
Similarity Query Processing Using Disk Arrays*

Apostolos N. Papadopoulos Yannis Manolopoulos
Department of Informatics Department of Informatics

Aristotle University Aristotle University

Thessaloniki 54006, Greece Thessaloniki 54006, Greece

apapadop@athena.auth.gr manolopo@athena.auth.gr

Abstract

Similarity queries are fundamental operations that are used
extensively in many modern applications, whereas disk ar-
rays are powerful storage media of increasing importance.
The basic trade-off in similarity query processing in such a
system is that increased parallelism leads to higher resource
consumptions and low throughput, whereas low parallelism
leads to higher response times. Here, we propose a tech-
nique which is based on a careful investigation of the cur-
rently available data in order to exploit parallelism up to a
point, retaining low response times during query processing.
The underlying access method is a variation of the R*-tree,
which is distributed among the components of a disk array,
whereas the system is simulated using event-driven simu-
lation. The performance results conducted, demonstrate
that the proposed approach outperforms by factors a pre-
vious branch-and-bound algorithm and a greedy algorithm
which maximizes parallelism as much as possible. Moreover,
the comparison of the proposed algorithm to a hypothetical
(non-existing) optimal one (with respect to the number of
disk accesses) shows that the former is on average two times
slower than the latter.

1 Introduction

Modern applications are both data and computationally in-
tensive and require the storage and manipulation of volu-
minous traditional (alphanumeric) and non-traditional data
sets (images, text, geometric objects, time-series). Exam-
ples of such emerging application domains are: Geographical
Information Systems (GIS), Multimedia Information Sys-
tems, Picture Archive and Communication Systems (PACS),
CAD/CAM applications, Time-Series Analysis applications,
Medical Information Systems, On-Line Analytical Process-
ing (OLAP). These applications impose diverse requirements
with respect to the information and the operations that need
to be supported, and therefore from the database perspec-

*Work supported by the European Union’s TMR program
(“Chorochronos” project, contract number ERBFMRX-CT96-0056).

Permission lo make digital or hard copies of all or part of this work for
personal or classroom usa is granted without fea provided that
copies are not made or distributed for profit or commsrcial advan-
tage and that copies bear this notice and the full citation on the firat page.
To copy otherwise, to republish, to post on servers or to
redistribute lo lists, requires prior specific permission cad/or a fae.
SIGMOD ‘98 Seattle. WA, USA
Q 1998 ACM 0-69791~996~6/96/006...$6.00

tive, new techniques and tools need to be developed towards
increased processing efficiency.

In many of the aforementioned applications, the data ob-
jects are represented as vectors in a high-dimensional feature
space. For example, a 256-color image can be represented as
a single vector using the 256 values of the color histogram,
or a time sequence can be represented as a Fourier vector in
a high-dimensional space [g]. The main advantages of the
vector representation are:

it allows efficient indexing of the data by means of
multi-dimensional access methods, and

it supports multi-dimensional queries using filtering,
where a set of candidate objects is first determined
using the vector representation, and after refinement
only the objects that fulfill the query are reported in
the output.

The similarity query is one of the most important operations
in applications that are based on the vector model. Given a
query vector (or query point) Pq, the similarity query asks
for objects that are similar to Pp, where similarity is defined
by means of a distance (dissimilarity) measure. Although ef-
ficient solutions have been reported for the similarity query
problem in a sequential environment, the problem is rela-
tively untouched for a parallel setting.

In this paper, we study similarity query processing on a
RAID (Redundant Array of Inexpensive Disks) level 0 sys-
tem. More specifically, we examine four algorithmic tech-
niques. The first one is based on a previous branch-and-
bound algorithm, whereas the second is based on a greedy
philosophy. The third one is based on a careful investiga-
tion of the available data, trying to exploit parallelism to
a sufficient degree and avoid fetching data that their use-
fulness probability is low. Comparing the latter technique
with the aforementioned algorithms, it is observed that the
proposed approach consistently shows the best performance
with respect to speed-up, scale-up and query response time
in a multiuser environment. Finally, a non-existing optimal
algorithm is studied.

The focus is on dynamic environments, where insertions,
deletions and updates can be intermixed with read-only op-
erations. We do not consider complete reorganization of the
database in order to provide an efficient data partitioning
scheme [5]. Complete reorganization is prohibited by the
huge volumes of data that modern database systems manip-
ulate. The proposed similarity search algorithm supports
all variants of the R-tree family as well as TV-trees [14],

225

SS-trees [26], X-trees [3] and SR-trees [13], with some mod-
ifications. To the best of the authors’ knowledge, this is
the first work towards extensive performance evaluation of
similarity search algorithms on a disk array architecture.

The rest of the article is organized as follows: In the next
section we give the appropriate background to keep the pa-
per self-contained. In Section 3 we describe related work
and the motivation behind the proposed approach. Also,
the similarity search algorithms are presented in detail. In
Section 4 the experimental framework is explained, and per-
formance results are given and interpreted. Finally, Section
5 concludes the paper.

2 Background

2.1 The R-tree family
The R-tree [lo] is a hierarchical, height balanced data struc-
ture designed for use in secondary storage, and it is a gen-
eralization of the B+-tree for multidimensional spaces. The
structure handles objects by means of Minimum Bounding
Rectangles (MBRs) which is the simplest conservative ap-
proximation of an object’s shape. Each node of the tree
corresponds to one disk page. Internal nodes contain entries
of the form (R,child-pt~;), where R is the MBR that encloses
all the MBRs of its descendants and child-ptr is the pointer
to the specific child node. Leaf nodes contain entries of the
form (R,object-ptr) where R is the MBR of the object and
ob,ject-ptr is the pointer to the objects detailed description.

One of the major factors affecting the overall structure
performance is the node split policy. In [lo] three split poli-
cies have been reported, namely exponential, quadratic and
linear. More sophisticated policies reducing the overlap of
MBRs have been reported in [22] (the R.+-tree), in [l] (the
R*-tree) and in [12] (the Hilbert R-tree). The R*-tree uses
the concept of forced reinsertion of entries, in addition to a
good split policy. Henceforth, we focus on the R*-tree vari-
ant. The only modification applied to the structure is that
in each MBR entry, there is an integer number denoting the
number of objects that the corresponding branch contains.

2.2 Disk arrays and R*-tree partitioning
RAID systems have been introduced in [18] as an inexpen-
sive solution to the I/O bottleneck. Using more than one
disk devices, leads to increased system throughput, since
the workload is balanced among the participating disks and
many operations can be processed in parallel. A typical
layout of a disk array architecture is illustrated in Figure
1, where three disks (each one with its own controller) are
attached to a single processor.

