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Abstract 

Similarity queries are fundamental operations that are used 
extensively in many modern applications, whereas disk ar- 
rays are powerful storage media of increasing importance. 
The basic trade-off in similarity query processing in such a 
system is that increased parallelism leads to higher resource 
consumptions and low throughput, whereas low parallelism 
leads to higher response times. Here, we propose a tech- 
nique which is based on a careful investigation of the cur- 
rently available data in order to exploit parallelism up to a 
point, retaining low response times during query processing. 
The underlying access method is a variation of the R*-tree, 
which is distributed among the components of a disk array, 
whereas the system is simulated using event-driven simu- 
lation. The performance results conducted, demonstrate 
that the proposed approach outperforms by factors a pre- 
vious branch-and-bound algorithm and a greedy algorithm 
which maximizes parallelism as much as possible. Moreover, 
the comparison of the proposed algorithm to a hypothetical 
(non-existing) optimal one (with respect to the number of 
disk accesses) shows that the former is on average two times 
slower than the latter. 

1 Introduction 

Modern applications are both data and computationally in- 
tensive and require the storage and manipulation of volu- 
minous traditional (alphanumeric) and non-traditional data 
sets (images, text, geometric objects, time-series). Exam- 
ples of such emerging application domains are: Geographical 
Information Systems (GIS), Multimedia Information Sys- 
tems, Picture Archive and Communication Systems (PACS), 
CAD/CAM applications, Time-Series Analysis applications, 
Medical Information Systems, On-Line Analytical Process- 
ing (OLAP). These applications impose diverse requirements 
with respect to the information and the operations that need 
to be supported, and therefore from the database perspec- 
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tive, new techniques and tools need to be developed towards 
increased processing efficiency. 

In many of the aforementioned applications, the data ob- 
jects are represented as vectors in a high-dimensional feature 
space. For example, a 256-color image can be represented as 
a single vector using the 256 values of the color histogram, 
or a time sequence can be represented as a Fourier vector in 
a high-dimensional space [g]. The main advantages of the 
vector representation are: 

it allows efficient indexing of the data by means of 
multi-dimensional access methods, and 

it supports multi-dimensional queries using filtering, 
where a set of candidate objects is first determined 
using the vector representation, and after refinement 
only the objects that fulfill the query are reported in 
the output. 

The similarity query is one of the most important operations 
in applications that are based on the vector model. Given a 
query vector (or query point) Pq, the similarity query asks 
for objects that are similar to Pp, where similarity is defined 
by means of a distance (dissimilarity) measure. Although ef- 
ficient solutions have been reported for the similarity query 
problem in a sequential environment, the problem is rela- 
tively untouched for a parallel setting. 

In this paper, we study similarity query processing on a 
RAID (Redundant Array of Inexpensive Disks) level 0 sys- 
tem. More specifically, we examine four algorithmic tech- 
niques. The first one is based on a previous branch-and- 
bound algorithm, whereas the second is based on a greedy 
philosophy. The third one is based on a careful investiga- 
tion of the available data, trying to exploit parallelism to 
a sufficient degree and avoid fetching data that their use- 
fulness probability is low. Comparing the latter technique 
with the aforementioned algorithms, it is observed that the 
proposed approach consistently shows the best performance 
with respect to speed-up, scale-up and query response time 
in a multiuser environment. Finally, a non-existing optimal 
algorithm is studied. 

The focus is on dynamic environments, where insertions, 
deletions and updates can be intermixed with read-only op- 
erations. We do not consider complete reorganization of the 
database in order to provide an efficient data partitioning 
scheme [5]. Complete reorganization is prohibited by the 
huge volumes of data that modern database systems manip- 
ulate. The proposed similarity search algorithm supports 
all variants of the R-tree family as well as TV-trees [14], 
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SS-trees [26], X-trees [3] and SR-trees [13], with some mod- 
ifications. To the best of the authors’ knowledge, this is 
the first work towards extensive performance evaluation of 
similarity search algorithms on a disk array architecture. 

The rest of the article is organized as follows: In the next 
section we give the appropriate background to keep the pa- 
per self-contained. In Section 3 we describe related work 
and the motivation behind the proposed approach. Also, 
the similarity search algorithms are presented in detail. In 
Section 4 the experimental framework is explained, and per- 
formance results are given and interpreted. Finally, Section 
5 concludes the paper. 

2 Background 

2.1 The R-tree family 
The R-tree [lo] is a hierarchical, height balanced data struc- 
ture designed for use in secondary storage, and it is a gen- 
eralization of the B+-tree for multidimensional spaces. The 
structure handles objects by means of Minimum Bounding 
Rectangles (MBRs) which is the simplest conservative ap- 
proximation of an object’s shape. Each node of the tree 
corresponds to one disk page. Internal nodes contain entries 
of the form (R,child-pt~;), where R is the MBR that encloses 
all the MBRs of its descendants and child-ptr is the pointer 
to the specific child node. Leaf nodes contain entries of the 
form (R,object-ptr) where R is the MBR of the object and 
ob,ject-ptr is the pointer to the objects detailed description. 

One of the major factors affecting the overall structure 
performance is the node split policy. In [lo] three split poli- 
cies have been reported, namely exponential, quadratic and 
linear. More sophisticated policies reducing the overlap of 
MBRs have been reported in [22] (the R.+-tree), in [l] (the 
R*-tree) and in [12] (the Hilbert R-tree). The R*-tree uses 
the concept of forced reinsertion of entries, in addition to a 
good split policy. Henceforth, we focus on the R*-tree vari- 
ant. The only modification applied to the structure is that 
in each MBR entry, there is an integer number denoting the 
number of objects that the corresponding branch contains. 

