
1

Synthesis of Attack Actions Using Model Checking for the Verification of
Security Protocols

Stylianos Basagiannis Panagiotis Katsaros Andrew Pombortsis

Department of Informatics

Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

tel.: +30-2310-998532, fax: +30-2310-998419
{basags, katsaros, apombo}@csd.auth.gr

Abstract

Model checking cryptographic protocols have evolved to a valuable method for discovering
counterintuitive security flaws, which make possible for a hostile agent to subvert the goals
of the protocol. Published works and existing security analysis tools are usually based on
general intruder models that embody at least some aspects of the seminal work of Dolev-
Yao, in an attempt to detect failures of secrecy. In this work, we propose an alternative
intruder model, which is based on a thorough analysis of how potential attacks might
proceed. We introduce an intruder model that provides an open-ended base for the
integration of multiple basic attack tactics. Those attack tactics have the possibility to be
combined, in a way to compose complex attack actions that require a number of procedural
steps from the intruder’s side, such as a Denial of Service attack. In our model checking
approach, protocol correctness is checked by appropriate user-supplied assertions or
reachability of invalid end states. The analyst can express security properties of specific
attack actions that are not restricted to safety violations captured by a generic model
checker. The described intruder model methodology was implemented within the SPIN
model checker for verifying two security protocols, Micromint and PayWord.

KEYWORDS: Cryptographic protocols, intruder modeling, model checking

1. Introduction
The idea of model checking security protocols is based on the model of a relatively small
system running the protocol of interest together with a general intruder model that interacts
with the protocol. Analysts today tend to use specific intruder procedures when modeling
their protocols, in order to exhaustively search for potential security flaws. This kind of
security flaws are found by the use of an appropriate state exploration tool for discovering
if the system can enter an insecure state, that is, whether there is an attack upon the
protocol. However the developed system often produces a large state space, making the
effort of the analyst for analyzing it more difficult. A usual formal development technique
is to initially create two agents (often called Alice and Bob) emulating in an exact way the
protocols’ operational steps for establishing a successful connection.

The basic assumptions are summarized as follows: (i) The encryption method used is
unbreakable, (ii) The intruder can prevent any message from reaching its destination and
(iii) The intruder can create messages of his own. As a consequence of the foresaid

2

assumptions, model-checking analyses treat any message sent by an honest user as a
message sent to the intruder and any message received by an honest user as a message sent
by the intruder. This setting refers to a system that becomes a machine, which is used by
the intruder to generate words (messages). The intruder’s behavior is defined as a message
deducibility rule base governing composition and decomposition of messages, encryption
and decryption with known keys, as well as memorization and use of eavesdropped
information. In Section 2 we provide an overview of the most influential model checking
approaches. All of them use the general Dolev and Yao intruder model [1], but the
intruder’s goal is restricted in finding out a message that is meant to be secret or in
generating messages that impersonate some protocol participant. Failures of secrecy or
authentication reveal a previously unknown attack on the analyzed protocol.

Sections 3 and 4 introduce a philosophically different approach in designing the
intruder model. We also adopt the assumptions of the Dolev - Yao intruder model, but
instead of specifying its behavior with a set of rules governing deducibility of messages, we
attempt to combine multiple attack tactics based on a careful analysis of how they proceed.
Attack tactics are formalized and are then combined into a single Dolev - Yao intruder
model within the SPIN model-checking environment [3] [5] [13].

We extend our previous work [3] where we first implemented the intruder model by
reorganizing the attack tactics into its structure. Furthermore, we altered the intruder model
in order to combine those tactics and –depending on the protocol’s session- to form specific
attack actions. Using the formal description of those tactics we combine them to implement
complex attack actions, depending on the specific protocol properties that want to be
validated. Five different attack tactics have been implemented so far in our intruder model,
namely (1) Message Interception (2) Message Integrity Violation (3) Deflections (4)
Reflections and (5) Straight Replays. Combining the available attack tactics we have
formed the following attack actions, (a) Type Flaws (b) Impersonation (c) Parallel Sessions
and (d) Denial of Service.

Although we cannot claim that our approach covers all possible attacks, we do not
exclude known protocol attack states that are not reflected as failures of secrecy or
authentication [23] [24] [28]. The developed Dolev - Yao intruder model constitutes a
supplemental model-checking mean, used as an open-ended base for implementing more
specialized attack tactics, without affecting the overall model checker’s capability of
capturing generic safety violation states. This enables revealing attacks, which cannot be
detected by existing security model checkers, such as attacks that subvert non-repudiation
[15], fairness, accountability, abuse-freeness [14] or other e-commerce security guarantees
[9] [10].