Several RAID levels have been reported in the literature
[6] aiming at higher system reliability and data availability.
Three of the RAID levels that are widely used in data in-
tensive applications are: RAID level-O (non-redundant strip-
ing), RAID level-l (mirrored or shadowed disks), and RAID
level-5 (block-interleaved distributed parity). For the rest
of the paper, we focus on RAID level-O, assuming that the
striping unit is a disk block. Introducing redundancy (e.g.
my means of mirroring) and studying the behavior of sim-
ilarity search in other RAID levels, is an issue of further
research.

Given a disk array, one faces the problem of partition-
ing the data and the associated access information, in order
to take advantage of the I/O parallelism. The way data

CPU

‘--r DMA I-- s RAM

SCSI bus

Figure 1: Example of a disk array architecture.

is partitioned reflects the performance of read/write opera-
tions. The declustering problem attracted many researchers
and a lot of work has been performed towards taking ad-
vantage of the I/O parallelism, to support data. intensive
applications. Techniques for B+-tree declustering have been
reportfed in [21]. In [ll] a disk array variant of the R-tree,
the multiplexed (or parallel) R-tree has been proposed in
order to process range queries efficiently. The parallel struc-
ture behaves just like an ordinary R-tree, and shows consid-
erable improvements in response time and system through-
put, since the organization supports intraquery and inter-
query I/O parallelism. In [27] the authors study effective
declustering schemes for the grid file structure.

In a dynamic environment, an insertion of a new element
may cause a page to split into two pieces’. A choice must be
made here in order to place the newly created page to a disk.
A plethora of heuristics have been reported in the literature,
ranging from the simple round-robin and random assign-
ment to more sophisticated ones. Among the best declus-
tering techniques in the original R-tree, is the one proposed
in [ll], which is based on the Proximity Index (PI) concept
between two hyper-rectangles. Upon a split, the MBR of
the newly created node is compared with the MBRs of its
father node. The new node is assigned to the disk which
is “less proximal” with respect to the new MBR. In other
words, the selected disk must contain sibling nodes that are
far from the new node, avoiding fetching a large number
of nodes from the same disk during query execution, and
thus preventing I/O bottlenecks. After conducting a thor-
ough experimental study, we have observed that PI shows
consistently the best performance in similarity query pro-
cessing over a parallel R*-tree, in comparison to all known
declustering heuristics: random assignment, data balance,
area balance, round-robin, etc. Therefore, we adopt PI as
the declustering method of choice.

2.3 Similarity queries
Similarity queries can be categorized in two different query
types: the range query, and the k-nearest-neighbor (or k-
NN) query. The following definitions explain:

Definition 1
Given a query point Pq, a distance E and a dissimilarity
measure dist(u,b) between two objects a and b, the range

‘Although techniques exist that handle 2-b-3 or generally m-to-
(m+l) splits, we focus on the traditional l-to-2 split. Generalizations
arc! straightforward.

226

query asks for all objects xJ such that dist(P,, z~j) < E. If the
dissimilarity measure is the Euclidean distance, then the an-
swer is composed of all objects that intersect (or are totally
enclosed by) the hyper-sphere centered at P,, and having ra-
dius e. 0

Definition 2
Given a query point Pq and an integer number Ic, the lc-
NN query asks for the k closest neighbors to P,,, among all
the objects comprising the data set. Again, a dissimilarity
measure must be adopted in order to define the proximity
between two objects. 0

We assume that t,he dissimilarity measure is the Eu-
clidean distance in the n-d space. With respect to range
queries, a lot of research has been performed, since this is
one of the most often posed queries in multidimensional ap-
plications. In [16] different query models are presented along
with an analysis of queries posed uniformly on the address
space. In [2, 71, analysis of range queries on R-trees is il-
lustrated using the concept of fractal dimension and in [24]
an analysis b<ased on the data set density is presented. In
these works, analytical formulae have been reported in or-
der to estimate the performance of a range query. With
respect to nearest neighbor queries an algorithm to answer
such queries in Ic-d trees has been reported in [9]. In [26]
various algorithms and data structures have been reported
to answer efficiently nearest neighbor queries. Finally, some
analytical results on nearest neighbor queries can be found
in [4, 171.

When the distance E is known in advance (i.e. provided
by the user), then answering a similarity query (range query)
is quit,e straightforward in either the sequential or the par-
allel case. However, the distance e is not always known, and
in some cases is difficult to estimate from the user’s view-
point. Instead, the user provides an object 0, and requires
the most similar objects to 0, (e.g. the k most similar ob-
jects). Evidently, a nearest neighbor query can always be
transformed to a series of range queries by using different E
values. Following this approach, we may face unnecessary
resource consumption. In one extreme, the selected values
for E may be too small, leading to inadequate number of
answers (less than Ic). On the other extreme, the e values
may be too large, accessing a large number of objects (much
more than Ic). The problem is even harder when I/O par-
allelism must be exploited, and this is exactly the focus of
this paper.

3 Similarity Search Algorithms

An efficient algorithm for similarity search on disk arrays
must preserve some fundamental properties:

l parallelism must be exploited as much as possible,

l the number of retrieved nodes must be minimized, and

l the response time of user queries should be reduced as
much as possible.

In order to exploit I/O parallelism in similarity search,
we have to access several nodes (residing in different disks)
in parallel. In the general case, this implies that some of
the accessed nodes eventually will be proved irrelevant with
respect to the final answer, and therefore they should have
never been accessed. Compare the above scheme with a

range query. A range query is described by a well-defined re-
gion of arbitrary shape (usually hyper-rectangular or hyper-
spherical) and all objects intersecting this region are re-
quested. After a node is accessed, we are able to determine
which of its children need to be visited by inspecting the cor-
responding MBRs that are located in the node. Then, the
disks that host the relevant children nodes can be activated
in parallel. Evidently, the visiting sequence of the relevant
nodes is not important, since any such sequence leads to
the same answer (assuming only read-only operations). On
the other hand, in similarity search, the visiting order is the
most important parameter in performance efficiency, since
it is responsible for the further pruning of irrelevant nodes.
Therefore, we come up with a problem definition, which has
as follows:

Problem Definition:
Given a query point Pq in n-d space and an integer number
k, determine an efficient search of the parallel R*-tree, in
order to report the k nearest neighbors of P,, trying to
(i) maximize parallelism, (ii) access as few nodes as possible,
(iii) reduce response time. 0

From the above discussion we observe that two funda-
mental sub-problems must be solved:

l to determine an effective way of pruning irrelevant
nodes in every tree level, and

l to use a clever criterion in order to decide which nodes
and when are going to be accessed in parallel.

In the remaining of this section, four algorithms are exam-
ined in detail, that solve the similarity search problem on a
disk array architecture.

