated after dividing the profile window into non-
overlapping segments of sizek. The estimated̂ of d(j|i) is
equal to the proportion of the profile tuples in thek-size
segment that are rejected by thej − th filter in the ordering
and are not rejected by any of the filters that placed up to
the (i + 1) − th position. To summarize, every time a batch
of k profile tuples is added to the profile window, the drop
probability estimates are derived from this batch of tuplesand
are subsequently fed to the BCS algorithm to check the filter
drop probabilities for changes.

The adaptivity loop of the proposed technique is given
below. In the measurement update phase, the conditional drop
probabilities are checked for changes. If a change has occurred
the most probable timepoint where the change in the data
characteristics has started is estimated, as described in the
previous section. In addition, the out-of-date profile tuples are
removed from the profile window and, second, the change
detection algorithms are trained to learn the new conditional
filter drop probabilities from the up-to-date contents ofW .
Then the analysis phase is triggered. In the analysis phase,
the framework checks for violations of the greedy invariant.
When the invariant is violated, then the reoptimization phase is

executed and the filters are reordered. Compared to A-Greedy
[2], our approach shares the same analysis and reoptimization
phases, however it enters those phases less often and only
under the condition that the monitored drop probabilities
have changed; note that the analysis phase in A-Greedy is
performed continuously, i.e., for each update in the profile
window [2], [1].

V. EXPERIMENTAL EVALUATION

The conducted experiments aim, first, to compare the per-
formance and the runtime overhead of the proposed technique
with the performance and the runtime overhead of A-greedy
and, second, to study how does the above criteria change
with respect to (i) the algorithm that is employed for drop
probability change detection –to this end, we consider the
martingale test (MT) [3] and ADWIN2 [4]) change detection
algorithms–, and (ii) the frequency of the filter drop probability
changes. The key observations are: (i) the proposed technique
yields significant performance improvements (up to55%) over
A-greedy; (ii) the runtime overhead of the proposed technique
when employing BCS is up to 37% lower than that of A-
greedy; and (iii) BCS outperforms MT and ADWIN2 in terms
of precision and recall, and incurred overhead. All experiments
were performed on an Intel i5 Linux machine with 3.7 GB
memory.

A. Parameter tuning and comparison of change detection
alternatives

In this section, we present the methodology that we adopted
to tune theh, k, ν andm parameters of the BCS and the MT
algorithms. The rest of the parameters of MT and ADWIN2 are
set according to [3] and [4], respectively. The parameter tuning
procedure consists of two steps. In the first step, we perform
change detection employing the BCS (or the MT) algorithm
with different values for theh (cumulative sum threshold),k
(segment size),ν (used in changepoint detection) andm (train
set size) parameters. The characteristic that is being checked
for changes is the selectivity of an attribute. From the change
detection results that are derived, we compute precision and
recall. Precision is the probability that a detected changeis
actually correct, while recall is the probability that an actual
change is detected. In the second step, we select theh, k, ν
andm parameter values that optimize precision and recall.

The data tuples that are supplied to the BCS and the MT
algorithms for change detection have the following character-
istics: (i) there is only one attribute per tuple that takes only
{0, 1} values; (ii) the selectivity of the attribute is given by
the proportion of tuples with attribute value equal to 1; (iii)
the selectivity of the attribute changes every 400K tuples and
there are 50 changes in total; and (iv) the selectivity changes
are random and the smallest change is 10%.

In the following, we present the parameter tuning
procedure for BCS. The different assignments of the
h, k, ν and m parameters areh = {5, 10, 25, 50, 100},
k = {10, 20, 30, 40, 50}, ν = {5, 10, 20, 30, 50}, m =
{5, 10, 20, 30, 50}, while N = 15, |W | = 60K and ζ =

0 0.5 1
0

0.5

1

Precision
(a)

R
ec

a
ll

h=5

0 0.5 1
0

0.5

1

Precision
(b)

R
ec

a
ll

h=25

0 0.5 1
0

0.5

1

Precision
(c)

R
ec

a
ll

h=50

0 0.5 1
0

0.5

1

Precision
(d)

R
ec

a
ll

h=100

0 0.5 1
0

0.5

1

Precision
(e)

R
ec

a
ll

k=20

0 0.5 1
0

0.5

1

Precision
(f)

R
ec

a
ll

k=50

Fig. 1. (a)-(d)Precision and recall values obtained after employing BCS for
attribute selectivity change detection with different values of thek, ν andm

parameters and (a)h = 5, (b) h = 25, (c) h = 50 and (d) h = 100.
(e)-(f)Precision and recall values obtained after employing BCS for attribute
selectivity change detection with different values of theν andm parameters
and (e)k = 20, (f) k = 50. Parameterh is set to 25.

