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Abstract—Safety assessment of dependable systems is a 
complex verification task that is desirable to be explicitly 
incorporated into the development cycle during the very early 
stages of a project. The main reason is that the cost to correct a 
safety error at the late stages of system development is 
excessively high. Towards this aim, we introduce an ontology-
based model-driven engineering process for automating 
transformations of models that are utilized as reusable 
artifacts. The logical and syntactical structures of the design 
and safety models have to conform to a number of metamodel 
constraints. These constraints are semantically represented by 
mapping them onto an OWL domain ontology, allowing the 
incorporation of a Description Logic OWL reasoner and 
inference rules, in order to detect lacks of model elements and 
semantically inconsistent parts. Model validation throughout 
the ontology-based transformation assures that the generated 
formal safety model fulfils a series of requirements that render 
it analyzable. Our approach has been implemented as a 
response to an industrial problem 1 , where the architecture 
design is expressed in Architecture Analysis and Design 
Language (AADL) and safety models are specified in the 
AltaRica formal language. 

Keywords- model driven engineering, safety, verification and 
validation, ontology reasoning, transformation. 

I.  INTRODUCTION  
Dependable systems are developed based on complex 

safety requirements that need to be verified by rigorous 
methods, according to well established engineering processes 
and standards [1]. In industrial projects, safety assessment is 
one of the fundamental risk reduction and control processes 
that is performed during the very early stages of system 
development. In requirements analysis, engineers identify 
critical system items and all potential failure modes and 
technical risks that can lead to nonconformance of the 
anticipated safety standards. During design, the 
dependability characteristics (e.g. availability, reliability, 
etc.) are traded with other system attributes, such as 

                                                           
1 This work is partly funded by the European Space Agency 
(ESA) ESTEC Contract Ref: 22262/09/NL/CBI 

performance, in order to discover an optimal design that 
fulfills the safety requirements. 

In [2], we proposed an ontology-based representation of 
component failure behavior. The motivation behind our 
proposal is to cope with: 

• heterogeneity in textual representation, syntax, 
semantics and scope of the used modeling languages 
for architecture design and safety assessment; 

• possible inconsistencies between the design and 
safety models, as a consequence of the use of 
different tools; 

• the need for a repository of reusable knowledge 
artifacts; 

• the need to support and enhance collaboration 
between multiple project contributors, as well as 
information sharing intra and inter organizationally.  

In the same line of work, we elaborate on ontology-based 
model transformation for safety assessment. The primal 
reusable artifacts are executable design specifications of 
system components with underspecified failure behavior 
(nominal behavior models). The nominal models are 
combined with failure modes, i.e. reusable artifacts of error 
behavior that are also stored in the ontology. The obtained 
extended system models are then transformed into formal 
safety models, which have to fulfill a series of constraints, in 
order to become analyzable by tools that provide model 
checking, fault tree, simulation and other analyses.  

These constraints are semantically represented by 
mapping them onto an OWL domain ontology. The ontology 
and the inference rules checked by the incorporated OWL 
Description Logic reasoner allow detecting lack of model 
elements and semantically inconsistent parts. Our model-
transformation isolates design flaws that invalidate safety 
analysis and provides support towards attributing the 
problem(s) to specific component(s) of the design model. 
Consequently, we avoid the cost of interpreting errors that 
are encountered in the formal representation of the extended 
system model, which is inherently difficult to conceive. 



The outlined work was implemented as a response to an 
industrial problem, where the architecture design is 
expressed in the Architecture Analysis and Design Language 
(AADL) [3, 4] that provides precise execution semantics for 
modeling software systems and their target platform. Safety 
models are generated in the AltaRica formal language [5], 
which is processed by a series of analysis tools [6, 7, 8]. Our 
approach can potentially be applied in different verification 
and validation contexts, which will be based on other 
modeling and formal analysis languages. 