3.1 The branch-and-bound algorithm
In this subsection we review the branch-and-bound algo-
rithm reported in [19], for answering nearest neighbor queries
in R-trees. It is a modification of the algorithm reported in
[9] for k-d trees. In order to find the nearest neighbor of a
query point, the algorithm starts from the root of the R-tree ,
and proceeds towards the leaf level. The key idea of the algo-
rithm is that many tree branches can be discarded according
to some basic rules. Two basic distances are defined in n-d
space, between a point Pq with coordinates (p~,pz,pn)
and a rectangle R with (bottom-left and top-right) corners
having coordinates (si, ~2, sn) and (tl, tz, tn) respec-
tively. These distances correspond to an optimistic and a
pessimistic approach for the nearest object respectively.

Definition 3
The distance &in (Pq, R) between a point Pq and a rectan-
gle R, is defined as follows:

where:

227

Definition 4
The distance D ,,(P,, R) between a point Pq and a rectan-
gle R, is defined as follows:

where:

rmk =
Sk, pk<+

tkr otherwise

rM3 = sj, pj2fj.p
tj, otherwise

R, is the distance from Pq to the furthest vertex of R and
equals:

n

where:

TJ = tj, pj 5 q
Sj, otherwise

cl
To distinguish between the three distances (Dmin, D,, and
D,,,) an example is illustrated in Figure 2, showing a point,
two rectangles and the corresponding distances.

Evidently, Dmin is the optimistic metric, since it is the min-
imum possible distance that the nearest neighbor of Pq can
reside in the corresponding page. On the other hand, D,,
is the pessimistic metric, since it guarantees that the nearest
neighbor of Pq lies in a distance 5 D,,. These two metrics
are used in three basic rules which are applied for pruning
the search in the R-tree:

1. If an MBR R has Dmin(Pq, R) greater than the D,,
(Pq, R’) of another MBR R’, then it is discarded be-
cause it cannot enclose the nearest neighbor of Pq.

2. If an actual distance d from Pq to a given object, is
greater than the Dmm(Pq, R) of Pq to an MBR R,
then d is replaced by D,,(P,, R) because R contains
an object which is closer to Pq.

3. If d is the current, minimum distance, then all MBRs
Rj with Dmin(Pq, Rj) > d are discarded, because they
cannot enclose the nearest neighbor of Pg.

Upon visiting an internal node of the tree, Rules 1 and
2 are used in order to discard irrelevant branches. Then, a
branch is selected according to a priority order. Roussopou-
10s et al. suggest that when the overlap is small, the Dmin
order should be used since it would discard more candidate
branches. This is also verified in the experimental results
of their work. Therefore, the branch corresponding to the
minimum Dmin among all node entries is chosen. Upon re-
turning from the processing of the subtree, Rule 3 is applied
in order to discard other candidates (if there are any). In or-
der to process general L-NN queries, an ordered sequence of
the current Ic most promising answers has to be maintained,
and the pruning of the MBRs has to be performed with re-
spect to the furthest distance. Thus, an MBR is discarded
if its Dmin from the query point is greater than the actual
distance from the query point to its Ic-th nearest neighbor.
Henceforth, this algorithm will be referred to as Branch and
Bound Similarity Search (BBSS).

3.2 Full-parallel similarity search
Observing how the sequential algorithm works, we see that
a careful refinement of the candidate nodes is performed,
trying to avoid node accesses that will not contribute to
the final answer. We continue with an important definition
regarding the maximum possible distance D,,, between a
point and a hyper-rectangle.

Definition 5
The distance D,,, between a query point Pq and an MBR

Dmin -%

Dmm .>

Dmox ------p

Figure 2: Dmin, D,, and D,,, between a point P and
two rectangles RI and Rz.

The first node that is inspected by the algorithm is, ev-
idently, the root of the parallel R*-tree. Note that at this
stage (and until the first k objects are visited) there is no
available information concerning the upper bound for the
distance to the k-th nearest neighbor. Let in the current
node N reside m MBRs, pointing to m children nodes. The
question is which of the m branches can be discarded (if
any), and how can we obtain the needed information to per-
form the pruning. In order to proceed we need to calculate
a threshold distance. The following lemma explains:

Lemma 1
Assume we have m MBRs RI, R, where MBR Rj con-
tains O(Rj) objects. Given a query point Pp, the Ic nearest
neighbors with respect to Pq are requested. Assume further
that, all m MBRs are sorted in increasing order with respect
to the D,,, distance from the query point Pg. Then, all
k best answers are contained in the circle (sphere, hyper-
sphere) with center Pq and radius T = D,,,(P,, R,) where
2 is determined from the following inequality:

c WC) I k I c O(h) (1)
j=l j=l

Proof (omitted) 0

Using the above lemma we can always determine a thresh-
old distance Dth. Having Dth, some of the m entries may
be rejected immediately. An example is illustrated in Fig-
ure 3. The threshold distance in the example equals: Dth =
D,,, (Pq, RI). As we observe, MBR Rg is rejected since the
dotted circle is guaranteed to contain all the relevant an-
swers, and Rg does not intersect the circle. However, there
are some MBRs like R2, R3 and Rg, which are intersected
by the circle. Therefore, the set of candidate MBRs is com-
posed of RI, Rz, R3 and Rd. The problem arising is which
of these candidates will be searched in the next step and
which will be saved for future reference.

228

Figure 3: Illustration of pruning and candidate selection.

Assume that ml out of m entries have been pruned
(like Rs in the example). Now, we have mz=m-ml en-
tries that need further inspection. The most straightforward
approach is to assume that all these m2 entries will even-
tually contribute to the final answer and therefore have to
be searched. This technique is the main idea of the Full
Parallel Similarity Search algorithm (FPSS), which is very
optimistic with respect to the usefulness of a node.

3.3 Candidate reduction search
We propose to apply a heuristic, in order to (possibly) re-
duce the number of candidate MBRs. By observing Figure
3, it seems that MBR Rz has better chances to contain rele-
vant objects than MBRs R3 and Rd. Therefore, candidates
R3 and Rq are saved for future reference, whereas RI and
Rz will be searched. The criterion for candidate reduction
has as follows:

Candidate Reduction Criterion
Given a query point Pq, a threshold distance Dth and a set
of MBRs R = {RI, Rm} then for an MBR R,:

(i) if DtfL < Dmin.(Pq, R,), then R, is rejected.

(ii) if Dth > D,,(P,, R,), then R, is set active.

(iii) if Dth 2 Dmzn(Pq, R,) and Dth < Dmm(Pp, R,), then
R, is saved for possible future reference. 0

The activation list contains the addresses to all pages
that are going to be requested from the disks in the current
step. Each entry contains a pointer to its son. This means
that we can fetch the pages pointed by RI and Rz from the
disk array (if these nodes reside on different disks this can be
done in parallel). As soon as the first Ic objects are retrieved,
we have a more precise knowledge regarding the distance Dk
from the query point Pq to its k-th nearest neighbor. Ev-
ery time the distance Dk is updated due to access of data
objects, the structure maintaining the remaining candidate
MBRs is searched and new MBRs become active. The algo-
rithm that is obtained from the application of the heuristic
is called Candidate Reduction Similarity Search (CRSS).