2.2 Disk arrays and R*-tree partitioning 
RAID systems have been introduced in [18] as an inexpen- 
sive solution to the I/O bottleneck. Using more than one 
disk devices, leads to increased system throughput, since 
the workload is balanced among the participating disks and 
many operations can be processed in parallel. A typical 
layout of a disk array architecture is illustrated in Figure 
1, where three disks (each one with its own controller) are 
attached to a single processor. 

Several RAID levels have been reported in the literature 
[6] aiming at higher system reliability and data availability. 
Three of the RAID levels that are widely used in data in- 
tensive applications are: RAID level-O (non-redundant strip- 
ing), RAID level-l (mirrored or shadowed disks), and RAID 
level-5 (block-interleaved distributed parity). For the rest 
of the paper, we focus on RAID level-O, assuming that the 
striping unit is a disk block. Introducing redundancy (e.g. 
my means of mirroring) and studying the behavior of sim- 
ilarity search in other RAID levels, is an issue of further 
research. 

Given a disk array, one faces the problem of partition- 
ing the data and the associated access information, in order 
to take advantage of the I/O parallelism. The way data 
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Figure 1: Example of a disk array architecture. 

is partitioned reflects the performance of read/write opera- 
tions. The declustering problem attracted many researchers 
and a lot of work has been performed towards taking ad- 
vantage of the I/O parallelism, to support data. intensive 
applications. Techniques for B+-tree declustering have been 
reportfed in [21]. In [ll] a disk array variant of the R-tree, 
the multiplexed (or parallel) R-tree has been proposed in 
order to process range queries efficiently. The parallel struc- 
ture behaves just like an ordinary R-tree, and shows consid- 
erable improvements in response time and system through- 
put, since the organization supports intraquery and inter- 
query I/O parallelism. In [27] the authors study effective 
declustering schemes for the grid file structure. 

In a dynamic environment, an insertion of a new element 
may cause a page to split into two pieces’. A choice must be 
made here in order to place the newly created page to a disk. 
A plethora of heuristics have been reported in the literature, 
ranging from the simple round-robin and random assign- 
ment to more sophisticated ones. Among the best declus- 
tering techniques in the original R-tree, is the one proposed 
in [ll], which is based on the Proximity Index (PI) concept 
between two hyper-rectangles. Upon a split, the MBR of 
the newly created node is compared with the MBRs of its 
father node. The new node is assigned to the disk which 
is “less proximal” with respect to the new MBR. In other 
words, the selected disk must contain sibling nodes that are 
far from the new node, avoiding fetching a large number 
of nodes from the same disk during query execution, and 
thus preventing I/O bottlenecks. After conducting a thor- 
ough experimental study, we have observed that PI shows 
consistently the best performance in similarity query pro- 
cessing over a parallel R*-tree, in comparison to all known 
declustering heuristics: random assignment, data balance, 
area balance, round-robin, etc. Therefore, we adopt PI as 
the declustering method of choice. 

2.3 Similarity queries 
Similarity queries can be categorized in two different query 
types: the range query, and the k-nearest-neighbor (or k- 
NN) query. The following definitions explain: 

Definition 1 
Given a query point Pq, a distance E and a dissimilarity 
measure dist(u,b) between two objects a and b, the range 

‘Although techniques exist that handle 2-b-3 or generally m-to- 
(m+l) splits, we focus on the traditional l-to-2 split. Generalizations 
arc! straightforward. 

226 



query asks for all objects xJ such that dist(P,, z~j) < E. If the 
dissimilarity measure is the Euclidean distance, then the an- 
swer is composed of all objects that intersect (or are totally 
enclosed by) the hyper-sphere centered at P,, and having ra- 
dius e. 0 

Definition 2 
Given a query point Pq and an integer number Ic, the lc- 
NN query asks for the k closest neighbors to P,,, among all 
the objects comprising the data set. Again, a dissimilarity 
measure must be adopted in order to define the proximity 
between two objects. 0 

We assume that t,he dissimilarity measure is the Eu- 
clidean distance in the n-d space. With respect to range 
queries, a lot of research has been performed, since this is 
one of the most often posed queries in multidimensional ap- 
plications. In [16] different query models are presented along 
with an analysis of queries posed uniformly on the address 
space. In [2, 71, analysis of range queries on R-trees is il- 
lustrated using the concept of fractal dimension and in [24] 
an analysis b<ased on the data set density is presented. In 
these works, analytical formulae have been reported in or- 
der to estimate the performance of a range query. With 
respect to nearest neighbor queries an algorithm to answer 
such queries in Ic-d trees has been reported in [9]. In [26] 
various algorithms and data structures have been reported 
to answer efficiently nearest neighbor queries. Finally, some 
analytical results on nearest neighbor queries can be found 
in [4, 171. 

When the distance E is known in advance (i.e. provided 
by the user), then answering a similarity query (range query) 
is quit,e straightforward in either the sequential or the par- 
allel case. However, the distance e is not always known, and 
in some cases is difficult to estimate from the user’s view- 
point. Instead, the user provides an object 0, and requires 
the most similar objects to 0, (e.g. the k most similar ob- 
jects). Evidently, a nearest neighbor query can always be 
transformed to a series of range queries by using different E 
values. Following this approach, we may face unnecessary 
resource consumption. In one extreme, the selected values 
for E may be too small, leading to inadequate number of 
answers (less than Ic). On the other extreme, the e values 
may be too large, accessing a large number of objects (much 
more than Ic). The problem is even harder when I/O par- 
allelism must be exploited, and this is exactly the focus of 
this paper. 

