
Ontology-based Model Driven Engineering for Safety
Verification

Konstantinos Mokos, George Meditskos, Panagiotis
Katsaros, Nick Bassiliades

Aristotle University of Thessaloniki
Department of Informatics

54124 Thessaloniki, GREECE
{ mokosko@otenet.gr } { gmeditsk, katsaros,

nbassili@csd.auth.gr }

Vangelis Vasiliades
Gnomon Informatics S.A.

Thessaloniki, Greece
{ v.vassiliadis@gnomon.com.gr }

Abstract—Safety assessment of dependable systems is a
complex verification task that is desirable to be explicitly
incorporated into the development cycle during the very early
stages of a project. The main reason is that the cost to correct a
safety error at the late stages of system development is
excessively high. Towards this aim, we introduce an ontology-
based model-driven engineering process for automating
transformations of models that are utilized as reusable
artifacts. The logical and syntactical structures of the design
and safety models have to conform to a number of metamodel
constraints. These constraints are semantically represented by
mapping them onto an OWL domain ontology, allowing the
incorporation of a Description Logic OWL reasoner and
inference rules, in order to detect lacks of model elements and
semantically inconsistent parts. Model validation throughout
the ontology-based transformation assures that the generated
formal safety model fulfils a series of requirements that render
it analyzable. Our approach has been implemented as a
response to an industrial problem 1 , where the architecture
design is expressed in Architecture Analysis and Design
Language (AADL) and safety models are specified in the
AltaRica formal language.

Keywords- model driven engineering, safety, verification and
validation, ontology reasoning, transformation.

I. INTRODUCTION
Dependable systems are developed based on complex

safety requirements that need to be verified by rigorous
methods, according to well established engineering processes
and standards [1]. In industrial projects, safety assessment is
one of the fundamental risk reduction and control processes
that is performed during the very early stages of system
development. In requirements analysis, engineers identify
critical system items and all potential failure modes and
technical risks that can lead to nonconformance of the
anticipated safety standards. During design, the
dependability characteristics (e.g. availability, reliability,
etc.) are traded with other system attributes, such as

1 This work is partly funded by the European Space Agency
(ESA) ESTEC Contract Ref: 22262/09/NL/CBI

performance, in order to discover an optimal design that
fulfills the safety requirements.

In [2], we proposed an ontology-based representation of
component failure behavior. The motivation behind our
proposal is to cope with:

• heterogeneity in textual representation, syntax,
semantics and scope of the used modeling languages
for architecture design and safety assessment;

• possible inconsistencies between the design and
safety models, as a consequence of the use of
different tools;

• the need for a repository of reusable knowledge
artifacts;

• the need to support and enhance collaboration
between multiple project contributors, as well as
information sharing intra and inter organizationally.

In the same line of work, we elaborate on ontology-based
model transformation for safety assessment. The primal
reusable artifacts are executable design specifications of
system components with underspecified failure behavior
(nominal behavior models). The nominal models are
combined with failure modes, i.e. reusable artifacts of error
behavior that are also stored in the ontology. The obtained
extended system models are then transformed into formal
safety models, which have to fulfill a series of constraints, in
order to become analyzable by tools that provide model
checking, fault tree, simulation and other analyses.

These constraints are semantically represented by
mapping them onto an OWL domain ontology. The ontology
and the inference rules checked by the incorporated OWL
Description Logic reasoner allow detecting lack of model
elements and semantically inconsistent parts. Our model-
transformation isolates design flaws that invalidate safety
analysis and provides support towards attributing the
problem(s) to specific component(s) of the design model.
Consequently, we avoid the cost of interpreting errors that
are encountered in the formal representation of the extended
system model, which is inherently difficult to conceive.

The outlined work was implemented as a response to an
industrial problem, where the architecture design is
expressed in the Architecture Analysis and Design Language
(AADL) [3, 4] that provides precise execution semantics for
modeling software systems and their target platform. Safety
models are generated in the AltaRica formal language [5],
which is processed by a series of analysis tools [6, 7, 8]. Our
approach can potentially be applied in different verification
and validation contexts, which will be based on other
modeling and formal analysis languages.