Evidently, in order for the CRSS method to work, some
auxiliary data structures need to be maintained. Based on
the previous discussion we can identify three auxiliary struc-
tures:

l a structure to maintain the pointers to the nodes that
are going to be fetched in the next step (activation
structure),

l a structure to hold the newly fetched nodes in order
to process them further (fetch structure), and

l a structure to store the candidate MBRs that have
neither been searched nor have they been rejected yet
(candidate structure).

The first two structures can be simple arrays or linked lists
and no special treatment is required. As soon as the cur-
rently relevant pointers (page addresses) have been collected
in the activation structure, requests are sent to the corre-
sponding disks in order to access the required pages. When
the disks have processed the requests, the pages are col-

lected in the fetch structure where further processing (prun-
ing, candidate reduction, etc.) is performed. The auxiliary
structure to store the candidate MBRs must however be a
stack, with its entries organized in a convenient way that
helps processing. The cooperation of all three structures is
explained in the following illustrative example.

Example
An R*-tree is illustrated in Figure 4, where all tree nodes are
assumed to hold three occupied entries. Nodes are numbered
from Ni to Nia. Let us trace the execution CRSS algorithm
for a simple query requiring the k = 4 nearest neighbors of
a query point. The algorithm begins with the root (node

N5 NE N7 NE N9 NIO Nil N12 N13

Figure 4: Example of an R*-tree with 13 nodes and 3 entries
per node.

Nl) where the MBRs RI, R2 and R3 reside. Assume that
RI and R2 qualify for immediate activation (according to
the candidate reduction criterion), whereas R3 is considered
as a possible candidate MBR. No MBR has been rejected
at this point. The pointers to N2 and Na are maintained
in the activation structure and MBR R3 is pushed into the
candidate stack. Note that the candidates are pushed in
decreasing order with respect to the Dmin from the query
point. After the stack is updated, we are ready to fetch Nz
and Na from the disks. Assume that these two nodes reside
in different disks and therefore the requests can be serviced
in parallel. The situation is depicted in Figure 5(a).

Figure 5: Illustration of the first three stages of the CRSS
algorithm. Shaded boxes indicate guards.

In the next step, entries RII through R23 are inspected.
Assume that we have concluded that entry Rm is rejected,
Rll, Rzl and R22 will be activated, and finally Rlz and R13

229

will be saved in the stack. The situation is illustrated in
Figure 5(b).

The following stage involves the access of the data pages
Ns, Ns and Ns. This is the first time during the execu-
tion of the algorithm that real data objects contribute to
the formulation of the upper bound to the k-th best dis-
tance (where k = 4). Therefore, the best four out of nine
objects, contained in the three data pages, are selected and
the distance Dth is updated accordingly. In the sequel, we
pop from the stack the first candidate run that is composed
of the MBRs Rl2 and R13. After comparing Dmin(Pq, Rn)
and Dmin(Pq, R13) with Dth, we conclude that R12 is in-
tersected by the query sphere, whereas R13 can be safely
rejected. The current situation is depicted in Figure 5(c).

In the next step, node NS is accessed, the distance Dth
is updated and the next candidate run is popped from the
stack. This run contains only R3. Comparing Dlnin (Pq, R3)
with Dth, we find that there is no intersection with the query
sphere and therefore R3 is rejected from further considera-
tion. Now the algorithm has been terminated, the best k
matches have been determined and &=Dk. 0

Let us explain the use of the stack, and the reason why it
is the appropriate structure in our case. As we descent the
tree from root to leaves, the granularity of MBRs increases,
since the empty space is reduced. Therefore, the informa-
tion obtained from the MBRs near the leaf level is more
precise than the information obtained from MBRs near the
root. It is not wise to start the inspection of a new branch
in a higher level of the R*-tree, if there are still candidate
branches to be inspected in a lower level. The structure
that captures this concept is the stack. Therefore, candi-
date MBRs that belong to a higher level are pushed in the
stack before candidates of a lower level. Moreover, organiz-
ing the candidates in the stack by means of candidate runs,
helps in pruning. The candidates in each run are pushed in
decreasing order with respect to the Dmin distance from the
query point. When a candidate run is inspected and a can-
didate is found that does not intersect any more the query
sphere, we know that all the remaining candidates in the cur-
rent run should be rejected from further consideration. A
guard entry is used to separate two different candidate runs.
This technique saves computational power during candidate
elimination and leads to more efficient processing.

In Figure 6 the CRSS algorithm is sketched. There are
four basic operating modes that the algorithm can be at
some given time:

l The algorithm operates in ADAPTIVE mode from
the time the root is examined until the leaf-level is
reached for the first time. During this period, the up-
per bound of the threshold distance &, is adapted
from one tree level to the next.

. Every time the leaf-level is reached, the algorithm goes
into UPDATE mode. This means that the array
holding the current best k distances is (possibly) up-
dated, since more data objects have been accessed.

l In any other case, the algorithm operates in NOR-
MAL mode. This mode includes the cases where the
algorithm operates in an intermediate level of the tree,
but after the first time the leaf-level has been reached.

l Finally, the TERMINATE mode signals that there
are no more candidate nodes to be searched, and there-
fore the k best distances have been determined.

Input: P /* query point */
k /* iumb&-of nearest neighbors */
T /* the parallel R*-tree *'

Output: the k nearest-neighbors of P
BEGIN

0. Initialize: D-threshold <- infinite,
AL <- empty, CS <- empty. FL <- empty

1. Read Root(T);
2. IF (leaf-level reached) mode <- update;
3. Process (FL);
4. if (mode IS NOT terminate)

send requests to disks; Update(GOT0 2;
else STOP;

END

/t Routine to process a set of new MBRs */
Process (FL)
BEGIN

if (mode IS adaptive)
4

Find new value for D-threshold; Apply candidate reduction;
Formulate new candidate run; Push run in CS:
Update(

1
else
if (mode IS normal)
i

Eliminate non-relevant MBRs;
if (FL IS empty)

Get-Candidate-Run(CS);
Update(

1
else
if (mode IS update)

Calculate new set of nearest-neighbors;
Get-Candidate-Run(CS);
Update(

1
END

/* Routine to obtain the next candidate run */
Get-Candidate-Run(CS)
BEGIN

if (CS IS empty)
mode <- terminate;

i
Pop next candidate run from CS;
Eliminate non-relevant HBRs;
Apply candidate reduction;
mode <- normal:

return;
END

Figure 6: The most important code fragments of the CRSS
algorithm.