0.05. The BCS algorithm performs change detection on the
selectivity of the single attribute of the produced data tuples
after sampling1% of the data tuples. It is executed totally
|h| × |k| × |ν| × |m| times, where|.| denotes the number
of the different values that a parameter can take. For every
BCS execution, we compute its associated precision and recall
measures taking into account all of the correctly, erroneously
and missed detected attribute selectivity changes.

Figure 1(a) shows the obtained precision and recall values
for every possible value combination of thek, ν and m
parameters andh = 5. Similarly, Figures 1(b)-(d) show the
obtained precision and recall values for every possible value
combination of thek, ν andm parameters andh = 25, h = 50
and h = 100, respectively. We observe that as the value of
parameterh increases, the precision of the BCS algorithm
(slightly) increases too, while its recall decreases significantly.
This is attributed to the fact that under highh values, only
large-scale drop probability changes are detected, ignoring the
small-scale ones. We fixh to 25, since, for that configuration,
BCS has the highest recall and, approximately, equal precision
values with respect to the ones derived whenh = 50 and
h = 100. Particularly, whenh = 5, the precision and recall
values range in[0.25 0.70] and [0.83 1.0], respectively. When
h = 25 the precision is in[0.32 0.80] and the recall is in
[0.80 0.92]. The corresponding precision and recall intervals
are[0.39 0.70] - [0.36 0.94] for h = 50 and, finally,[0.44 0.84]
- [0.02 0.69] for h = 100.

Figure 1 also shows the obtained precision and recall values
for every possible value combination of theν, m parameters
and k = 20 (Figure 1(e)) andk = 50 (Figure 1(f)). When
k = 20 the corresponding precision and recall value intervals
are [0.32 0.63] and [0.89 0.92], respectively. Whenk = 50,
these intervals become[0.34 0.80] and [0.80 0.86]. For both
cases, the highest precision and recall values are met when

BCS MT ADWIN2

−50

0

50

100

Change detection algorithm

%
P
er

fo
rm

a
n
ce

Im
p
ro

v
em

en
t

BCS MT ADWIN2

−50

0

50

100

Change detection algorithm

%
P
er

fo
rm

a
n
ce

Im
p
ro

v
em

en
t

BCS MT ADWIN2

−50

0

50

100

Change detection algorithm

%
P
er

fo
rm

a
n
ce

Im
p
ro

v
em

en
t

(a) (b) (c)

Fig. 2. Maximum (middle bar) and median (rightmost bar)% performance improvement and maximum performance degradation (leftmost bar) of the change
detection-based techniques over A-greedy. Results of (a) Experiment 1, (b,c) Experiment 2.

ν = 5, which means that an actual change is being detected
after ν = 5 segment-wise estimates have been presented to
the algorithm after a change has occurred. We fixk to 20 and
ν to 5, since this parameter combination leads to higher recall
values.

The only parameter that has not been fixed yet ism. We fix
parameterm to 20, since this parameter assignment leads to
the highest precision/recall values (0.63 and0.92, respectively)
over the two other choices. To summarize, we have selected
the value combinationh = 25, k = 20, ν = 5 and m = 20,
which corresponds to0.63 and 0.92 average precision and
recall values, respectively.

After employing a similar procedure for tuning the param-
eters of the MT algorithm we select theh = 25, k = 20,
ν = 10, m = 20 parameter assignment, which leads to0.52
precision and0.83 recall values. Performing change detection
through the ADWIN2 algorithm over the same testset of data
tuples we derive the0.35 and0.95 precision and recall values,
respectively. The relatively low precision that the ADWIN2
algorithm has is attributed to the fact that, from the time
since a change in a filter’s drop probability is first detected
by ADWIN2 and for a short period, the algorithm is unstable
and continuously detects changes every time new profile data
arrives.

The above show that BCS is the most efficient change
detection for detecting drop probability changes. To sum-
marize, the average precision and recall values of the BCS
algorithm for its optimal configuration are 0.63 and 0.92,
respectively. Regarding the MT algorithm, the precision and
recall values for its own optimal configuration are 0.52 and
0.83, while the precision and recall of ADWIN2 are 0.35 and
0.95, respectively.