Related work is reviewed in Section 2, before the
introduction to necessary ontology background found in
Section 3. We then present a short description of the AADL
and AltaRica languages. Section 5 describes the domain
ontology for the proposed model-driven engineering process,
while in section 6 we summarize the rules behind the
developed transformation. Section 7 introduces a case study
that demonstrates model validation throughout the
transformation process and provides the obtained analysis
results. We conclude with a summary of the proposed
process and we comment on its benefits and its potential
impact.

II. RELATED WORK
To the best of our knowledge, related work on ontology-

based model transformation is reported only in [12].
However, in that work the motivation of the authors is to
improve cross-organisational modeling by supporting
automatic generation and evolution of model
transformations, a concern which is not addressed in our
case.

In [7] the authors mention two related attempts on AADL
model transformation to Altarica in the frame of the
ASSERT European Integrated Project [9]. The first model
transformation [8, 10] was based on extracting, the
functional and hardware architecture of the system from the
AADL model, as well as on the use of libraries of Altarica
nodes, which can be reused from one project to the other.
According to the authors, this approach worked well only for
families of similar systems.

In the second case the transformation was based on
AltaRica specifications that were enriched with failure
propagations derived from AADL code written in AADL
Error Annex [11]. The ASSERT reports inform us that the
Altarica code was much more complex than before, but the
transformation was feasible, as long as component
relationships and various kinds of analysis are properly
defined [7].

The fundamental difference of our work is that the
ontology-based model transformation is built on a semantic
bridge between AADL and Altarica that levels the
differences in language syntax, scope and semantics. We
believe that this semantic gap-filling along with the increased
opportunities for model reuse and reasoning supported by the
underlying ontology, contribute towards widening the
applicability of the model transformation.

III. BACKGROUND INFORMATION ON ONTOLOGIES
The Semantic Web initiative [13] attempts to solve

problems related to knowledge representation, by suggesting
standards, tools and languages for information annotation,
which use “data about data” called metadata. By uncovering
implicit knowledge hidden into metadata, machines are able
to reason over the represented data, draw conclusions and
turn implicit knowledge into explicit.

Ontologies play a key role in the evolution of the
Semantic Web and are widely used to represent knowledge,
by describing data in a formal and explicit way. The Web
Ontology Language (OWL) [14] is the W3C
recommendation for creating and sharing ontologies in the
Web and its theoretical background is based on the
Description Logic (DL) [15] knowledge representation
formalism, a subset of predicate logic. It has been emerged
as the solution to the expressive limitations of RDF and RDF
Schema that offer the possibility to define only simple
hierarchical relationships among concepts and properties,
domain and range property restrictions and concept
instances. OWL is a richer vocabulary description language
for representing properties and classes, such as relations
between classes (e.g. disjointness), cardinality (e.g. “exactly
one”), equality, richer typing of properties, characteristics of
properties (e.g. symmetry) and enumerated classes [16].

The formal semantics of the OWL language enable the
application of reasoning techniques, in order to make logical
derivations that involve class membership, equivalent
classes, ontology consistency and instance classification.
These derivations are performed by reasoners (e.g. Pellet
[17]), which are systems able to handle and apply the
semantics of the ontology language. Furthermore, already
existing frameworks [18, 19] allow the combination of rules
and ontologies, in order (a) to manipulate ontological
knowledge, enhancing its expressiveness and (b) to allow
ontology queries to be conducted in the form of rules.

IV. THE AADL AND ALTARICA LANGUAGES
The Architecture Analysis & Design Language (AADL)

is a textual and graphical language for specifying the
software and hardware architecture of safety critical real-
time systems [3, 4]. AADL components encapsulate
computations, and connectors represent communication
between the components. Connectors connect components
using ports, where each port plays a specific role in the
context of the connector. Implementations are instances of
the components and may also represent compositions of
components and connectors with their ports and roles.