Related work is reviewed in Section 2, before the 
introduction to necessary ontology background found in 
Section 3. We then present a short description of the AADL 
and AltaRica languages. Section 5 describes the domain 
ontology for the proposed model-driven engineering process, 
while in section 6 we summarize the rules behind the 
developed transformation. Section 7 introduces a case study 
that demonstrates model validation throughout the 
transformation process and provides the obtained analysis 
results. We conclude with a summary of the proposed 
process and we comment on its benefits and its potential 
impact. 

II. RELATED WORK 
To the best of our knowledge, related work on ontology-

based model transformation is reported only in [12]. 
However, in that work the motivation of the authors is to 
improve cross-organisational modeling by supporting 
automatic generation and evolution of model 
transformations, a concern which is not addressed in our 
case. 

In [7] the authors mention two related attempts on AADL 
model transformation to Altarica in the frame of the 
ASSERT European Integrated Project [9]. The first model 
transformation [8, 10] was based on extracting, the 
functional and hardware architecture of the system from the 
AADL model, as well as on the use of libraries of Altarica 
nodes, which can be reused from one project to the other. 
According to the authors, this approach worked well only for 
families of similar systems.  

In the second case the transformation was based on 
AltaRica specifications that were enriched with failure 
propagations derived from AADL code written in AADL 
Error Annex [11]. The ASSERT reports inform us that the 
Altarica code was much more complex than before, but the 
transformation was feasible, as long as component 
relationships and various kinds of analysis are properly 
defined [7]. 

The fundamental difference of our work is that the 
ontology-based model transformation is built on a semantic 
bridge between AADL and Altarica that levels the 
differences in language syntax, scope and semantics. We 
believe that this semantic gap-filling along with the increased 
opportunities for model reuse and reasoning supported by the 
underlying ontology, contribute towards widening the 
applicability of the model transformation. 

III. BACKGROUND INFORMATION ON ONTOLOGIES 
The Semantic Web initiative [13] attempts to solve 

problems related to knowledge representation, by suggesting 
standards, tools and languages for information annotation, 
which use “data about data” called metadata. By uncovering 
implicit knowledge hidden into metadata, machines are able 
to reason over the represented data, draw conclusions and 
turn implicit knowledge into explicit. 

Ontologies play a key role in the evolution of the 
Semantic Web and are widely used to represent knowledge, 
by describing data in a formal and explicit way. The Web 
Ontology Language (OWL) [14] is the W3C 
recommendation for creating and sharing ontologies in the 
Web and its theoretical background is based on the 
Description Logic (DL) [15] knowledge representation 
formalism, a subset of predicate logic. It has been emerged 
as the solution to the expressive limitations of RDF and RDF 
Schema that offer the possibility to define only simple 
hierarchical relationships among concepts and properties, 
domain and range property restrictions and concept 
instances. OWL is a richer vocabulary description language 
for representing properties and classes, such as relations 
between classes (e.g. disjointness), cardinality (e.g. “exactly 
one”), equality, richer typing of properties, characteristics of 
properties (e.g. symmetry) and enumerated classes [16].  

The formal semantics of the OWL language enable the 
application of reasoning techniques, in order to make logical 
derivations that involve class membership, equivalent 
classes, ontology consistency and instance classification. 
These derivations are performed by reasoners (e.g. Pellet 
[17]), which are systems able to handle and apply the 
semantics of the ontology language. Furthermore, already 
existing frameworks [18, 19] allow the combination of rules 
and ontologies, in order (a) to manipulate ontological 
knowledge, enhancing its expressiveness and (b) to allow 
ontology queries to be conducted in the form of rules.  

IV. THE AADL AND ALTARICA LANGUAGES 
The Architecture Analysis & Design Language (AADL) 

is a textual and graphical language for specifying the 
software and hardware architecture of safety critical real-
time systems [3, 4]. AADL components encapsulate 
computations, and connectors represent communication 
between the components. Connectors connect components 
using ports, where each port plays a specific role in the 
context of the connector. Implementations are instances of 
the components and may also represent compositions of 
components and connectors with their ports and roles. 