3 Similarity Search Algorithms 

An efficient algorithm for similarity search on disk arrays 
must preserve some fundamental properties: 

l parallelism must be exploited as much as possible, 

l the number of retrieved nodes must be minimized, and 

l the response time of user queries should be reduced as 
much as possible. 

In order to exploit I/O parallelism in similarity search, 
we have to access several nodes (residing in different disks) 
in parallel. In the general case, this implies that some of 
the accessed nodes eventually will be proved irrelevant with 
respect to the final answer, and therefore they should have 
never been accessed. Compare the above scheme with a 

range query. A range query is described by a well-defined re- 
gion of arbitrary shape (usually hyper-rectangular or hyper- 
spherical) and all objects intersecting this region are re- 
quested. After a node is accessed, we are able to determine 
which of its children need to be visited by inspecting the cor- 
responding MBRs that are located in the node. Then, the 
disks that host the relevant children nodes can be activated 
in parallel. Evidently, the visiting sequence of the relevant 
nodes is not important, since any such sequence leads to 
the same answer (assuming only read-only operations). On 
the other hand, in similarity search, the visiting order is the 
most important parameter in performance efficiency, since 
it is responsible for the further pruning of irrelevant nodes. 
Therefore, we come up with a problem definition, which has 
as follows: 

Problem Definition: 
Given a query point Pq in n-d space and an integer number 
k, determine an efficient search of the parallel R*-tree, in 
order to report the k nearest neighbors of P,, trying to 
(i) maximize parallelism, (ii) access as few nodes as possible, 
(iii) reduce response time. 0 

From the above discussion we observe that two funda- 
mental sub-problems must be solved: 

l to determine an effective way of pruning irrelevant 
nodes in every tree level, and 

l to use a clever criterion in order to decide which nodes 
and when are going to be accessed in parallel. 

In the remaining of this section, four algorithms are exam- 
ined in detail, that solve the similarity search problem on a 
disk array architecture. 

3.1 The branch-and-bound algorithm 
In this subsection we review the branch-and-bound algo- 
rithm reported in [19], for answering nearest neighbor queries 
in R-trees. It is a modification of the algorithm reported in 
[9] for k-d trees. In order to find the nearest neighbor of a 
query point, the algorithm starts from the root of the R-tree , 
and proceeds towards the leaf level. The key idea of the algo- 
rithm is that many tree branches can be discarded according 
to some basic rules. Two basic distances are defined in n-d 
space, between a point Pq with coordinates (p~,pz, . . ..pn) 
and a rectangle R with (bottom-left and top-right) corners 
having coordinates (si, ~2, . . . . sn) and (tl, tz, . . . . tn) respec- 
tively. These distances correspond to an optimistic and a 
pessimistic approach for the nearest object respectively. 

Definition 3 
The distance &in (Pq, R) between a point Pq and a rectan- 
gle R, is defined as follows: 

where: 
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Definition 4 
The distance D ,,(P,, R) between a point Pq and a rectan- 
gle R, is defined as follows: 

where: 

rmk = 
Sk, pk<+ 

tkr otherwise 

rM3 = sj, pj2fj.p 
tj, otherwise 

R, is the distance from Pq to the furthest vertex of R and 
equals: 

n 

where: 

TJ = tj, pj 5 q 
Sj, otherwise 

cl 
To distinguish between the three distances (Dmin, D,, and 
D,,,) an example is illustrated in Figure 2, showing a point, 
two rectangles and the corresponding distances. 

Evidently, Dmin is the optimistic metric, since it is the min- 
imum possible distance that the nearest neighbor of Pq can 
reside in the corresponding page. On the other hand, D,, 
is the pessimistic metric, since it guarantees that the nearest 
neighbor of Pq lies in a distance 5 D,,. These two metrics 
are used in three basic rules which are applied for pruning 
the search in the R-tree: 

1. If an MBR R has Dmin(Pq, R) greater than the D,, 
(Pq, R’) of another MBR R’, then it is discarded be- 
cause it cannot enclose the nearest neighbor of Pq. 

2. If an actual distance d from Pq to a given object, is 
greater than the Dmm(Pq, R) of Pq to an MBR R, 
then d is replaced by D,,(P,, R) because R contains 
an object which is closer to Pq. 

3. If d is the current, minimum distance, then all MBRs 
Rj with Dmin(Pq, Rj) > d are discarded, because they 
cannot enclose the nearest neighbor of Pg. 

Upon visiting an internal node of the tree, Rules 1 and 
2 are used in order to discard irrelevant branches. Then, a 
branch is selected according to a priority order. Roussopou- 
10s et al. suggest that when the overlap is small, the Dmin 
order should be used since it would discard more candidate 
branches. This is also verified in the experimental results 
of their work. Therefore, the branch corresponding to the 
minimum Dmin among all node entries is chosen. Upon re- 
turning from the processing of the subtree, Rule 3 is applied 
in order to discard other candidates (if there are any). In or- 
der to process general L-NN queries, an ordered sequence of 
the current Ic most promising answers has to be maintained, 
and the pruning of the MBRs has to be performed with re- 
spect to the furthest distance. Thus, an MBR is discarded 
if its Dmin from the query point is greater than the actual 
distance from the query point to its Ic-th nearest neighbor. 
Henceforth, this algorithm will be referred to as Branch and 
Bound Similarity Search (BBSS). 

3.2 Full-parallel similarity search 
Observing how the sequential algorithm works, we see that 
a careful refinement of the candidate nodes is performed, 
trying to avoid node accesses that will not contribute to 
the final answer. We continue with an important definition 
regarding the maximum possible distance D,,, between a 
point and a hyper-rectangle. 