AADL is designed to be extensible and currently is
accompanied with two basic annexes: the behavior annex
[20] and the error model annex [11]. The Error Model Annex
provides additional properties related to the reliability of the
system components and allows defining state machines for
specifying error behavior. The Behavior Annex completes
the standard AADL language by additional syntax and
semantic definitions to express component behavior. Several
tools have been developed for editing and syntactically
analyzing AADL specifications [9, 21].

AltaRica [5] is a dependability language for specifying
constraint automata, i.e. formal models for the error behavior
of systems. In AltaRica, a model consists of hierarchies of
nodes, which gather flow variables that can be read and
shared with other nodes. A model includes also states,
events, transitions that describe how the initial states may
evolve and assertions that are boolean formulae defining
constraints, in order to link flows to internal states.

Several dependability tools process AltaRica models [5,
6, 7, 8], in order to perform various analyses (symbolic
simulation, model-checking, fault tree analysis, sequence
analysis etc.) with diverse requirements on the model.

V. DOMAIN ONTOLOGY AND THE MODEL-DRIVEN
ENGINEERING PROCESS

The domain ontology has been designed for allowing
storage, retrieval and correlation of constructs relevant to the
AADL specification, the Error Annex and the Behavior
Annex and for providing the desirable reasoning capabilities
among them. In order to ensure decidability of the reasoning
process, the ontology has been defined in the OWL DL
fragment of OWL. We have used the Pellet DL reasoner,
which was combined with the Jena framework for defining
custom inference (consistency checking) rules. The ontology
design has been focused on three main aspects:

• For the core AADL specification, the ontology
provides the necessary constructs in order to model
components (e.g. data, subprogram, system etc.),
together with their corresponding properties (e.g.
features). In this way, it is possible to add new
components to the ontology or to extend existing
ones, by defining appropriate ontology subclasses.

• For the AADL Error Annex, the ontology provides
the necessary constructs to represent error models in
terms of states and events, as well as to define
implementations of error models in terms of
transitions. The error models are classified in a
hierarchy, according to the error type they model
[22], e.g. computational problems, hardware errors,
memory exceptions etc.

• For component implementation, the ontology
provides the constructs (connections and
subcomponents) to define the implementation of a
component. Furthermore, the ontology allows the
representation of the behavior specification that
corresponds to a specific error model, thus bridging
the semantic gap between the Error and Behavior
annexes. This behavior can be either explicitly stated
in the ontology or it can be semantically derived by
reasoning during the procedure of the correlation of
an error model with a component by the domain
expert, without needing to have a complete picture of
the actual knowledge that is required to achieve this
task. This is feasible by exploiting the semantic
capabilities that are provided by the ontology, such
as hierarchical relationships or necessary and

sufficient conditions, through the use of an OWL
ontology reasoner.

Furthermore, the ontology-based representation of
components allows the definition of custom inference rules,
in order to check the model for potential component
inconsistencies. Such inconsistencies cannot be detected
using the default modeling capabilities of OWL and the use
of rules is required. Currently, the system detects three types
of inconsistencies that render the models invalid for certain
types of formal analysis:

• Dynamic behavior of components is the situation
where the final state of a component depends on a
failure ordering scenario (fault tree analysis is
impossible).

• Conflict transition fire, where there is more than one
event that can be triggered simultaneously (fault tree
and sequence analyses are impossible).

• Incompleteness transition errors, i.e. missing
transitions in a component (ill-defined design
specification).

The aforementioned inconsistencies are detected using
custom SPARQL [23] rules that query the ontological
knowledge and report potential errors. Furthermore, the rule-
based representation of the inconsistency semantics allows
new inconsistency rules to be easily added. We consider
extending inconsistency detection capabilities with additional
problems like unreachable states and unreachable transitions.