AADL is designed to be extensible and currently is 
accompanied with two basic annexes: the behavior annex 
[20] and the error model annex [11]. The Error Model Annex 
provides additional properties related to the reliability of the 
system components and allows defining state machines for 
specifying error behavior. The Behavior Annex completes 
the standard AADL language by additional syntax and 
semantic definitions to express component behavior. Several 
tools have been developed for editing and syntactically 
analyzing AADL specifications [9, 21]. 



AltaRica [5] is a dependability language for specifying 
constraint automata, i.e. formal models for the error behavior 
of systems. In AltaRica, a model consists of hierarchies of 
nodes, which gather flow variables that can be read and 
shared with other nodes. A model includes also states, 
events, transitions that describe how the initial states may 
evolve and assertions that are boolean formulae defining 
constraints, in order to link flows to internal states. 

Several dependability tools process AltaRica models [5, 
6, 7, 8], in order to perform various analyses (symbolic 
simulation, model-checking, fault tree analysis, sequence 
analysis etc.) with diverse requirements on the model.  

V. DOMAIN ONTOLOGY AND THE MODEL-DRIVEN 
ENGINEERING PROCESS 

The domain ontology has been designed for allowing 
storage, retrieval and correlation of constructs relevant to the 
AADL specification, the Error Annex and the Behavior 
Annex and for providing the desirable reasoning capabilities 
among them. In order to ensure decidability of the reasoning 
process, the ontology has been defined in the OWL DL 
fragment of OWL. We have used the Pellet DL reasoner, 
which was combined with the Jena framework for defining 
custom inference (consistency checking) rules. The ontology 
design has been focused on three main aspects: 

• For the core AADL specification, the ontology 
provides the necessary constructs in order to model 
components (e.g. data, subprogram, system etc.), 
together with their corresponding properties (e.g. 
features). In this way, it is possible to add new 
components to the ontology or to extend existing 
ones, by defining appropriate ontology subclasses.  

• For the AADL Error Annex, the ontology provides 
the necessary constructs to represent error models in 
terms of states and events, as well as to define 
implementations of error models in terms of 
transitions. The error models are classified in a 
hierarchy, according to the error type they model 
[22], e.g. computational problems, hardware errors, 
memory exceptions etc. 

• For component implementation, the ontology 
provides the constructs (connections and 
subcomponents) to define the implementation of a 
component. Furthermore, the ontology allows the 
representation of the behavior specification that 
corresponds to a specific error model, thus bridging 
the semantic gap between the Error and Behavior 
annexes. This behavior can be either explicitly stated 
in the ontology or it can be semantically derived by 
reasoning during the procedure of the correlation of 
an error model with a component by the domain 
expert, without needing to have a complete picture of 
the actual knowledge that is required to achieve this 
task. This is feasible by exploiting the semantic 
capabilities that are provided by the ontology, such 
as hierarchical relationships or necessary and 

sufficient conditions, through the use of an OWL 
ontology reasoner. 

Furthermore, the ontology-based representation of 
components allows the definition of custom inference rules, 
in order to check the model for potential component 
inconsistencies. Such inconsistencies cannot be detected 
using the default modeling capabilities of OWL and the use 
of rules is required. Currently, the system detects three types 
of inconsistencies that render the models invalid for certain 
types of formal analysis: 

• Dynamic behavior of components is the situation 
where the final state of a component depends on a 
failure ordering scenario (fault tree analysis is 
impossible). 

• Conflict transition fire, where there is more than one 
event that can be triggered simultaneously (fault tree 
and sequence analyses are impossible).  

• Incompleteness transition errors, i.e. missing 
transitions in a component (ill-defined design 
specification). 