It is observed that FPSS and BBSS are special cases of
the CRSS algorithm. FPSS does not use a candidate stack
and activates all MBRs that intersect the current query
sphere, maximizing intra-query parallelism, whereas BBSS
activates the MBRs one at a time, limiting the degree of
intra-query parallelism. Let us elaborate more in code frag-
ments A and B shown in Figure 6. In A, the candidate
reduction criterion is applied. Among the fetched MBRs,
some of them are discarded immediately, and some will be
saved in the candidate stack for future reference. The re-
striction applied here is that the number of activated MBRs
should be > 1 and 5 U, where 1 is the number of MBRs
which guarantee the containment of at least k points in the
activated MBRs, and ‘u, equals the number of disks in the
system (NumOfDisks). This restriction is used in order
to bound the number of fetched nodes in the next step. A

230

similar policy is used in the B code fragment, where the
candidate reduction criterion is again applied. When there
is a need to pop the next candidate run from the stack, we
never allow the activation of more than u=NumOfDisks
elements. Using this technique, there is a balance between
parallelism exploitation and similarity search refinement. In
order for the u MBRs to reside in different disks, the declus-
tering scheme must be as close to optimal as possible.

Theorem 1
Given a query point Pq and a number k, algorithm CRSS
reports the best k nearest neighbors of Pq.

Proof (sketch)
Basically, the algorithm can be considered as a repetition of
three fundamental operations: (i) candidate elimination, (ii)
generation of new candidates and (iii) retrieval of new data.
Since the threshold distance Dth guarantees the inclusion of
the best answers (Lemma 1) and only irrelevant MBRs are
eliminated (candidate reduction criterion), it is impossible
that a best match will be missed. Moreover, the algorithm
reports exactly k answers, unless the total number of objects
in the database is less than k, in which case reports all the
objects. 0

3.4 Optimal similarity search
Designing an algorithm for similarity search we need a cri-
terion in order to characterize the algorithm as efficient or
inefficient. The ideal would be to design an optimal algo-
rithm, guaranteeing the best possible performance. In the
context of similarity search, two levels of optimality are iden-
tified: weak and strict which are defined as follows.

Definition 6
A similarity search algorithm is called weak-optimal, if for
every k-NN query the only nodes that are accessed are those
that are intersected by the sphere having center the query
point and radius the distance to the k-th nearest neighbor.
cl

Definition 7
A similarity search algorithm is called strict-optimal, if it
is weak-optimal, and in addition for every k-NN query the
only objects that are inspected lie in the sphere with center
the query point and radius the distance to the k-th nearest
neighbor. q

It is evident that in order for an algorithm to be either weak-
optimal or strict-optimal, the distance from the query point
to the k-th nearest neighbor must be known in advance.
Moreover, in strict optimality the algorithm must also pro-
cess only the objects that are enclosed by the sphere with
center Pq and radius Dk. This implies a special organiza-
tion of the data objects and it is almost impossible to achieve
strict optimality in similarity search. Also, although weak
optimality still imposes a strong assumption, we assume
the existence of a hypothetical algorithm Weak OPTimaI
Similarity Search (WOPTSS), and we include it in our
experimental evaluation. The performance of WOPTSS
method serves as a lower bound for the performance of any
similarity search algorithm. The following theorem illus-
trates that the three aforementioned algorithms are not op-
timal:

Theorem 2
The similarity search algorithms BBSS, FPSS and CRSS
operating over an R*-tree, are neither strict-optimal nor
weak-optimal.

Proof (sketch)
We can find a counterexample for all algorithms with re-
spect to certain query points and R-tree layouts, showing
that neither the minimum number of nodes are visited, nor
the minimum number of objects are inspected. 0

The number of accessed nodes is a good metric for the
performance of a similarity search algorithm in the sequen-
tial case. However, in the parallel case the situation is more
complicated. When processing similarity queries on a disk
array, one wants high parallelism exploitation in addition
to small number of accesses. A more concrete measure of
efficiency in this case is the mean response time of a similar-
ity query in a multi-user environment. Evidently, one can
use the response time of a single query but this does not
reflect reality. To see why, assume that an algorithm A ac-
cesses half of the pages than algorithm B. On a disk array,
the I/O subsystem is capable of servicing several requests
in parallel. Therefore, we may notice no difference in the
response time of a single query for both algorithms, whereas
in a multi-user environment the performance of algorithm
B is more likely to degrade rapidly in comparison to the
performance of A, due to heavy workloads.

4 Performance Evaluation

4.1 Preliminaries
The algorithms BBSS, FPSS, CRSS and WOPTSS are
implemented on top of a parallel R*-tree structure which
is distributed among the components of a disk array. The
behavior of the system is studied using event-driven simula-
tion. The algorithms and the simulator have been coded in
C/C++ under UNIX, and the experiments have been per-
formed on a SUN Sparcstation4 running Solaris 2.4. The
datasets used are illustrated in Appendix I. An R*-tree for
a particular data set is constructed incrementally (i.e. by,
inserting the objects one-by-one). The disks are assumed to
communicate with the processor by means of a common I/O
bus. The network queue model of the system that is used
for the simulation is presented in Figure 7. Each disk has

Figure 7: The simulation model for the system under con-
sideration.

its own queue where pending requests reside. The service
policy for each queue in the system is FCFS (First-Come

231

First-Served). The bus is also modeled as a queue, with
constant service time (the time it takes to transmit a page
from the disk controller through the I/O bus). Queues are
also present in the processor in order to handle pending re-
quests However, we assume that when a new query request
arrives, it enters the system immediately without waiting.

Query arrivals follow a Poisson distribution with mean X
arrivals per second. Therefore, the query interarrival time
interval is a random variable following an exponential dis-
tribution The service time for the bus is constant, whereas
the service time of a disk access is calculated taking into
consideration the most important disk characteristics (seek
time, rotational latency, transfer time and controller over-
head). Moreover, we do not assume that the disks are syn-
chronized, and therefore each disk can move its heads inde-
pendently from the others. The parameters that are used in
the experimental evaluation are presented in Table 1.

Parameter Assigned Value

CPU,,,,~ 1 CPU execution speed ’ 100 MiPS
Q startup Query startup time 1 0.001 set

Table 1: Description of query processing parameters.

In order to model each disk device, the two-phase non-
linear model is used which is described in detail in [15, 201. If
d seek denotes the seek distance that the head needs to travel,
the seek time Tseek as a function of dseek is expressed by the
following equation:

d seek = 0 (no seek)

T seek = CI i- cz a, 0 < dseek 5 sdt (short seek)

c3 + c4 dseek, dseek > sdt (long seek)

where cl, ~2, cs and c4 are constants (in msec) specific to
the disk drive used and sdt is a seek distance threshold,
which differentiates the acceleration phase and the steady-
speed phase of the disk arm movement. The characteristics
of the disk drive that is used in the conducted simulation
experiments are illustrated in Table 2.