Figure 1 illustrates the described class hierarchy and
Figure 2 presents a snapshot of the relations between the
ontology representations of the AADL constructs. The
ontology follows a meta-modeling design approach and
defines classes for artifact definitions, implementations and
instantiations. Each AADL component is represented as an
ontology class, which should be a direct or indirect subclass
of the upper-level class AADLComponent. Error models are
also represented as ontology classes, descendents of the
upper-level class ErrorModel. Furthermore, the ontology
allows categorization of error models [22]. Each error model
is a subclass of the provided error model hierarchy
representing error types, where the upper-level class is
ErrorModelTaxonomy.

Figure 3 depicts the proposed model-driven engineering
process. The steps are:

1. Select/reuse failure modes from the error model
hierarchy.

2. Correlate them with the nomimal component
models at hand.

3. Check the ontology model for potential component
inconsistencies.

4. Transform the extended architecture model to the
formal safety model.

5. Analyze the safety model with tools that provide
model checking, fault tree, simulation and other
analyses.

Fig. 1. Hierarchy of AADL Error/Behavior Annex

Fig. 2. Relations of AADL Error/Behavior Annex

Fig. 3. Model-driven engineering process

Fig. 4. Ontology-based model engineering architecture

The model-driven engineering architecture is shown in
Figure 4. The Ontology organizes the components and the
error models into functional and structurally interdependent
hierarchies and enforces constraints and rules on the
associations between components and error models.

A custom Web based front-end is used for viewing,
editing, posting and updating components and error models
within the ontology. The transformation engine generates the
AltaRica formal safety model from the system design, which
is developed in an appropriate AADL editor.

VI. MODEL TRANSFORMATION
Model transformation was based on existing modeling

experience for discovering structurally equivalent constructs
in the two languages. Transformation rules are driven by
knowledge matching the used constructs through the
underlying domain ontology.

The first set of rules is devoted to the transformation of
AADL components to AltaRica nodes. All component types
(i.e system, process, thread, thread group,
data, subprogram, processor, device, memory
and bus) are transformed to AltaRica nodes and their
defined features, flows and properties to
equivalent flows, init and extern AltaRica
declarations. Furthermore, AltaRica sub, state and
assert declarations are generated based on the AADL
component implementations. AADL property set
definitions are transformed to equivalent AltaRica flow type
declarations.

The second set of rules concerns the components' error
models and take into account their states and
transitions triggered by events. AADL Error Annex
events, states and transitions are transformed to
equivalent AltaRica events, states and
transitions. AltaRica assert statements are filled by
assignments found in the matched AADL Behavior Annex

code. In case of subprogram calls the transformation
preserves their order.

The third set of rules focuses on the failure propagation,
filtering and masking mechanisms (Guard_In and
Guard_Out properties) and the mechanisms for connecting
error states to operational modes
(Guard_Transition property). AADL Error Annex
Guard_in and Guard_out declarations are transformed
into equivalent AltaRica synchronization assignment
statements. Since AltaRica does not support failure masking
capabilities, Guard_transition declarations create
additional component variants, where in each mode the
transformed component is mapped to its own error model
and behavior.

Another set of transformation rules concerns the used
architecture design process and the associated AADL editor.
The LabAssert system design environment [9], which is used
in the ASSERT architecture process, uses multiple views, as
was first proposed by Kruchten et al [24]. The main problem
encountered is that the LabAssert Interface View follows a
control-flow based specification approach, thus resulting in a
semantic gap compared to the data-flow oriented
representation of the AltaRica specification. The
transformation rules that are specific to LabAssert are:

• The Interface View provides the number of times
each function is called. When a function is called
multiple times our transformation generates as many
nodes as the number of calls.

• In order to express the internal implementation
(subprogram) of each function and the ordered
sequence of calls we employ the constructs of the
AADL Behavior Annex.