The aforementioned inconsistencies are detected using 
custom SPARQL [23] rules that query the ontological 
knowledge and report potential errors. Furthermore, the rule-
based representation of the inconsistency semantics allows 
new inconsistency rules to be easily added. We consider 
extending inconsistency detection capabilities with additional 
problems like unreachable states and unreachable transitions. 

Figure 1 illustrates the described class hierarchy and 
Figure 2 presents a snapshot of the relations between the 
ontology representations of the AADL constructs. The 
ontology follows a meta-modeling design approach and 
defines classes for artifact definitions, implementations and 
instantiations. Each AADL component is represented as an 
ontology class, which should be a direct or indirect subclass 
of the upper-level class AADLComponent. Error models are 
also represented as ontology classes, descendents of the 
upper-level class ErrorModel. Furthermore, the ontology 
allows categorization of error models [22]. Each error model 
is a subclass of the provided error model hierarchy 
representing error types, where the upper-level class is 
ErrorModelTaxonomy. 

Figure 3 depicts the proposed model-driven engineering 
process. The steps are: 

1. Select/reuse failure modes from the error model 
hierarchy.  

2. Correlate them with the nomimal component 
models at hand. 

3. Check the ontology model for potential component 
inconsistencies.  

4. Transform the extended architecture model to the 
formal safety model. 

5. Analyze the safety model with tools that provide 
model checking, fault tree, simulation and other 
analyses. 

 



 
Fig. 1. Hierarchy of AADL Error/Behavior Annex 

 
Fig. 2. Relations of AADL Error/Behavior Annex 

 
Fig. 3. Model-driven engineering process 



 

 
Fig. 4. Ontology-based model engineering architecture 

The model-driven engineering architecture is shown in 
Figure 4. The Ontology organizes the components and the 
error models into functional and structurally interdependent 
hierarchies and enforces constraints and rules on the 
associations between components and error models. 

A custom Web based front-end is used for viewing, 
editing, posting and updating components and error models 
within the ontology. The transformation engine generates the 
AltaRica formal safety model from the system design, which 
is developed in an appropriate AADL editor.  

VI. MODEL TRANSFORMATION 
Model transformation was based on existing modeling 

experience for discovering structurally equivalent constructs 
in the two languages. Transformation rules are driven by 
knowledge matching the used constructs through the 
underlying domain ontology. 

The first set of rules is devoted to the transformation of 
AADL components to AltaRica nodes. All component types 
(i.e system, process, thread, thread group, 
data, subprogram, processor, device, memory 
and bus) are transformed to AltaRica nodes and their 
defined features, flows and properties to 
equivalent flows, init and extern AltaRica 
declarations. Furthermore, AltaRica sub, state and 
assert declarations are generated based on the AADL 
component implementations. AADL property set 
definitions are transformed to equivalent AltaRica flow type 
declarations. 

The second set of rules concerns the components' error 
models and take into account their states and 
transitions triggered by events. AADL Error Annex 
events, states and transitions are transformed to 
equivalent AltaRica events, states and 
transitions. AltaRica assert statements are filled by 
assignments found in the matched AADL Behavior Annex 

code. In case of subprogram calls the transformation 
preserves their order. 

The third set of rules focuses on the failure propagation, 
filtering and masking mechanisms (Guard_In and 
Guard_Out properties) and the mechanisms for connecting 
error states to operational modes 
(Guard_Transition property). AADL Error Annex 
Guard_in and Guard_out declarations are transformed 
into equivalent AltaRica synchronization assignment 
statements. Since AltaRica does not support failure masking 
capabilities, Guard_transition declarations create 
additional component variants, where in each mode the 
transformed component is mapped to its own error model 
and behavior. 

Another set of transformation rules concerns the used 
architecture design process and the associated AADL editor. 
The LabAssert system design environment [9], which is used 
in the ASSERT architecture process, uses multiple views, as 
was first proposed by Kruchten et al [24]. The main problem 
encountered is that the LabAssert Interface View follows a 
control-flow based specification approach, thus resulting in a 
semantic gap compared to the data-flow oriented 
representation of the AltaRica specification. The 
transformation rules that are specific to LabAssert are:   

• The Interface View provides the number of times 
each function is called. When a function is called 
multiple times our transformation generates as many 
nodes as the number of calls.   