Definition 5 
The distance D,,, between a query point Pq and an MBR 

Dmin -% 

Dmm .> 

Dmox ------p 

Figure 2: Dmin, D,, and D,,, between a point P and 
two rectangles RI and Rz. 

The first node that is inspected by the algorithm is, ev- 
idently, the root of the parallel R*-tree. Note that at this 
stage (and until the first k objects are visited) there is no 
available information concerning the upper bound for the 
distance to the k-th nearest neighbor. Let in the current 
node N reside m MBRs, pointing to m children nodes. The 
question is which of the m branches can be discarded (if 
any), and how can we obtain the needed information to per- 
form the pruning. In order to proceed we need to calculate 
a threshold distance. The following lemma explains: 

Lemma 1 
Assume we have m MBRs RI, . . . . R, where MBR Rj con- 
tains O(Rj) objects. Given a query point Pp, the Ic nearest 
neighbors with respect to Pq are requested. Assume further 
that, all m MBRs are sorted in increasing order with respect 
to the D,,, distance from the query point Pg. Then, all 
k best answers are contained in the circle (sphere, hyper- 
sphere) with center Pq and radius T = D,,,(P,, R,) where 
2 is determined from the following inequality: 

c WC) I k I c O(h) (1) 
j=l j=l 

Proof (omitted) 0 

Using the above lemma we can always determine a thresh- 
old distance Dth. Having Dth, some of the m entries may 
be rejected immediately. An example is illustrated in Fig- 
ure 3. The threshold distance in the example equals: Dth = 
D,,, (Pq, RI). As we observe, MBR Rg is rejected since the 
dotted circle is guaranteed to contain all the relevant an- 
swers, and Rg does not intersect the circle. However, there 
are some MBRs like R2, R3 and Rg, which are intersected 
by the circle. Therefore, the set of candidate MBRs is com- 
posed of RI, Rz, R3 and Rd. The problem arising is which 
of these candidates will be searched in the next step and 
which will be saved for future reference. 
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Figure 3: Illustration of pruning and candidate selection. 

Assume that ml out of m entries have been pruned 
(like Rs in the example). Now, we have mz=m-ml en- 
tries that need further inspection. The most straightforward 
approach is to assume that all these m2 entries will even- 
tually contribute to the final answer and therefore have to 
be searched. This technique is the main idea of the Full 
Parallel Similarity Search algorithm (FPSS), which is very 
optimistic with respect to the usefulness of a node. 

3.3 Candidate reduction search 
We propose to apply a heuristic, in order to (possibly) re- 
duce the number of candidate MBRs. By observing Figure 
3, it seems that MBR Rz has better chances to contain rele- 
vant objects than MBRs R3 and Rd. Therefore, candidates 
R3 and Rq are saved for future reference, whereas RI and 
Rz will be searched. The criterion for candidate reduction 
has as follows: 

Candidate Reduction Criterion 
Given a query point Pq, a threshold distance Dth and a set 
of MBRs R = {RI, . . . . Rm} then for an MBR R,: 

(i) if DtfL < Dmin.(Pq, R,), then R, is rejected. 

(ii) if Dth > D,,(P,, R,), then R, is set active. 

(iii) if Dth 2 Dmzn(Pq, R,) and Dth < Dmm(Pp, R,), then 
R, is saved for possible future reference. 0 

The activation list contains the addresses to all pages 
that are going to be requested from the disks in the current 
step. Each entry contains a pointer to its son. This means 
that we can fetch the pages pointed by RI and Rz from the 
disk array (if these nodes reside on different disks this can be 
done in parallel). As soon as the first Ic objects are retrieved, 
we have a more precise knowledge regarding the distance Dk 
from the query point Pq to its k-th nearest neighbor. Ev- 
ery time the distance Dk is updated due to access of data 
objects, the structure maintaining the remaining candidate 
MBRs is searched and new MBRs become active. The algo- 
rithm that is obtained from the application of the heuristic 
is called Candidate Reduction Similarity Search (CRSS). 

Evidently, in order for the CRSS method to work, some 
auxiliary data structures need to be maintained. Based on 
the previous discussion we can identify three auxiliary struc- 
tures: 

l a structure to maintain the pointers to the nodes that 
are going to be fetched in the next step (activation 
structure), 

l a structure to hold the newly fetched nodes in order 
to process them further (fetch structure), and 

l a structure to store the candidate MBRs that have 
neither been searched nor have they been rejected yet 
(candidate structure). 

The first two structures can be simple arrays or linked lists 
and no special treatment is required. As soon as the cur- 
rently relevant pointers (page addresses) have been collected 
in the activation structure, requests are sent to the corre- 
sponding disks in order to access the required pages. When 
the disks have processed the requests, the pages are col- 

lected in the fetch structure where further processing (prun- 
ing, candidate reduction, etc.) is performed. The auxiliary 
structure to store the candidate MBRs must however be a 
stack, with its entries organized in a convenient way that 
helps processing. The cooperation of all three structures is 
explained in the following illustrative example. 

Example 
An R*-tree is illustrated in Figure 4, where all tree nodes are 
assumed to hold three occupied entries. Nodes are numbered 
from Ni to Nia. Let us trace the execution CRSS algorithm 
for a simple query requiring the k = 4 nearest neighbors of 
a query point. The algorithm begins with the root (node 

N5 NE N7 NE N9 NIO Nil N12 N13 

Figure 4: Example of an R*-tree with 13 nodes and 3 entries 
per node. 