VII. CASE STUDY AND ANALYSIS RESULTS
An illustrative example, of our ontology-based model

driven engineering approach, is shown in Figure 5. The
example is about a double-adder function based on a simple
add operation shown in the AADL standard AS5506 [20].
The nominal models were initially designed using AADL
LabAssert Tool [9] and were combined with failure modes
from the domain ontology in the OSATE toolset [21] (since
at the moment there is no support for both annexes in
LabAssert).

Fig. 5. AADL Specification of Double Add Example in

Labassert Tool

In detail, the system’s arithmetic unit (AU) performs a
simple add operation, which is defined inside the ADD
subprogram. Similarly, the Calculator system is responsible
for performing a double add operation, which is defined
inside the Perform subprogram. ADD1 and ADD2 are
required interfaces of Calculator and ADD (UNP) is a
provided interface of AU. One system calls a subprogram,
when the required interface of the former is connected to the
provided interface of the latter. Since Calculator is connected
to the AU provided interface using two required interfaces,
the ADD subprogram is called twice. The output of the first
call is used as input to the second, resulting in a Double Add
operation. We used behavior annex declarations to express
sequential subprogram calls. All specification models were
extended with error models representing the Overflow Event
and State, shown in Table 1.

TABLE I. AADL SPECIFICATION OF ERROR MODEL
OVERFLOW

Error Model Implementation
error model OVERFLOW
features
 Error_Free: initial error state;
 overflow: error event;
 Over_Flow: error state;
end OVERFLOW;

error model implementation
OVERFLOW.Notional
transitions
 Error_Free -[overflow]->
Over_Flow;

end OVERFLOW.Notional;

A. Dynamic behavior of component errors
The purpose of this kind of inconsistency detection refers

to the implementation part of the defined error models, in
order to check whether the final state of an error model
transition depends on failures order scenario. Specifically,
SPARQL rules search all transitions in Error Annex
declaration and throw an exception, if there are at least two
transitions with the same initial state, the same trigger event
but different final state. If A is a state declared in Error
Annex, then all transitions from state A to itself (ie. A -[e]->
A, where e is the event trigger) are ignored, since these kind
of declarations are also used to express error propagation.
The example, shown in Table 2, is a variation of the
overflow error model defined previously, where a new state
Ovf_Temp is added to express a new transition to a
temporary overflow state.

TABLE II. AADL SPECIFICATION OF ERROR MODEL
OVERFLOW

Error Model Implementation

error model OVERFLOW_2
Features
 Error_Free: initial error state;
 Ovf_Temp: error state;
 Over_Flow: error state;
 overflow: error event;
end OVERFLOW_2;

error model implementation
OVERFLOW_2.Notionala
transitions
 Error_Free -[overflow]->
Over_Flow;
 Error_Free -[overflow]->
Ovf_Temp;

 end OVERFLOW_2.Notionala;

The error model implementation of OVERFLOW_2
(Notionala) has two declared transitions from state
Error_Free to Ovf_Temp and Error_Free to Over_Flow, both
triggered by the same event overflow. Ontology exception
handling will scan the error model implementation and will

prompt the user that the first reference rule is violated. The
two transitions defined in error model
OVERFLOW_2.Notionala are responsible for the
component’s dynamic behavior, since the final state will
either be Over_Flow or Ovf_Temp, depending on which
transition will fire first.

B. Conflict transition fire errors
The purpose of this kind of inconsistency detection also

refers to the implementation part of the defined error models,
in order to check whether more than one event can be
triggered simultaneously. Specifically, SPARQL rules search
all transitions in Error Annex declaration and throw an
exception, if there are two transitions with the same initial
state, different trigger event and different final state.
Similarly to dynamic behavior of component errors, if A is a
state declared in Error Annex, then all transitions from state
A to itself (ie. A -[e]-> A, where e is the event trigger) are
ignored, since these kind of declarations are also used to
express error propagation. The example, shown in Table 3, is
a variation of the overflow error model defined previously,
where a new event overflow_temp is added to lift the first
rule violation. The error model implementation of
OVERFLOW_2 (Notionalb) has two transitions from state
Error_Free to Ovf_Temp and Error_Free to Over_Flow,
triggered by different events overflow_temp and overflow
additionally. Ontology exception handling will scan the error
model implementation and will prompt the user that the
second reference rule is violated. The two transitions defined
in error model OVERFLOW_2.Notionalb are responsible for
the component’s conflict transition fire behavior, since both
overflow and overflow_temp events can be triggered.
Furthermore, the final state will also be different (Over_Flow
or Ovf_Temp) depending on which event will fire first,
violating the first reference rule as well.