• In order to express the internal implementation 
(subprogram) of each function and the ordered 
sequence of calls we employ the constructs of the 
AADL Behavior Annex. 

VII. CASE STUDY AND ANALYSIS RESULTS 
An illustrative example, of our ontology-based model 

driven engineering approach, is shown in Figure 5. The 
example is about a double-adder function based on a simple 
add operation shown in the AADL standard AS5506 [20]. 
The nominal models were initially designed using AADL 
LabAssert Tool [9] and were combined with failure modes 
from the domain ontology in the OSATE toolset [21] (since 
at the moment there is no support for both annexes in 
LabAssert). 

 
Fig. 5. AADL Specification of Double Add Example in 

Labassert Tool 



In detail, the system’s arithmetic unit (AU) performs a 
simple add operation, which is defined inside the ADD 
subprogram. Similarly, the Calculator system is responsible 
for performing a double add operation, which is defined 
inside the Perform subprogram. ADD1 and ADD2 are 
required interfaces of Calculator and ADD (UNP) is a 
provided interface of AU. One system calls a subprogram, 
when the required interface of the former is connected to the 
provided interface of the latter. Since Calculator is connected 
to the AU provided interface using two required interfaces, 
the ADD subprogram is called twice. The output of the first 
call is used as input to the second, resulting in a Double Add 
operation. We used behavior annex declarations to express 
sequential subprogram calls. All specification models were 
extended with error models representing the Overflow Event 
and State, shown in Table 1. 

TABLE I.  AADL SPECIFICATION OF ERROR MODEL 
OVERFLOW 

Error Model Implementation 
error model OVERFLOW 
features 
 Error_Free: initial error state; 
 overflow: error event; 
 Over_Flow: error state; 
end OVERFLOW; 

error model implementation 
OVERFLOW.Notional 
transitions 
 Error_Free -[overflow]-> 
Over_Flow; 

end OVERFLOW.Notional; 
 

A. Dynamic behavior of component errors 
The purpose of this kind of inconsistency detection refers 

to the implementation part of the defined error models, in 
order to check whether the final state of an error model 
transition depends on failures order scenario. Specifically, 
SPARQL rules search all transitions in Error Annex 
declaration and throw an exception, if there are at least two 
transitions with the same initial state, the same trigger event 
but different final state.  If A is a state declared in Error 
Annex, then all transitions from state A to itself (ie. A -[e]-> 
A, where e is the event trigger) are ignored, since these kind 
of declarations are also used to express error propagation. 
The example, shown in Table 2, is a variation of the 
overflow error model defined previously, where a new state 
Ovf_Temp is added to express a new transition to a 
temporary overflow state.  

TABLE II.  AADL SPECIFICATION OF ERROR MODEL 
OVERFLOW 

Error Model Implementation 

error model OVERFLOW_2 
Features 
 Error_Free: initial error state; 
 Ovf_Temp: error state; 
 Over_Flow: error state; 
 overflow: error event; 
end OVERFLOW_2; 

error model implementation 
OVERFLOW_2.Notionala 
transitions 
 Error_Free -[overflow]-> 
Over_Flow; 
 Error_Free -[overflow]-> 
Ovf_Temp; 

 end OVERFLOW_2.Notionala; 
 

The error model implementation of OVERFLOW_2 
(Notionala) has two declared transitions from state 
Error_Free to Ovf_Temp and Error_Free to Over_Flow, both 
triggered by the same event overflow. Ontology exception 
handling will scan the error model implementation and will 

prompt the user that the first reference rule is violated. The 
two transitions defined in error model 
OVERFLOW_2.Notionala are responsible for the 
component’s dynamic behavior, since the final state will 
either be Over_Flow or Ovf_Temp, depending on which 
transition will fire first. 