B. Performance analysis

In order to produce correlated input tuples, we adopt the
methodology described in [2]. The filter drop probabilities
change randomly every 250K, 500K, or 1000K tuples, while
each filter drop probability changes 5 times totally when
processing an input data stream. All changes are abrupt and
new selectivities are at least 10% different than the previous
ones. We keepN = 15, |W | = 60K, andζ = 0.05 and we set
the rest of the parameters of the change detection algorithms to

their optimal configuration in terms of precision-recall based
on the results presented above.

In Experiment 1, we study the impact of the different
change detection algorithms on the quality of the orderings
compared to A-Greedy. Fifty different data streams have been
produced, where in each stream the total number of attributes
is fifteen (and thus fifteen filters are considered), the filter
drop probabilities change every 500K tuples and each filter
drop probability changes 5 times in total.

Figure 2(a) shows the maximum (middle bar) and median
(rightmost bar)% performance improvement, as well as, the
maximum performance degradation (leftmost bar) under the
different filter ordering techniques. The performance improve-

ment/degradation is estimated by(Cost(O)−Cost(O
′

)
Cost(O), where

Cost(O) is the cost of processing tuples with a filter ordering
produced by A-greedy (O) andCost(O

′

) is the cost of pro-
cessing tuples with a filter ordering produced by the techniques
that detect changes (O

′

) when the drop probability change
detection is done with the BCS, the MT, or the ADWIN2
algorithms. Note that the runtime overhead associated with
the adaptivity loop of the change detection-based techniques
is not considered, but will be examined later; the costs above
take into account only the quality of the orderings selected.

A main observation is that the maximum performance
improvement of all the change detection-based techniques
over A-greedy is approximately55%, while the median of
the performance improvement over the different 50 input
data streams is approximately10% when any of the BCS,
MT, ADWIN2 algorithms is employed. The efficiency of an
algorithm in detecting filter drop probability changes strongly
affects the performance, since, when one or more filter drop
probability change is not detected, the out-of-date data are
not eliminated during query reoptimization. From Figure 2(a)
we can see that the maximum performance degradation is
6%, 66% and 5% when the BCS, the MT, or the ADWIN2
algorithm is employed, respectively. The high performance
degradation when employing the MT algorithm is because
of the high number of missed filter drop probability change
detections.

In Experiment 2, we study how the performance is affected
by the frequency of the drop probability changes. To this
end, we have repeated Experiment 1 withfreq = 250K

and freq = 1000K. The performance results are shown in
Figures 2(b) and 2(c), respectively. We can observe that as
the frequency of changes increases, the performance improve-
ments decrease, and, on the contrary, as the frequency of
changes decreases, the performance improvements increase.
This happens due to the fact that a filter drop probability
change is not immediately detected after its occurrence, but
after a specific delay, as discussed earlier. As the frequency of
drop probability changes increases (decreases), the percentage
of tuples that are processed before the next change occurs
decreases (increases), with a corresponding decrease (increase)
in the obtained performance improvements.

At the end of this section, and due to lack of space, we
present a summary of the runtime overhead characteristics
of the proposed technique. The first observation is that the
runtime overhead of the proposed technique when employing
the BCS algorithm is lower than that of A-greedy, since the
number of conducted reoptimizations is up to37% lower
than of A-greedy. Note that despite the increased number of
reoptimizations, the performance of A-greedy is lower since
it does not eliminate the out-of-date data from the profile
window. On the other hand, the runtime overhead incurred
when the other two change detection algorithms are employed
(i.e., the MT or the ADWIN2 algorithms) is approximately ten
times higher than that of A-greedy. The increased overhead
is due to the higher complexity of the MT and ADWIN2
algorithms and to the relatively high number of unnecessary
re-optimizations, because of their low accuracy in distinguish-
ing the actual drop probability changes from temporal drop
probability fluctuations.

In summary, the results above show that (i) BCS can incur
significant performance improvements compared to A-greedy,
while being characterized by lower overhead (up to 37 %);
and (ii) BCS algorithm is more appropriate than the other two
alternatives to change detection: the cost of the resultingfilter
orderings is approximately equal to the cost of the orderings
produced when employing ADWIN2 and lower than that of
MT, while the runtime overhead of BCS is much lower than
that of ADWIN2.