TABLE III. CONFLICT TRANSITION FIRE EXAMPLE

Error Model Implementation
error model OVERFLOW_2

Features
 Error_Free: initial error

state;
 Ovf_Temp: error state;
 Over_Flow: error state;
 overflow_temp: error

event;
 overflow: error event;

end OVERFLOW_2;

error model implementation
OVERFLOW_2.Notionalb
transitions
 Error_Free -[overflow]->
Over_Flow;
 Error_Free-[overflow_temp]->
Ovf_Temp;

End OVERFLOW_2.Notionalb;

C. Incompleteness transition errors
The purpose of this kind of inconsistency detection refers

to the implementation part of the component in order to
check whether transitions declared in a component’s
Behavior Annex are complete. Specifically, SPARQL rules
search all states in Behavior Annex declarations and throw
an exception if they find at least one final state, in all the
existing transitions, that has no code attached to that state.

The example, shown in Table 4, is a variation of the
overflow error model defined previously, where transition
declarations are fixed to lift the two previous rule violations.
The error model implementation of OVERFLOW_2

(Notionalc) has two transitions from state Error_Free to
Ovf_Temp and Ovf_Temp to Over_Flow, triggered by
different events overflow_temp and overflow additionally.

TABLE IV. ERROR FREE EXAMPLE

Error Model Implementation
error model OVERFLOW_2

Features
 Error_Free: initial error

state;
 Ovf_Temp: error state;
 Over_Flow: error state;
 overflow_temp: error

event;
 overflow: error event;
end OVERFLOW_2;

error model implementation
OVERFLOW_2.Notionalc
transitions
Error_Free-[overflow_temp]->
Ovf_Temp;
Ovf_Temp -[overflow]->
Over_Flow;
end OVERFLOW_2.Notionalc;

In the example shown in Table 5, the subprogram
implementation of ADD (ADD.impla) has three states
declared (Error_Free, Overflow and Ovf_Temp), according
to the attached error model from Table 4. Furthermore, state
Ovf_Temp has no behavior declarations in any of the
behavior annex transitions, where it appears as final state.
Ontology exception handling will scan the subprogram
implementation and will prompt the user that the third
reference rule is violated. The third transition defined in the
subprogram’s behavior annex is responsible for the
component’s incompleteness transition behavior, since the
code under final state Ovf_Temp in transition
overflow_temp is not complete.

TABLE V. INCOMPLETENESS TRANSITION ERROR EXAMPLE

Error Model Implementation

Subprogram ADD
 Features
 a: in parameter integer;
 b: in parameter integer;
 c: out parameter integer;
 ovf: out parameter boolean;
end ADD;

subprogram implementation
ADD.impla
 annex behavior_specification {**
 states
 Error_Free : initial state;
 Semi : return state;
 Over_Flow : return state;
 transitions
 normal:Error_Free-[]->Error_Free
{
 c:=(a+b);
 ovf := false;};
 overflow:Semi-[]->Over_Flow {
 c:=0;
 ovf := true;};
 overflow_temp:Error_Free-[]->
Semi {};
**};
annex error_model {**
 Model =>
OVERFLOW_2.Notionalc;
**};
end ADD.impla;

Dynamic behavior of components and Conflict transition
fire rules inform us whether the transition declaration part of
the AltaRica specification will be complete and error free,
after the model transformation from AADL into AltaRica.
The role of incompleteness transition errors detection rules is
to make us sure that a behavior is specified for all declared
states of the component. Thus, it insures us that, after the
model transformation from AADL into AltaRica, all cases in

the assert declaration part of the AltaRica specification have
been taken care of and no code is missing from the AltaRica
model.