Nl) where the MBRs RI, R2 and R3 reside. Assume that 
RI and R2 qualify for immediate activation (according to 
the candidate reduction criterion), whereas R3 is considered 
as a possible candidate MBR. No MBR has been rejected 
at this point. The pointers to N2 and Na are maintained 
in the activation structure and MBR R3 is pushed into the 
candidate stack. Note that the candidates are pushed in 
decreasing order with respect to the Dmin from the query 
point. After the stack is updated, we are ready to fetch Nz 
and Na from the disks. Assume that these two nodes reside 
in different disks and therefore the requests can be serviced 
in parallel. The situation is depicted in Figure 5(a). 

Figure 5: Illustration of the first three stages of the CRSS 
algorithm. Shaded boxes indicate guards. 

In the next step, entries RII through R23 are inspected. 
Assume that we have concluded that entry Rm is rejected, 
Rll, Rzl and R22 will be activated, and finally Rlz and R13 
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will be saved in the stack. The situation is illustrated in 
Figure 5(b). 

The following stage involves the access of the data pages 
Ns, Ns and Ns. This is the first time during the execu- 
tion of the algorithm that real data objects contribute to 
the formulation of the upper bound to the k-th best dis- 
tance (where k = 4). Therefore, the best four out of nine 
objects, contained in the three data pages, are selected and 
the distance Dth is updated accordingly. In the sequel, we 
pop from the stack the first candidate run that is composed 
of the MBRs Rl2 and R13. After comparing Dmin(Pq, Rn) 
and Dmin(Pq, R13) with Dth, we conclude that R12 is in- 
tersected by the query sphere, whereas R13 can be safely 
rejected. The current situation is depicted in Figure 5(c). 

In the next step, node NS is accessed, the distance Dth 
is updated and the next candidate run is popped from the 
stack. This run contains only R3. Comparing Dlnin (Pq, R3) 
with Dth, we find that there is no intersection with the query 
sphere and therefore R3 is rejected from further considera- 
tion. Now the algorithm has been terminated, the best k 
matches have been determined and &=Dk. 0 

Let us explain the use of the stack, and the reason why it 
is the appropriate structure in our case. As we descent the 
tree from root to leaves, the granularity of MBRs increases, 
since the empty space is reduced. Therefore, the informa- 
tion obtained from the MBRs near the leaf level is more 
precise than the information obtained from MBRs near the 
root. It is not wise to start the inspection of a new branch 
in a higher level of the R*-tree, if there are still candidate 
branches to be inspected in a lower level. The structure 
that captures this concept is the stack. Therefore, candi- 
date MBRs that belong to a higher level are pushed in the 
stack before candidates of a lower level. Moreover, organiz- 
ing the candidates in the stack by means of candidate runs, 
helps in pruning. The candidates in each run are pushed in 
decreasing order with respect to the Dmin distance from the 
query point. When a candidate run is inspected and a can- 
didate is found that does not intersect any more the query 
sphere, we know that all the remaining candidates in the cur- 
rent run should be rejected from further consideration. A 
guard entry is used to separate two different candidate runs. 
This technique saves computational power during candidate 
elimination and leads to more efficient processing. 

In Figure 6 the CRSS algorithm is sketched. There are 
four basic operating modes that the algorithm can be at 
some given time: 

l The algorithm operates in ADAPTIVE mode from 
the time the root is examined until the leaf-level is 
reached for the first time. During this period, the up- 
per bound of the threshold distance &, is adapted 
from one tree level to the next. 

. Every time the leaf-level is reached, the algorithm goes 
into UPDATE mode. This means that the array 
holding the current best k distances is (possibly) up- 
dated, since more data objects have been accessed. 

l In any other case, the algorithm operates in NOR- 
MAL mode. This mode includes the cases where the 
algorithm operates in an intermediate level of the tree, 
but after the first time the leaf-level has been reached. 

l Finally, the TERMINATE mode signals that there 
are no more candidate nodes to be searched, and there- 
fore the k best distances have been determined. 

Input: P /* query point */ 
k /* iumb&-of nearest neighbors */ 
T /* the parallel R*-tree *' 

Output: the k nearest-neighbors of P 
BEGIN 

0. Initialize: D-threshold <- infinite, 
AL <- empty, CS <- empty. FL <- empty 

1. Read Root(T); 
2. IF (leaf-level reached) mode <- update; 
3. Process (FL); 
4. if (mode IS NOT terminate) 

send requests to disks; Update( GOT0 2; 
else STOP; 

END 

/t Routine to process a set of new MBRs */ 
Process (FL) 
BEGIN 

if (mode IS adaptive) 
4 

Find new value for D-threshold; Apply candidate reduction; 
Formulate new candidate run; Push run in CS: 
Update( 

1 
else 
if (mode IS normal) 
i 

Eliminate non-relevant MBRs; 
if (FL IS empty) 

Get-Candidate-Run(CS); 
Update( 

1 
else 
if (mode IS update) 

Calculate new set of nearest-neighbors; 
Get-Candidate-Run(CS); 
Update( 

1 
END 

/* Routine to obtain the next candidate run */ 
Get-Candidate-Run(CS) 
BEGIN 

if (CS IS empty) 
mode <- terminate; 

i 
Pop next candidate run from CS; 
Eliminate non-relevant HBRs; 
Apply candidate reduction; 
mode <- normal: 

return; 
END 

Figure 6: The most important code fragments of the CRSS 
algorithm. 