Parameter 1 Description Assigned Value

. CYl 1 Number of cylinders ’ 1449
T rsl, I Disk revolution time I 0.0149 set

Table 2: Description of disk characteristics (model HP-
C220A) [20].

During R*-tree creation, each newly generated node (af-
ter a split operation) is assigned a cylinder value with re-

spect to the uniform distribution. Evidently this is not the
best possible allocation strategy, since it does not respect
locality. Placing pages that are referenced together on the
same cylinder reduces the disk service times and this effect is
orthogonal with respect to the similarity search algorithms,
with the difference that response times are reduced. Ini-
tially, all disk arms are positioned in cylinder zero. The
simulator executes 100 queries in total, and the response
time per query is obtained by calculating the average.

With respect to CPU execution costs, it is assumed that
computation time is dominated by the scanning and sorting
of each requested set of MBRs. Assume that N MBRs have
been fetched from the disks. The scanning of these MBRs
costs O(N) time. After scanning, some of them are rejected
so that M MBRs remain. In order to sort M elements, the
computational effort is O(M ZogM) comparisons (assum-
ing heapsort or mergesort). Each main memory word has
four bytes and also each number is modeled as four bytes
of main memory. Fetching a number from main memory re-
quires one CPU instruction. Therefore, in order to compare
two numbers, three CPU instructions are required (two for
fetching the operants and one for the comparison). Thus,
the computation cost for scanning equals 2 N CPU instruc-
tions and the computation time for sorting is equivalent to
executing 3. A4. logM CPU instructions, resulting in a total
of 2.N+3.M’ZogM CPU instructions. Since the MIPS rate
for the CPU is a known parameter, the computation time
is easily calculated. Although this cost model is simple, it
reflects the CPU overhead to a sufficient degree.

4.2 Performance results
Evidently, it is very difficult to provide experimental results
by modifying all parameter values. Therefore, we choose to
illustrate representative results that shed light in the follow-
ing issues:

Effectiveness: how many nodes an algorithm visits in or-
der to produce the final answer in comparison to the
WOPTSS method,

Speed-up and scale-up: how the performance of the meth-
ods is affected by increasing the number of disks in the
disk array, and/or increasing the size of the database,

Query size and dimensionality: how the algorithms perform
by increasing query size and/or space dimensionality,

Workload: what is the behavior of the methods when con-
current queries are serviced by the system.

By inspecting Figures 8 - 12 and Tables 3, 4 some very in-
teresting observations can be stated. As expected, WOPTSS
shows the best performance in all experiments contacted.
With respect to effectiveness (see Figures 8, 9), BBSS fetches
the smaller number of nodes up to a point. After this point,
CRSS is more effective, and the performance of BBSS de-
teriora,tes by increasing the number of nearest neighbors.

In order to explain this behavior of BBSS a small ex-
ample is given in Figure 13, assuming that k = 12.

Since the algorithm chooses to visit the MBR with the
smallest D,,, distance, MBR RI will be visited first. If 12
data objects lie in the subtree of RI, all of them will be vis-
ited, despite the fact that some of them will not contribute to
the final answer. Evidently, in the branch of R2 lie some ob-
jects that are closer to the query point. Therefore, if RI and
Rz were visited in a BFS (Breadth First Search) manner,
the total number of disk accesses could have been reduced

232

Set: California. Population: 6.2173. Disks: IO. Dimensions: 2 Sat: Long Beach, Population: 53145, Disks: 10. Dimensions: 2
55 1 !

: _...” *

50 _. .&z&.D... .; : ;.,,.:c _
FPSS -*.-

_. ___...
45 _ ..cRss..,.- .L :... ..:

,“,,-%nlCc. -
/..,,... .K .., _

n 8 I
-0 loo 200 400 500

Nearest Nelg~&s Requested (I 700)
600 700

I , I I

100 200 300 Req%ed 500 600 700
Nearest Neighbors (I - 700)

Figure 8: Number of visited nodes vs. query size for 2-d data sets.

Set: Gaussian. Population: 60030. Disks: IO. DimBnSiOnS: 10
,

1.14;. I : !. . , _

1.12 I ~ ‘.%\ ..: _ BEE+6 *- -
%. CRSS -c -

1 ,, _ $., ,,, I :.. ,. : WOPTSX ?-T (_
A

1.06 - ‘\,
‘...‘.

.._.. ;~., _: -
*.

\.
‘.....,,

‘..
1.06 - ‘+, ,-..- j ,. .:2:,., ..; ,,. (. ..: ..-

-‘-. .._,_,_ _ ,,
-.-__

1.04 - .- - ..__
.” . . 0 .,. .,_

- -.-._,_ 1% - ../.., .,.,.,, -

1.02 - :
- -.-. ..-.- _ __ _

,. .._.

1 :: II

0.96 -.

0.96 - i i
6

0 100 200
Nearest Nefgytrs Req%!ted (I -5%1)

600 700

B r 1.14

9 1.12

9 B 1.1

i 1.06
E
E 1.06

i 1.04

I
1.02

I ’
B

E

0.96

2 0.96

Set: Unifon. Powlatfon: 6COOO. Disks: 10. Dimensions: 10

_ : : ..I *, ..:. -
@,,

‘\ _ \ ..i :. ?, B&-- ..-
CL.., / CRSS -c-

_. ,, ...m:,:L: .,; / .., :.w~~Tss; = -

0 169 200 300
Nearest Naighbors Req%ted (1 -5gO)

600 700

Figure 9: Number of visited nodes (normalized to WOPTSS) vs. query size for synthetic data in 10-d space.

0.16

0.14

0.12

0.1

0.06

0.06

Set: Long Beach, Population: 53145, Disks: 5, NNs: 10, Dimensions: 2
1 8 I I I

B&..e.... j : :
FPSS -M..

..__.__....... ...-a(
- c~ss”;i,- .I : j :I”‘:..

WOPTSS c -__,_ .y’..

-* -........ ;:..--,; _ ._
I

0 1 2 3
Ouerle: per s&“d & - 1O)7

6 9 IO

Set: California. Population: 62173, Disks: 10, NNs: 100, Dimensions: 2

0.25
~ ,... ~, y .y yy

p’
i _

/
0.2t. ..I, (... .i.., .., .., ,. ,. j ,...

--I

0’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
0 2 4 6 C!uerie~

per
&“d (b:l

.
20i4 16 16 20

Figure 10: Response time (set) vs. query arrival rate (A).

233

Set: Gaussian. Population: 50000, Dimensions: 5, NNs: 10
1 1 1 I

Set: Uniform, Population: 80000, Disks: 10, Dimensions: 5 Set: Uniform, Population: 80000, Disks: IO, Dimensions: 5
3.5 ,

BBSS 0
.a :’ : CRSS -e-- 3 0 p I3 _,, ,, WDPTSS -x-- -

.
4 2.5 .\\, fl

\I.\ :
2 _ ‘\& ___ “*.--.---.