Based on the prompts taken from checking the whole
specification, the AADL specification design was converted
into AltaRica specification code. Figure 6a shows the double
adder AltaRica specification from Cecilia Ocas tool. Figures
6b and 6c show the results taken after executing Cecilia Ocas
Sequence generator, and figure 7 displays the results taken
after executing Cecilia Arbor Fault Tree viewer. The analysis
made in Double Add example shows that the system will fail
due to overflow error, if at least two of the three components
fail due to overflow or overflow_temp events.

(a)

(b)

(c)

Fig. 6. The AltaRica model structure (a), the Sequence
generation (b) and results (c) for the Double Add Example in

Cecilia Ocas

Fig. 7. Fault Tree generated by Cecilia Arbor for the

Double Add Example

VIII. CONCLUSION
In this paper we introduced an ontology-based model-

driven engineering process for compositional safety analysis.
The proposed process enhances system architecture design
by promoting model reuse, as well as model transformation
with the following characteristics:

• Modular and extensible components representation.
• Interoperability between the design and formal

analysis languages at a semantic level, as well as
model transformation, which is not based solely on a
purely syntactic analysis.

• Extended reasoning, taking the advantage of the
ontology languages built-in reasoning capabilities.

• Web-based engineering environment accessible from
anyone within or across organizations.

The underlying domain ontology and the checked
inference rules allow detecting lack of model elements and
semantically inconsistent parts. This allows system designers
identifying flaws at the design level, without having to
interpret errors that are encountered in the formal
representation of the system model, which is overly difficult
to comprehend. Model editing is also accelerated, since
inconsistency errors can be found without having to perform
complex analyses.

Although the shown process was developed in the frame
of an industrial problem with specific technology constraints,
we believe that the concept, as well as the architecture of the
proposed engineering environment can boost the use of
formal methods in the software/system engineering practice.

Our claim is based on the fact that model transformation
eliminates the need of manually developing formal
specifications of system models. Future research and
development plans include the incorporation of additional
types of inconsistency errors like the loop assert condition
problem and the causality loop possibility, which render fault
tree analysis impossible. Another research goal is the
development of appropriate support for extending model
transformation functionality and for validating the developed
transformations [25]. The presented process will be fully
beneficial upon the development of appropriate ontology
semantics for a range of inheritance relations that will be
able to promote component models retrieval and reuse.

REFERENCES
[1] European Cooperation For Space Standardization – ECSS-E-40 Part

1B, Space engineering – Software – Part 1: Principles and
requirements, ESA-ESTEC, Noordwijk, The Netherlands, 2003.

[2] Mokos, K., Katsaros, P., Bassiliades, N., Vassiliadis, V., Perrotin, M.:
Towards Compositional Safety Analysis via Semantic Representation
of Component Failure Behaviour. In: Knowledge-based Software
Engineering/Proc. of the 8th JCKBSE - Piraeus, Greece, Front. in
Artificial Intelligence & Applications, IOS Press, pp. 405-414, 2008

[3] SAE Architecture Analysis and Design Language (AADL) Annex
Volume 1 http://www.sae.org/technical/standards/AS5506/1.

[4] Society of Automotive Engineers, SAE Architecture Analysis and
Design Language, SAE standard AS5506. Available in:
http://www.aadl.info.

[5] "Safety assessment with AltaRica – Lessons learnt Based on Two
Aircraft System Studies". In 18th IFIP World Computer Congress,

Topical Day on New Methods for Avionics Certification, Toulouse
France, 26 -26 August 2004, IFIP.

[6] Joshi, A., Miller, S. P., Whalen, M., Heimdahl, M. P. E. A proposal
for model-based safety analysis, 24th Digital Avionics Systems
Conference (DASC), 2005.