An interesting aspect is the comparatively smaller state spaces enabling analyses that
are not restricted to small systems running the protocol of interest. As the intruder
constitutes an open-ended attack base, the analyst can select only the attack tactics that
according to his discretion can lead to a protocol flaw. This allows the application of the
proposed intruder model to larger and more complex systems and, thus, opening new
potentialities in revealing for example multi-protocol attacks [17] on cryptographic
protocols that are executed in the same environment. Using the same intruder’s formal
description we have successfully described and implemented in [4] an intruder model for
performing a Denial of Service attack to the Host Identity Protocol (HIP) [6]. While in [3]

3

we have also used the SPIN model checker, in [4] we modeled the specified intruder (and
its actions) with PRISM, using probabilistic model checking primitives. Such an example
shows the usability of the proposed formal intruder methodology since the presented
description is quite flexible in being adopted independently from the chosen formal analysis
approach. Simulation and verification results for two micropayment schemes MicroMint
[18] and PayWord [18] are presented in Section 5. Finally section 6 concludes with a
discussion of the impact of our approach and future work.

2. Related work
Model checking of security protocols has been recently combined with the development of
sophisticated intruder models, aiming at discovering secrecy and authentication failures. In
existing security model-checkers the intruder’s behavior is defined as a message
deducibility rule base governing use of eavesdropped information, with the aim to find out
a message that is meant to be secret or to generate messages that impersonate some
protocol participant(s).

One of the first systems that used the Dolev - Yao intruder model and the secrecy
failure approach was the Interrogator tool [19]. Given a final state in which the intruder
knows some word, which should be secret, the Interrogator tries all possible ways of
constructing a path by which that state can be reached. If it finds a path, then it has
identified a security flaw. Finite state analysis of cryptographic protocols has been
developed in a range of published works, which implement the secrecy or authentication
failure approach within specialized security analysis tools like BRUTUS [20] or within
general purpose model checkers like Mur� [21] and FDR (Failures Divergence
Refinement) [22].

However, security guarantees cannot always be expressed as absence of secrecy or
authentication failure. A typical case is the well-known family of replay attacks, where the
intruder aims to playback previously recorded messages in an attempt to sabotage an
ongoing protocol session: in [2] the authors show that failures of information exchange
timeliness that enable message replays do not always manifest themselves as secrecy
failures. Hence, replay attacks were analyzed [16] with special-purpose modal logics, like
the BAN logic (named after its inventors called Burrows, Abadi and Needham [11]).
However, [8] has shown that BAN logic is flawed. Another complication is that recent
studies [14] concluded in that authentication is a protocol dependent notion and there is not
a unique definition of authentication that all secure protocols satisfy.

The most detailed description of a Dolev - Yao intruder model is given for the so-
called “Lazy Spy” [31]. The “Lazy Spy” was initially expressed in the traces model of
Communicating Sequential Processes (CSP)/FDR and was later integrated into Casper [26],
a front-end for semi-automated CSP description of security protocols. Casper works based
on a custom-made set of rules governing deducibility of messages through encryption and
uses a lazy exploration strategy, which examines the subset of intruder states reachable by
the protocol rules.

NRL Protocol Analyzer [27] is another well-known tool with a similar Dolev - Yao
intruder model. As in the case of Interrogator, the analyst specifies an insecure state and the
tool attempts to construct a path to that state from the initial state. An attractive feature is

4

that this tool allows for an unlimited number of protocol rounds in a simple path.In [29] the
authors provide a thorough review of the most important state space analysis contributions
until 1999. A more recent contribution for the model checking of secrecy and
authentication is the so-called “lazy intruder” [31] for the on-the-fly model checker of the
AVISPA security toolset [32]. The “lazy intruder” avoids an explicit enumeration of the
possible messages the intruder model can generate, by storing and manipulating constraints
about what must be generated. The resulted symbolic representation is evaluated in a
demand-driven way and this approach reduces the search tree without excluding any
attacks.