It is observed that FPSS and BBSS are special cases of 
the CRSS algorithm. FPSS does not use a candidate stack 
and activates all MBRs that intersect the current query 
sphere, maximizing intra-query parallelism, whereas BBSS 
activates the MBRs one at a time, limiting the degree of 
intra-query parallelism. Let us elaborate more in code frag- 
ments A and B shown in Figure 6. In A, the candidate 
reduction criterion is applied. Among the fetched MBRs, 
some of them are discarded immediately, and some will be 
saved in the candidate stack for future reference. The re- 
striction applied here is that the number of activated MBRs 
should be > 1 and 5 U, where 1 is the number of MBRs 
which guarantee the containment of at least k points in the 
activated MBRs, and ‘u, equals the number of disks in the 
system (NumOfDisks). This restriction is used in order 
to bound the number of fetched nodes in the next step. A 
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similar policy is used in the B code fragment, where the 
candidate reduction criterion is again applied. When there 
is a need to pop the next candidate run from the stack, we 
never allow the activation of more than u=NumOfDisks 
elements. Using this technique, there is a balance between 
parallelism exploitation and similarity search refinement. In 
order for the u MBRs to reside in different disks, the declus- 
tering scheme must be as close to optimal as possible. 

Theorem 1 
Given a query point Pq and a number k, algorithm CRSS 
reports the best k nearest neighbors of Pq. 

Proof (sketch) 
Basically, the algorithm can be considered as a repetition of 
three fundamental operations: (i) candidate elimination, (ii) 
generation of new candidates and (iii) retrieval of new data. 
Since the threshold distance Dth guarantees the inclusion of 
the best answers (Lemma 1) and only irrelevant MBRs are 
eliminated (candidate reduction criterion), it is impossible 
that a best match will be missed. Moreover, the algorithm 
reports exactly k answers, unless the total number of objects 
in the database is less than k, in which case reports all the 
objects. 0 

3.4 Optimal similarity search 
Designing an algorithm for similarity search we need a cri- 
terion in order to characterize the algorithm as efficient or 
inefficient. The ideal would be to design an optimal algo- 
rithm, guaranteeing the best possible performance. In the 
context of similarity search, two levels of optimality are iden- 
tified: weak and strict which are defined as follows. 

Definition 6 
A similarity search algorithm is called weak-optimal, if for 
every k-NN query the only nodes that are accessed are those 
that are intersected by the sphere having center the query 
point and radius the distance to the k-th nearest neighbor. 
cl 

Definition 7 
A similarity search algorithm is called strict-optimal, if it 
is weak-optimal, and in addition for every k-NN query the 
only objects that are inspected lie in the sphere with center 
the query point and radius the distance to the k-th nearest 
neighbor. q 

It is evident that in order for an algorithm to be either weak- 
optimal or strict-optimal, the distance from the query point 
to the k-th nearest neighbor must be known in advance. 
Moreover, in strict optimality the algorithm must also pro- 
cess only the objects that are enclosed by the sphere with 
center Pq and radius Dk. This implies a special organiza- 
tion of the data objects and it is almost impossible to achieve 
strict optimality in similarity search. Also, although weak 
optimality still imposes a strong assumption, we assume 
the existence of a hypothetical algorithm Weak OPTimaI 
Similarity Search (WOPTSS), and we include it in our 
experimental evaluation. The performance of WOPTSS 
method serves as a lower bound for the performance of any 
similarity search algorithm. The following theorem illus- 
trates that the three aforementioned algorithms are not op- 
timal: 

Theorem 2 
The similarity search algorithms BBSS, FPSS and CRSS 
operating over an R*-tree, are neither strict-optimal nor 
weak-optimal. 

Proof (sketch) 
We can find a counterexample for all algorithms with re- 
spect to certain query points and R-tree layouts, showing 
that neither the minimum number of nodes are visited, nor 
the minimum number of objects are inspected. 0 

The number of accessed nodes is a good metric for the 
performance of a similarity search algorithm in the sequen- 
tial case. However, in the parallel case the situation is more 
complicated. When processing similarity queries on a disk 
array, one wants high parallelism exploitation in addition 
to small number of accesses. A more concrete measure of 
efficiency in this case is the mean response time of a similar- 
ity query in a multi-user environment. Evidently, one can 
use the response time of a single query but this does not 
reflect reality. To see why, assume that an algorithm A ac- 
cesses half of the pages than algorithm B. On a disk array, 
the I/O subsystem is capable of servicing several requests 
in parallel. Therefore, we may notice no difference in the 
response time of a single query for both algorithms, whereas 
in a multi-user environment the performance of algorithm 
B is more likely to degrade rapidly in comparison to the 
performance of A, due to heavy workloads. 

4 Performance Evaluation 

4.1 Preliminaries 
The algorithms BBSS, FPSS, CRSS and WOPTSS are 
implemented on top of a parallel R*-tree structure which 
is distributed among the components of a disk array. The 
behavior of the system is studied using event-driven simula- 
tion. The algorithms and the simulator have been coded in 
C/C++ under UNIX, and the experiments have been per- 
formed on a SUN Sparcstation4 running Solaris 2.4. The 
datasets used are illustrated in Appendix I. An R*-tree for 
a particular data set is constructed incrementally (i.e. by, 
inserting the objects one-by-one). The disks are assumed to 
communicate with the processor by means of a common I/O 
bus. The network queue model of the system that is used 
for the simulation is presented in Figure 7. Each disk has 

Figure 7: The simulation model for the system under con- 
sideration. 

its own queue where pending requests reside. The service 
policy for each queue in the system is FCFS (First-Come 
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First-Served). The bus is also modeled as a queue, with 
constant service time (the time it takes to transmit a page 
from the disk controller through the I/O bus). Queues are 
also present in the processor in order to handle pending re- 
quests However, we assume that when a new query request 
arrives, it enters the system immediately without waiting. 