[7] Bieber, P., Blanquart, JP., Durrieu, G., Lesens, D., Lucotte, J., Tardy,
F., Turin, M., Seguin, C., Conquet, E. Integration of formal fault
analysis in ASSERT: Case studies and lessons learnt, 4th European
Congress on Embedded Real Time Software (ERTS 2008), Toulouse,
France, Jan 2008.

[8] Bieber, P., Castel, C., Seguin, C. Combination of Fault Tree Analysis
and Model Checking for safety assessment of complex system, 4th
European Dependable Computing Conference, LNCS 2845, Springer,
pp. 19-31, 2002.

[9] The ASSERT Project: Automated proof-based System and Software
Engineering for Real-Time Systems, http://www.assert-project.net/

[10] Xavier Dumas, Claire Pagetti, Laurent Sagaspe, Pierre Bieber,
Philippe Dhaussy: Vers la génération de modèles de sûreté de
fonctionnement. CAL 2008: 157-172

[11] Feiler, P., Rugina, A. Dependability Modeling with the Architecture
Analysis & Design Language (AADL), Software Engineering
Institute (SEI), 2007.

[12] Roser S., Bauer B.: Automatic Generation and Evolution of Model
Transformations Using Ontology Engineering Space. J. Data
Semantics (JODS) 11, Vol. 5383, pp 32-64 (2008).

[13] W3C, The Semantic Web Activity, http://www.w3.org/2001/sw/.
[14] McGuinness, D. L. and Harmelen, F. OWL Web Ontology Language

Overview, W3C Recommendation, http://www.w3.org/TR/owl-
features/.

[15] Baader, F. The Description Logic Handbook : Theory,
Implementation and Applications. Cambridge University Press, 2003.

[16] Antoniou, G. and Harmelen, F. A Semantic Web Primer. Cooperative
Information Systems. MIT Press, 2004.

[17] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. Pellet:
A Practical OWL-DL Reasoner. Web Semantics: Science, Services
and Agents on the World Wide Web, 5(2), pp. 51-53, 2007.

[18] McBride B.: Jena: Implementing the RDF Model and Syntax
Specification. In Proceedings of the 2nd Int. Workshop on the
Semantic Web, 2001.

[19] KAON2, http://kaon2.semanticweb.org/.
[20] AADL behavioral annex V2.0 http://gforge.enseeiht.fr/projects/osate-

ba.
[21] OSATE website, http://www.aadl.info/aadl/currentsite/tool/osate.html
[22] Roy A. Maxion, Robert T. Olszewski, Eliminating Exception

Handling Errors with Dependability Cases: A Comparative, Empirical
Study, IEEE Transactions on Software Engineering, vol. 26, no. 9, pp.
888-906, 2000.

[23] SPARQL, http://www.w3.org/TR/rdf-sparql-query/.
[24] Kruchten, P. “Architectural blueprints – The 4+1 view model of

software architecture”, IEEE Software, 12 (6), 1995, pp. 42-50
[25] J. M. Küster. Definition and Validation of Model Transformations,

Software and Systems Modeling (SoSyM), Vol. 5, No 3, pp. 233-259,
September 2006.

http://www.sae.org/technical/standards/AS5506/1
http://www.aadl.info/
http://www.assert-project.net/
http://www.w3.org/2001/sw/
http://kaon2.semanticweb.org/
http://gforge.enseeiht.fr/projects/osate-ba
http://gforge.enseeiht.fr/projects/osate-ba
http://www.aadl.info/aadl/currentsite/tool/osate.html
http://www.w3.org/TR/rdf-sparql-query/

	I. Introduction
	II. Related work
	III. Background information on ontologies
	IV. The AADL and Altarica languages
	V. Domain ontology and the model-driven engineering process
	VI. Model transformation
	VII. Case study and analysis results
	A. Dynamic behavior of component errors
	B. Conflict transition fire errors
	C. Incompleteness transition errors

	VIII. Conclusion
	References