_- __,_--. -A- -____ _
.---.__ __;_

----___

Set: Gaussian. Population: 50000, Dimensions: 5. NNs: 100
10 1

BBSS: .-lf.
CRSB -b -

,.. ..’

6 -WOPTSs; f : ,.., .’

-* . .

i+ <

0 I
5 IO

Number oj?Iisks (1 - 3:;
25 30

Figure 11: Response time (normalized to WOPTSS) vs number of disks (X=5 queries/set, dimensions=5)

1.5 -

1% 1 * ,I

I* * ; I‘ 0.5 -

0 I 0 I I I

0 20
Near:: Neighbors (? 100)

60 100 0 20 Near%
Neighbors

(fis 60 100
100)

Figure 12: Response time (normalized to WOPTSS) vs. number of nearest neighbors (Left: X=1 queries/set, Right: X=20
queries/se(:). queries/se(:).

Rl. data objects=12 Rl. data objects=12 R2, data objects=16 R2, data objects=16

El qJ El
12

,rl
El

13 El

Figure 13: BBSS will visit all nodes associated with Figure 13: BBSS will visit all nodes associated with
branch of RI, leading to unnecessary accesses. branch of RI, leading to unnecessary accesses.

the

considerably. The drawback of BBSS affects its perfor-
mance even more, by increasing the number of dimensions,
as shown in Figure 9. By increasing the space dimension-
ality, the overlap of the MBRs increases also, and therefore
the pruning of branches becomes a difficult task. Moreover,
several MBRs may have zero value for the D,,, distance,
resulting in a difficulty to select the appropriate next branch
to follow. The superiority of CRSS lies in the fact that it
uses a successful combination of BFS and DFS (Depth First
Search) of the parallel R*-tree. On the other hand, BBSS is

DFS-based, whereas FPSS is BFS-based. Algorithm FPSS
fails to control the number of fetched nodes and this results
in a large number of disk accesses. The good performance
of CRSS is retained in all data sets used and all examined
dimensionalities.

In Figure 10, we illustrate the response time per query
versus the query arrival rate. FPSS is very sensitive in
workload increase, since there is no control on the number of
fetched nodes. Its performance is the worst in comparison to
the other methods. However, for small workloads and large
number of disks FPSS is marginally better than CRSS.
This is illustrated in Figure 10 (right graph). This happens
because the large number of disks compensates the increased
demand for disk accesses.

Figure 11 demonstrates response time versus number of
disks. It is evident that the speed-up of CRSS is better
than that of BBSS. In fact CRSS is between 2 to 4 times
faster than BBSS. Algorithm FPSS is not considered any
more, since its performance is very sensitive on the workload
and the number of disks in the system.

The performance of the methods with respect to the
number of nearest neighbors is illustrated in Figure 12. Again,
it is observed that CRSS shows the best performance, out-
performing BBSS by factors (3 to 4 times faster). Finally,

234

Tables 3 and 4 present the scalability of the algorithms with
respect to population growth and query size growth. CRSS
is more stable than BBSS and on average is 4 times faster.

Population Disks BBSS CRSS WOPTSS
10,000 5 0.76 0.47 0.23
20,000 10 0.74 0.28 0.15
40,000 20 1.07 0.29 0.15
80,000 40 1.59 0.33 0.16

Table 3: Scalability with respect to population growth: Re-
sponse time (set) vs. population and number of disks. (set:
gaussian, dimensions: 5, NNs: 20, X=5 queries/set).

k Disks BBSS CRSS WOPTSS

10 5 2.48 1.30 0.48
20 10 2.14 0.32 0.19
40 20 2.37 0.55 0.28
80 40 2.95 0.40 0.21

Table 4: Scalability with respect to query size growth: Re-
sponse time (set) vs. number of nearest neighbors and num-
ber of disks. (set: gaussian, dimensions: 5, population:
80,000, X=5 queries/set).

The general conclusion derived is that CRSS is on av-
erage 2 times slower than WOPTSS and outperforms by
factors both BBSS and FPSS. Thus, CRSS succeeds in:

l fetching a small number of nodes, and

l exploiting parallelism to a sufficient degree

For these reasons, the use of CRSS is recommended as a
simple and efficient similarity search algorithm in a system
based on disk arrays. Table 5 contains a qualitative compar-
ison of the algorithms, summarizing the performance evalu-
ation results.

Characteristic BBSS FPSS CRSS WOPTSS
number of disk accesses J J d .
mean response time
speed-up 4 J :
scalability ::
intraquery parallelism J d :
interquery parallelism J limited J

Table 5: Qualitative comparison of algorithms (the symbol
,/ means good performance).

5 Concluding Remarks

The problem of exploiting I/O parallelism in database sys-
tems is a major research direction. In this paper, we have in-
vestigated similarity search techniques for disk arrays. The
fundamental properties that such an algorithm should pre-
serve are: parallelism must be exploited as much as possible,
the total resource consumption should be minimized, and
the response time of user queries should be reduced as much
as possible.

Three possible similarity search techniques are presented
and studied in detail with respect to the above issues. More-
over, an optimal approach (WOPTSS) is defined, which
assumes that the distance Dk from the query point to the
k-th nearest neighbor is known in advance, and therefore
only the relevant nodes are inspected. Unfortunately, this

algorithm is hypothetical, since the distance Dk is generally
not known. However, useful lower bounds are derived by
studying the behavior of the optimal method. All methods
are studied under extensive experimentation through sim-
ulation. Among the studied algorithms, the proposed one
(CRSS) which is based on a careful inspection of the R*-
tree nodes, and leads to an effective candidate reduction,
shows the best performance. However, the performance dif-
ference between CRSS and WOPTSS suggests that fur-
ther research is required in order to reach the lower bound
as much as possible. Future research may include:

l the derivation and exploitation of analytical results
in similarity search for disk arrays, estimating the re-
sponse time of a query,

. the study of similarity search on shadowed disks,

. the impact of increasing the number of processors (e.g.
in a shared-memory multiprocessor architecture), and

. the application of the algorithm on other access meth-
ods for similarity search, like SS-tree, SR-tree, TV-tree
and X-tree.

Appendix I - Description of Data Sets

The data sets that are used in order to perform the perfor-
mance comparison of the algorithms include real-life as well
as synthetic ones.

Figure 14 presents the real-life data sets that are se-
lected from the Sequoia 2000 (California places) [23] and
the TIGER project (Long Beach) [25]. The CP data set is
composed of 62,173 2-d points representing locations of var-
ious places in California state. The LB data set consists of
53,145 2-d points representing road segment intersections in
Long Beach county.

Figure 14: Left: California Places (CP), 62,173 objects.
Right: Long Beach (LB), 53,145 objects.