Query arrivals follow a Poisson distribution with mean X 
arrivals per second. Therefore, the query interarrival time 
interval is a random variable following an exponential dis- 
tribution The service time for the bus is constant, whereas 
the service time of a disk access is calculated taking into 
consideration the most important disk characteristics (seek 
time, rotational latency, transfer time and controller over- 
head). Moreover, we do not assume that the disks are syn- 
chronized, and therefore each disk can move its heads inde- 
pendently from the others. The parameters that are used in 
the experimental evaluation are presented in Table 1. 

Parameter Assigned Value 

CPU,,,,~ 1 CPU execution speed ’ 100 MiPS 
Q startup Query startup time 1 0.001 set 

Table 1: Description of query processing parameters. 

In order to model each disk device, the two-phase non- 
linear model is used which is described in detail in [15, 201. If 
d seek denotes the seek distance that the head needs to travel, 
the seek time Tseek as a function of dseek is expressed by the 
following equation: 

d seek = 0 (no seek) 

T seek = CI i- cz a, 0 < dseek 5 sdt (short seek) 

c3 + c4 dseek, dseek > sdt (long seek) 

where cl, ~2, cs and c4 are constants (in msec) specific to 
the disk drive used and sdt is a seek distance threshold, 
which differentiates the acceleration phase and the steady- 
speed phase of the disk arm movement. The characteristics 
of the disk drive that is used in the conducted simulation 
experiments are illustrated in Table 2. 

Parameter 1 Description Assigned Value 

. CYl 1 Number of cylinders ’ 1449 
T rsl, I Disk revolution time I 0.0149 set 

Table 2: Description of disk characteristics (model HP- 
C220A) [20]. 

During R*-tree creation, each newly generated node (af- 
ter a split operation) is assigned a cylinder value with re- 

spect to the uniform distribution. Evidently this is not the 
best possible allocation strategy, since it does not respect 
locality. Placing pages that are referenced together on the 
same cylinder reduces the disk service times and this effect is 
orthogonal with respect to the similarity search algorithms, 
with the difference that response times are reduced. Ini- 
tially, all disk arms are positioned in cylinder zero. The 
simulator executes 100 queries in total, and the response 
time per query is obtained by calculating the average. 

With respect to CPU execution costs, it is assumed that 
computation time is dominated by the scanning and sorting 
of each requested set of MBRs. Assume that N MBRs have 
been fetched from the disks. The scanning of these MBRs 
costs O(N) time. After scanning, some of them are rejected 
so that M MBRs remain. In order to sort M elements, the 
computational effort is O(M ZogM) comparisons (assum- 
ing heapsort or mergesort). Each main memory word has 
four bytes and also each number is modeled as four bytes 
of main memory. Fetching a number from main memory re- 
quires one CPU instruction. Therefore, in order to compare 
two numbers, three CPU instructions are required (two for 
fetching the operants and one for the comparison). Thus, 
the computation cost for scanning equals 2 N CPU instruc- 
tions and the computation time for sorting is equivalent to 
executing 3. A4. logM CPU instructions, resulting in a total 
of 2.N+3.M’ZogM CPU instructions. Since the MIPS rate 
for the CPU is a known parameter, the computation time 
is easily calculated. Although this cost model is simple, it 
reflects the CPU overhead to a sufficient degree. 

4.2 Performance results 
Evidently, it is very difficult to provide experimental results 
by modifying all parameter values. Therefore, we choose to 
illustrate representative results that shed light in the follow- 
ing issues: 

Effectiveness: how many nodes an algorithm visits in or- 
der to produce the final answer in comparison to the 
WOPTSS method, 

Speed-up and scale-up: how the performance of the meth- 
ods is affected by increasing the number of disks in the 
disk array, and/or increasing the size of the database, 

Query size and dimensionality: how the algorithms perform 
by increasing query size and/or space dimensionality, 

Workload: what is the behavior of the methods when con- 
current queries are serviced by the system. 

By inspecting Figures 8 - 12 and Tables 3, 4 some very in- 
teresting observations can be stated. As expected, WOPTSS 
shows the best performance in all experiments contacted. 
With respect to effectiveness (see Figures 8, 9), BBSS fetches 
the smaller number of nodes up to a point. After this point, 
CRSS is more effective, and the performance of BBSS de- 
teriora,tes by increasing the number of nearest neighbors. 

In order to explain this behavior of BBSS a small ex- 
ample is given in Figure 13, assuming that k = 12. 

Since the algorithm chooses to visit the MBR with the 
smallest D,,, distance, MBR RI will be visited first. If 12 
data objects lie in the subtree of RI, all of them will be vis- 
ited, despite the fact that some of them will not contribute to 
the final answer. Evidently, in the branch of R2 lie some ob- 
jects that are closer to the query point. Therefore, if RI and 
Rz were visited in a BFS (Breadth First Search) manner, 
the total number of disk accesses could have been reduced 
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considerably. The drawback of BBSS affects its perfor- 
mance even more, by increasing the number of dimensions, 
as shown in Figure 9. By increasing the space dimension- 
ality, the overlap of the MBRs increases also, and therefore 
the pruning of branches becomes a difficult task. Moreover, 
several MBRs may have zero value for the D,,, distance, 
resulting in a difficulty to select the appropriate next branch 
to follow. The superiority of CRSS lies in the fact that it 
uses a successful combination of BFS and DFS (Depth First 
Search) of the parallel R*-tree. On the other hand, BBSS is 

DFS-based, whereas FPSS is BFS-based. Algorithm FPSS 
fails to control the number of fetched nodes and this results 
in a large number of disk accesses. The good performance 
of CRSS is retained in all data sets used and all examined 
dimensionalities. 