In [7] the authors present a process algebraic intruder model for verifying a class of
liveness properties of security protocols. For these types of properties, the proposed
intruder is proved to be equivalent to a Dolev-Yao intruder that does not delay indefinitely
the delivery of messages. The intruder model is restricted by a much simpler fairness
constraint adding the feature of not, indefinitely, delay the delivery of messages. In this
way the intruder is able to find an attack (counterexample) for a liveness property.

3. Intruder Model Notation
We adopt the pessimistic assumption that the intruder has absolute control over the used
communication network, as well as the basic Dolev - Yao assumptions mentioned in
section 1 regarding his abilities. More precisely, the intruder eavesdrops or intercepts
messages and analyzes them if he possesses the keys required for decryption. Also, the
intruder can generate messages from his knowledge and can send them to any protocol
participant.

The new messages are created from already known messages by applying one or more
of four (4) basic operations: encryption, decryption, concatenation and projection. Any
attempt to enumerate all meaningful messages that the intruder can send will inevitably
lead to an enormous branching of the resulting state space. The model checking approaches
of section 2 attempt to preserve the generality of the intruder model while applying
specialized techniques to overcome the foresaid problem. However, they are only
applicable to a small system running the protocol of interest. If no attack is found, there is
still an open possibility for an attack upon some larger system (a principle known as the
absence of model-checking completeness [33]). We aim in a less general but
complementary approach for the generation of new messages based on an open-ended base
of predefined attack tactics.

The structure and the number of all possible fake messages are restricted by the
patterns and the number of initial messages of the available attack tactics. The intruder
model can be thought as two concurrent processes, where the first aims to
eavesdrop/intercept exchanged messages and the second performs a non-deterministically
selected attack action against the ongoing protocol session(s) (Figure 1).

Upon reception of a fake message, by some victim, the performed attack step
succeeds and the subsequent execution trace is possible to reach an invalid end state or a
correctness assertion violation.

5

Figure 1. The intruder process

If the “victim” does not accept the sent fake message, falls into a fail-stop state, where

he does not continue with the ongoing protocol execution. Protocol correctness, whether it
is expressed as reachability of an invalid end state or an assertion check is thus not
restricted to secrecy or authentication guarantees. An atomic message may come from one
of the sets:

- Keys, with members that represent the keys used to encrypt messages, such that every
key k � Keys has an inverse k-1 � Keys. For symmetric cryptography the decryption
key is the same as the encryption key, i.e. k = k-1.

- Agents, with members that represent the names of the honest protocol participants.
- Nonces, which is an infinite set of randomly generated numbers. Members of Nonces

are used as timestamps that is, any message containing one of them can be assumed
having been generated after the nonce itself was generated.

- Data, with members that represent the plaintext strings exchanged between the
protocol’s participants. From the intruder’s side, data can be generated (without any
meaning). This kind of data named bg_data (bogus data) will be used by the intruder
for corrupting previously intercepted messages that are in most cases encrypted.

We denote by I the intruder (I � Agents). Also, we define the binary relation:
is_key_of = {(k, id): k� Keys, id � Agents � {I}, “key k is used by the participant id”}

such that |is_key_of (k)| =1 in the case of public key cryptography or |is_key_of (k)| =2 in
the case of symmetric cryptography. The set Msgs of exchanged messages is defined
inductively over the disjoint union

AMsgs = Keys � Agents � {I} � Nonces � Data
that represents the set of atomic messages (Seti � Setj = � for any two Seti, Setj of the
unified sets). More precisely:

- If � � AMsgs then � � Msgs.

6

Table 1. Glossary of notation
{msg}k message msg is encrypted with
 key k
msgx�msgy concatenation of messages msgx
 and msgy
is_key_of (k) returns the owner(s) of key k
#Sesag the maximum number of
 sessions allowed for ag to
 participate either as initiator or
 responder

noSes
nsent ag the finite-length concatenation

 sequence of messages sent by
 ag in the course of session
 noSes

noSes
nrcvd ag the finite-length concatenation

 sequence of messages received
 by ag in the course of session
 noses

noSes
historyag participant’s ag history for the

 protocol session noSes in a
 given time instant

agknowledge participant’s ag knowledge for
 the ongoing protocol execution
 in a given time instant
send (s, r, msg) the action whereby s sends msg
 to r
receive(r, s, msg) the action whereby r receives
 msg from s
�ag,�j,�agknowledge,�

j
historyag ,�P	

 the tuple representing protocol
 session j of ag in a given time
 instant; P is a process
 description given as a sequence
 of actions to be performed
Iknowledge intruder’s knowledge for the
 ongoing protocol execution

i
a

i ss i 1
�
� transition from global state si-1 to
 the global state si as a result of
 action �i
exists(str, msg) boolean predicate indicating
 if the string str appears in
 message msg � Msgs

- If msgx � Msgs and msgy � Msgs then msgx � msgy � Msgs, where � represents message

concatenation.
- If msg � Msgs and k � Keys then {msg}k � Msgs.