VI. RELATED WORK

The problem that is addressed in this work relates with the
problems of operator ordering and adaptive query processing.
In the area of operator ordering, the majority of the work
assume independent operators (e.g., [9]), while the proposals
that deal with correlated operators assume a static execution
environment (e.g., [10]), with the exception of proposals such
as [2]. Note that in a centralized environment, the problem of
pipelined filter ordering can be optimally solved in polynomial
time only if the filter drop probabilities are independent [11].
Several proposals have been presented in the literature during
the last decade that introduce adaptive query processing tech-
niques [1]. Their common characteristic is that they employa
three step adaptivity loop. However, the techniques proposed
so far tend not to pay attention to the statistics collection
phase, e.g., they do not evaluate the freshness of the selected

statistical data, but mainly emphasize on responding as fast as
possible to changes in the execution environment (e.g., [12]).

Regarding the problem of change detection in data streams,
several other algorithms have been recently proposed in the
literature (e.g., [13], [3], [4]). However, to the best of our
knowledge, no algorithm is tailored to detecting changes ina
drop probability distributions, which can be approximatedwith
a beta distribution [8]. Additionally, the run-time overhead
of the majority of the change detection algorithms is higher
than that of the BCS algorithm, e.g., every time a new data
item arrives a probability density function or a support vector
machine may have to be adjusted, which is inappropriate for
online settings.

VII. C ONCLUSIONS

In this work, we propose an adaptive technique for pipelined
ordering of correlated filters. Our main contribution is two-
fold. First, we have presented an approach according to which
only up-to-date statistical data are considered during adaptive
filter ordering by employing an algorithm that learns and
checks for changes the filter drop probabilities. Second, a
novel algorithm is proposed that is tailored to drop probability
distribution change detection. The evaluation results presented
provide evidence that the proposed technique can improve the
performance of the resulting filter orderings over state-of-the-
art techniques such as A-Greedy while incurring lower run-
time overhead. As a future work, we intend to conduct more
thorough experiments and also evaluate our proposal against
real evolving data streams, where drop probability changes
may occur gradually rather than abruptly.

REFERENCES

[1] A. Deshpande, Z. Ives, and V. Raman, “Adaptive query processing,”
Foundations and Trends in Databases, vol. 1, no. 1, pp. 1–140, 2007.

[2] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom,
“Adaptive ordering of pipelined stream filters,” inSIGMOD, 2004, pp.
407–418.

[3] S.-S. Ho and H. Wechsler, “A martingale framework for detecting
changes in data streams by testing exchangeability,”IEEE TPAMI,
vol. 32, pp. 2113–2127, 2010.

[4] A. Bifet and R. Gavalda, “Learning from time-changing data with
adaptive windowing,” 2007, pp. 443–448.

[5] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The
1999 darpa off-line intrusion detection evaluation,”Computer Networks,
vol. 34, pp. 579–595, 2000.

[6] M. Basseville and I. V. Nikiforov,Detection of abrupt changes: theory
and application. Prentice-Hall, Incorporation, 1993.

[7] C. Alippi and M. Roveri, “Just-in-time adaptive classifiers-part i: Detect-
ing nonstationary changes,”IEEE TNN, vol. 19, no. 7, pp. 1145–1153,
2008.

[8] B. Babcock and S. Chaudhuri, “Towards a robust query optimizer: A
principled and practical approach,” inSIGMOD, 2005, pp. 119–130.

[9] J. M. Hellerstein and M. Stonebraker, “Predicate migration: Optimizing
queries with expensive predicates,” inSIGMOD, 1993, pp. 267–276.

[10] K. Munagala, U. Srivastava, and J. Widom, “Optimization of continuous
queries with shared expensive filters,” inPODS, 2007, pp. 215 – 224.

[11] R. Krishnamurthy, H. Boral, and C. Zaniolo, “Optimization of nonre-
cursive queries,” inVLDB, 1986, pp. 128–137.

[12] R. Avnur and J. M. Hellerstein, “Eddies: Continuously adaptive query
processing,”SIGMOD Record, vol. 29, no. 2, pp. 261–272, 2000.

[13] F. Desobry, M. Davy, and C. Doncarli, “An online kernel change
detection algorithm,”IEEE TSP, vol. 53, no. 8, pp. 2961–2974, 2005.