In Figure 10, we illustrate the response time per query 
versus the query arrival rate. FPSS is very sensitive in 
workload increase, since there is no control on the number of 
fetched nodes. Its performance is the worst in comparison to 
the other methods. However, for small workloads and large 
number of disks FPSS is marginally better than CRSS. 
This is illustrated in Figure 10 (right graph). This happens 
because the large number of disks compensates the increased 
demand for disk accesses. 

Figure 11 demonstrates response time versus number of 
disks. It is evident that the speed-up of CRSS is better 
than that of BBSS. In fact CRSS is between 2 to 4 times 
faster than BBSS. Algorithm FPSS is not considered any 
more, since its performance is very sensitive on the workload 
and the number of disks in the system. 

The performance of the methods with respect to the 
number of nearest neighbors is illustrated in Figure 12. Again, 
it is observed that CRSS shows the best performance, out- 
performing BBSS by factors (3 to 4 times faster). Finally, 
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Tables 3 and 4 present the scalability of the algorithms with 
respect to population growth and query size growth. CRSS 
is more stable than BBSS and on average is 4 times faster. 

Population Disks BBSS CRSS WOPTSS 
10,000 5 0.76 0.47 0.23 
20,000 10 0.74 0.28 0.15 
40,000 20 1.07 0.29 0.15 
80,000 40 1.59 0.33 0.16 

Table 3: Scalability with respect to population growth: Re- 
sponse time (set) vs. population and number of disks. (set: 
gaussian, dimensions: 5, NNs: 20, X=5 queries/set). 

k Disks BBSS CRSS WOPTSS 

10 5 2.48 1.30 0.48 
20 10 2.14 0.32 0.19 
40 20 2.37 0.55 0.28 
80 40 2.95 0.40 0.21 

Table 4: Scalability with respect to query size growth: Re- 
sponse time (set) vs. number of nearest neighbors and num- 
ber of disks. (set: gaussian, dimensions: 5, population: 
80,000, X=5 queries/set). 

The general conclusion derived is that CRSS is on av- 
erage 2 times slower than WOPTSS and outperforms by 
factors both BBSS and FPSS. Thus, CRSS succeeds in: 

l fetching a small number of nodes, and 

l exploiting parallelism to a sufficient degree 

For these reasons, the use of CRSS is recommended as a 
simple and efficient similarity search algorithm in a system 
based on disk arrays. Table 5 contains a qualitative compar- 
ison of the algorithms, summarizing the performance evalu- 
ation results. 

Characteristic BBSS FPSS CRSS WOPTSS 
number of disk accesses J J d . 
mean response time 
speed-up 4 J : 
scalability :: 
intraquery parallelism J d : 
interquery parallelism J limited J 

Table 5: Qualitative comparison of algorithms (the symbol 
,/ means good performance). 

5 Concluding Remarks 

The problem of exploiting I/O parallelism in database sys- 
tems is a major research direction. In this paper, we have in- 
vestigated similarity search techniques for disk arrays. The 
fundamental properties that such an algorithm should pre- 
serve are: parallelism must be exploited as much as possible, 
the total resource consumption should be minimized, and 
the response time of user queries should be reduced as much 
as possible. 

Three possible similarity search techniques are presented 
and studied in detail with respect to the above issues. More- 
over, an optimal approach (WOPTSS) is defined, which 
assumes that the distance Dk from the query point to the 
k-th nearest neighbor is known in advance, and therefore 
only the relevant nodes are inspected. Unfortunately, this 

algorithm is hypothetical, since the distance Dk is generally 
not known. However, useful lower bounds are derived by 
studying the behavior of the optimal method. All methods 
are studied under extensive experimentation through sim- 
ulation. Among the studied algorithms, the proposed one 
(CRSS) which is based on a careful inspection of the R*- 
tree nodes, and leads to an effective candidate reduction, 
shows the best performance. However, the performance dif- 
ference between CRSS and WOPTSS suggests that fur- 
ther research is required in order to reach the lower bound 
as much as possible. Future research may include: 

l the derivation and exploitation of analytical results 
in similarity search for disk arrays, estimating the re- 
sponse time of a query, 

. the study of similarity search on shadowed disks, 

. the impact of increasing the number of processors (e.g. 
in a shared-memory multiprocessor architecture), and 

. the application of the algorithm on other access meth- 
ods for similarity search, like SS-tree, SR-tree, TV-tree 
and X-tree. 

Appendix I - Description of Data Sets 

The data sets that are used in order to perform the perfor- 
mance comparison of the algorithms include real-life as well 
as synthetic ones. 

Figure 14 presents the real-life data sets that are se- 
lected from the Sequoia 2000 (California places) [23] and 
the TIGER project (Long Beach) [25]. The CP data set is 
composed of 62,173 2-d points representing locations of var- 
ious places in California state. The LB data set consists of 
53,145 2-d points representing road segment intersections in 
Long Beach county. 

Figure 14: Left: California Places (CP), 62,173 objects. 
Right: Long Beach (LB), 53,145 objects. 

Figure 15 presents two of the synthetic data sets that 
have been used. The SG set is composed of a number of 
points generated with respect to the Gaussian (normal) dis- 
tribution. The SU set consists of a number of points obeying 
the uniform distribution. The population and the dimen- 
sionality of the synthetic data sets were varying during the 
experiments. In the figure, their 2-d counterparts are illus- 
trated, containing 10,000 points each. 
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