Figure 15 presents two of the synthetic data sets that
have been used. The SG set is composed of a number of
points generated with respect to the Gaussian (normal) dis-
tribution. The SU set consists of a number of points obeying
the uniform distribution. The population and the dimen-
sionality of the synthetic data sets were varying during the
experiments. In the figure, their 2-d counterparts are illus-
trated, containing 10,000 points each.

References

[l] N. Beckmann, H.P. Kriegel and B. Seeger: “The R.*-
tree: an Efficient and R.obust Method for Points and

235

Figure 15: Left: Synthetic Gaussian (SG), 10,000 objects.
Right: Synthetic Uniform (SU), 10,000 objects.

I21

I31

[41

[51

PI

I71

PI

PI

[lOI

Pll

Rectangles”, Proceedings of the 1990 ACM SIGMOD
Conference, pp.322-331, Atlantic City, NJ, 1990.

A. Belussi and C. Faloutsos: “Estimating the Selec-
tivity of Spatial Queries Using the ‘Correlation’ Fractal
Dimension”, Proceedings of the 21th VLDB Conference,
pp.299-310, Zurich, Switzerland, 1995.

S. Berchtold, D. Keim and H.-P. Kriegel: “The X-tree:
An Index Structure for High-Dimensional Data”, Pro-
ceedings of the 1996 VLDB Conference, Bombay, India,
1996.

S. Berchtold, C. Boehm, D.A. Keim and H.-P. Kriegel:
“A Cost Model for Nearest Neighbor Search in High-
Dimensional Data Space” , Proceedings of the 17th A CM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS ‘97), Tucson, AZ, 1997.

S. Berchtold, C. Boehm, B. Braunmueller, D. A. Keim
and H.-P. Kriegel: “Fast Parallel Similarity Search in
Multimedia Databases”, Proceedings of the 1997 ACM
SIGMOD Conference, pp.l-12, Tucson, AZ, 1997.

P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz and
D.A. Patterson: “RAID: High-Performance, Reliable
Secondary Storage”, ACM Computing Surveys, ~01.26,
no.2, pp.145-185, 1994.

C. Faloutsos and I. Kamel: “Beyond Uniformity and
Independence: Analysis of R-trees Using the Concept
of Fractal Dimension”, Proceedings of the 13th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS ‘94), pp.4-13, Minneapo-
lis, MN, 1994.

C. Faloutsos, M. Ranganathan and Y. Manolopou-
10s: “Fast Subsequence Matching in Time-Series
Databases”, Proceedings of the 1994 ACM SIGMOD
Conference, pp.419-429, Minneapolis, 1994.

J.H. Friedman, J.L. Bentley and R.A. Finkel: “An Al-
gorithm for Finding the Best Matches in Logarithmic
Expected Time”, ACM fiansactions on Mathematical
Software, ~01.3, pp.209-226, 1977.

A. Guttman: “R-trees: a Dynamic Index Structure for
Spatial Searching”, Proceedings of the 1984 ACM SIG-
MOD Conference, pp.47-57, Boston, MA, 1984.

I. Kamel and C. Faloutsos: “Parallel R-trees”, Proceed-
ings of the 1992 ACM SIGMOD Conference, pp.195-
204, 1992.

P21

1131

P41

1151

WI

1171

F31

PI

[201

[211

I221

I231

I241

1251

PI

[271

I. Kamel and C. Faloutsos: “Hilbert R-tree: an Im-
proved R-tree Using Fractals”, Proceedings of the 20th
VLDB Conference, pp.500-509, Santiago, Chile, 1994.

N. Katayama and S. Satoh: “The SR-tree: An In-
dex Structure for High-Dimensional Nearest Neighbor
Queries”, Proceedings of the 1997 A CM SIGMOD Con-
ference, pp.369-380, Tucson, AZ, 1997.

K. Lin, H.V. Jagadish and C. Faloutsos: “The TV-tree:
An Index Structure for High Dimensional Data”, The
VLDB Journal, ~01.3, pp.517-542, 1995.

Y. Manolopoulos: “Probability Distributions for Seek
Time Evaluation, Information Sciences, ~01.60, no.l-2,
pp.29-40, 1992.

B.U. Pagel, H.W. Six, H. Toben and P. Widmayer:
“Towards an Analysis of Range Query Performance in
Spatial Data Structures”, Proceedings of the 12th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS ‘93), pp.214-221, Wash-
ington DC, 1993.

A.N. Papadopoulos and Y. Manolopoulos: “Per-
formance of Nearest Neighbor Queries in R-trees”,
Proceedings of the 6th International Conference on
Database Theory (ICDT 97), pp.394-408, Delphi,
Greece, January 1997.

D.A. Patterson, G. Gibson and R.H. Katz: “A Case
for Redundant Arrays of Inexpensive Disks (RAID)“,
Proceedings of the 1988 ACM SIGMOD Conference,
pp.109-116, Chicago, IL, 1988.

N. Roussopoulos, S. Kelley and F. Vincent: “Nearest
Neighbor Queries”, Proceedings of the 1995 ACM SIG-
MOD Conference, pp.71-79, San Jose, CA, 1995.

C. Ruemmler and 3. Wlkes: ‘<An Introduction to Disk
Drive Modeling”, IEEE Computer, ~01.27, no.3, 1994.

B. Seeger and P.A. Larson: “Multi-Disk B-trees”,
Proceedings of the 1992 ACM SIGMOD Conference,
pp.436-445, Denver, Colorado, 1991.

T. Sellis, N. Roussopoulos and C. Faloutsos: “The R+-
tree: a Dynamic Index for Multidimensional Objects”,
Proceedings of the 13th VLDB Conference, pp.507-518,
Brighton, UK, 1987.

M. Stonebraker, J. Frew, K. Gardels and J. Meredith:
“The Sequoia 2000 Storage Benchmark”, Proceedings of
the 1993 ACM SIGMOD Conference, pp. 2-11, Wash-
ington, DC, 1993.

Y. Theodoridis and T. Sellis: “A Model for the Pre-
diction of R-tree Performance”, Proceedings of the
15th A CM SIGA CT-SIGMOD-SIGA RT Symposium on
Principles of Database Systems (PODS ‘96), Montreal,
Canada, 1996.

TIGER/Line Files, 1994 Technical Documentation /
prepared by the Bureau of the Census, Washington,
DC, 1994.
D. White and R. Jain: “Similarity Indexing with the
SS-tree”, Proceedings of the 12th International Confer-
ence on Data Engineering (ICDE’96), New Orleans,
LO, 1996.

Y. Zhou, S. Shekhar and M. Coyle: “Disk Alloca-
tion Methods for Parallelizing grid files”, Proceedings of
the 10th International Conference on Data Engineering,
pp.243-252, Houston, TX, 1994.

236