B. Conflict transition fire errors 
The purpose of this kind of inconsistency detection also 

refers to the implementation part of the defined error models, 
in order to check whether more than one event can be 
triggered simultaneously. Specifically, SPARQL rules search 
all transitions in Error Annex declaration and throw an 
exception, if there are two transitions with the same initial 
state, different trigger event and different final state. 
Similarly to dynamic behavior of component errors, if A is a 
state declared in Error Annex, then all transitions from state 
A to itself (ie. A -[e]-> A, where e is the event trigger) are 
ignored, since these kind of declarations are also used to 
express error propagation. The example, shown in Table 3, is 
a variation of the overflow error model defined previously, 
where a new event overflow_temp is added to lift the first 
rule violation. The error model implementation of 
OVERFLOW_2 (Notionalb) has two transitions from state 
Error_Free to Ovf_Temp and Error_Free to Over_Flow, 
triggered by different events overflow_temp and overflow 
additionally. Ontology exception handling will scan the error 
model implementation and will prompt the user that the 
second reference rule is violated. The two transitions defined 
in error model OVERFLOW_2.Notionalb are responsible for 
the component’s conflict transition fire behavior, since both 
overflow and overflow_temp events can be triggered. 
Furthermore, the final state will also be different (Over_Flow 
or Ovf_Temp) depending on which event will fire first, 
violating the first reference rule as well. 

TABLE III.  CONFLICT TRANSITION FIRE  EXAMPLE 

Error Model Implementation 
error model OVERFLOW_2 

Features 
 Error_Free: initial error 

state; 
 Ovf_Temp: error state; 
 Over_Flow: error state; 
 overflow_temp: error 

event; 
 overflow: error event; 

end OVERFLOW_2; 

error model implementation 
OVERFLOW_2.Notionalb 
transitions 
 Error_Free -[overflow]-> 
Over_Flow; 
 Error_Free-[overflow_temp]-> 
Ovf_Temp; 

End OVERFLOW_2.Notionalb; 

C. Incompleteness transition errors 
The purpose of this kind of inconsistency detection refers 

to the implementation part of the component in order to 
check whether transitions declared in a component’s 
Behavior Annex are complete. Specifically, SPARQL rules 
search all states in Behavior Annex declarations and throw 
an exception if they find at least one final state, in all the 
existing transitions, that has no code attached to that state. 

The example, shown in Table 4, is a variation of the 
overflow error model defined previously, where transition 
declarations are fixed to lift the two previous rule violations. 
The error model implementation of OVERFLOW_2 



(Notionalc) has two transitions from state Error_Free to 
Ovf_Temp and Ovf_Temp to Over_Flow, triggered by 
different events overflow_temp and overflow additionally.  

TABLE IV.  ERROR FREE EXAMPLE 

Error Model Implementation 
error model OVERFLOW_2 

Features 
 Error_Free: initial error 

state; 
 Ovf_Temp: error state; 
 Over_Flow: error state; 
 overflow_temp: error 

event; 
 overflow: error event; 
end OVERFLOW_2; 

error model implementation 
OVERFLOW_2.Notionalc 
transitions 
Error_Free-[overflow_temp]-> 
Ovf_Temp; 
Ovf_Temp -[ overflow ]-> 
Over_Flow; 
end OVERFLOW_2.Notionalc; 

In the example shown in Table 5, the subprogram 
implementation of ADD (ADD.impla) has three states 
declared (Error_Free, Overflow and Ovf_Temp), according 
to the attached error model from Table 4. Furthermore, state 
Ovf_Temp has no behavior declarations in any of the 
behavior annex transitions, where it appears as final state. 
Ontology exception handling will scan the subprogram 
implementation and will prompt the user that the third 
reference rule is violated. The third transition defined in the 
subprogram’s behavior annex is responsible for the 
component’s incompleteness transition behavior, since the 
code under final state Ovf_Temp in transition 
overflow_temp is not complete.  

TABLE V.  INCOMPLETENESS TRANSITION ERROR  EXAMPLE 

Error Model Implementation 

Subprogram ADD 
 Features 
  a: in parameter integer; 
  b: in parameter integer; 
  c: out parameter integer; 
  ovf: out parameter boolean; 
end ADD; 

subprogram implementation 
ADD.impla 
 annex behavior_specification {** 
  states 
   Error_Free : initial state; 
   Semi : return state; 
   Over_Flow : return state; 
  transitions 
   normal:Error_Free-[ ]->Error_Free 
{ 
    c:=(a+b); 
    ovf := false;}; 
   overflow:Semi-[ ]->Over_Flow { 
    c:=0; 
    ovf := true;}; 
   overflow_temp:Error_Free-[ ]-> 
Semi {}; 
**}; 
annex error_model {** 
 Model => 
OVERFLOW_2.Notionalc; 
**}; 
end ADD.impla; 

Dynamic behavior of components and Conflict transition 
fire rules inform us whether the transition declaration part of 
the AltaRica specification will be complete and error free, 
after the model transformation from AADL into AltaRica. 
The role of incompleteness transition errors detection rules is 
to make us sure that a behavior is specified for all declared 
states of the component. Thus, it insures us that, after the 
model transformation from AADL into AltaRica, all cases in 

the assert declaration part of the AltaRica specification have 
been taken care of and no code is missing from the AltaRica 
model. 

Based on the prompts taken from checking the whole 
specification, the AADL specification design was converted 
into AltaRica specification code. Figure 6a shows the double 
adder AltaRica specification from Cecilia Ocas tool. Figures 
6b and 6c show the results taken after executing Cecilia Ocas 
Sequence generator, and figure 7 displays the results taken 
after executing Cecilia Arbor Fault Tree viewer. The analysis 
made in Double Add example shows that the system will fail 
due to overflow error, if at least two of the three components 
fail due to overflow or overflow_temp events. 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. The AltaRica model structure (a), the Sequence 
generation (b) and results (c) for the Double Add Example in 

Cecilia Ocas 

 
Fig. 7. Fault Tree generated by Cecilia Arbor for the 

Double Add Example 



VIII. CONCLUSION 
In this paper we introduced an ontology-based model-

driven engineering process for compositional safety analysis. 
The proposed process enhances system architecture design 
by promoting model reuse, as well as model transformation 
with the following characteristics: 

• Modular and extensible components representation. 
• Interoperability between the design and formal 

analysis languages at a semantic level, as well as 
model transformation, which is not based solely on a 
purely syntactic analysis. 

• Extended reasoning, taking the advantage of the 
ontology languages built-in reasoning capabilities. 

• Web-based engineering environment accessible from 
anyone within or across organizations. 

The underlying domain ontology and the checked 
inference rules allow detecting lack of model elements and 
semantically inconsistent parts. This allows system designers 
identifying flaws at the design level, without having to 
interpret errors that are encountered in the formal 
representation of the system model, which is overly difficult 
to comprehend. Model editing is also accelerated, since 
inconsistency errors can be found without having to perform 
complex analyses. 

Although the shown process was developed in the frame 
of an industrial problem with specific technology constraints, 
we believe that the concept, as well as the architecture of the 
proposed engineering environment can boost the use of 
formal methods in the software/system engineering practice. 

Our claim is based on the fact that model transformation 
eliminates the need of manually developing formal 
specifications of system models. Future research and 
development plans include the incorporation of additional 
types of inconsistency errors like the loop assert condition 
problem and the causality loop possibility, which render fault 
tree analysis impossible. Another research goal is the 
development of appropriate support for extending model 
transformation functionality and for validating the developed 
transformations [25]. The presented process will be fully 
beneficial upon the development of appropriate ontology 
semantics for a range of inheritance relations that will be 
able to promote component models retrieval and reuse.  
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