Each ag � Agents may attempt to execute the protocol for a bounded number of
times say #Sesag and each such attempt is a separate protocol session noSes, such that 1
noSes #Sesag. In a protocol session, ag plays either the role of the initiator or the
responder. We denote by noSes

nsent ag the finite-length concatenation sequence of messages
sent by ag � Agents in the course of session noSes:

)(ag
1

ag
nnn msgsentsent noSesnoSes �� �

with the first term equal to the null sequence that is,) (ag
0 �noSessent . The sequence noSes

nsent ag
represents participant’s ag history for session noSes, after having sent msgn. We denote
by noSes

nrcvd ag the finite-length concatenation sequence of messages received by ag in the
course of session noSes. In a given time instant the acquired participant’s knowledge for
the ongoing protocol execution is given as

agknowledge �
j

jag
ircvd

ag
)max(}{ � � agin_knowledge,

7

for all 1 j #Sesag, where agin_knowledge represents the initial knowledge base of ag (keys,
agent identities and so on) and i > 0 represent the terms of the received message
concatenation sequences. A protocol session for a honest participant ag � Agents is
defined formally as a 5-tuple�ag,�j,�agknowledge,� j

historyag ,�P	, where 1 j #Sesag and P is a
process description given as a sequence of actions to be performed. We consider the
actions send and receive for sending and receiving messages to/from other protocol’s
participants. The assumptions mentioned in section 1 for the general Dolev - Yao intruder
model imply that in a given time instant the acquired intruder’s knowledge for the ongoing
protocol execution is given as

�
jag

)max(}{ jag
iknowledge sentI � � Iin_knowledge,

for all 1 j #Sesag, ag � Agents � {I}, where �in_knowledge represents the initial intruder’s
knowledge base and i � 1 represent the terms of the eavesdropped message concatenation
sequences.

The protocol model is given as the asynchronous composition of the models for each
protocol session, including the intruder model, whose behavior depends on the defined
attack tactics. Attack tactics are non-deterministically selected and are then executed within
a single thread of control. Each possible execution of the model corresponds to a finite
alternating sequence of global states and actions:

� = s0��1�s1��2 . . . sn, for some n � N
such that i

a
i ss i 1
�
� for 0 < i n and for the transition relation � defined as :

� � S � PS � A � Msgs � S
where S is the set of global states, PS is the set of protocol sessions and A is the set of
action names.

An important technique that we have introduced to our intruder model is its ability of
combining tactics in order to perform more complex attack actions. In this case we define
predefined sequences of actions for the intruder model including his basic attack tactics
operations. The outcome will be an integrated model that according to its tactics (in
SPIN/PROMELA will be procedural execution steps), targets more complex attack
scenarios such as a Denial of Service attack for one of the legitimate agents of the protocol.

4 Intruder’s Attack Tactics and Actions
We formalized and subsequently implemented a series of basic attack tactics. First, we
present the elementary tactics that are also used in forming more complex attacks. Later on
we use those tactics to form more complex attack actions for our intruder model. The
implemented attack tactics are the ones that are most often reported in related bibliography.

4.1 Message INterCePTion attack tactic (INCPT)
Message interception takes place after the occurrence of some action send(ag, v, msg)1, for
some ag, v � Agents and some msg � Msgs, if there is no receive(v, u, msg)2 with u �

1 The action whereby ag sends msg to v
2 The action whereby v receives msg from u

8

{ag, I} in the suffix execution trace. When intercepting an encrypted message {msg}k there
is no receive (v, u, {msg}k) action in the suffix execution trace. It is obvious that the
specified attack tactic is pre-enabled as the intruder has the absolute power over the
communication network, between the protocols’ participants.

4.2 Replay attack tactics
Replay attacks take place when the intruder redirects eavesdropped or altered messages
within one or more interleaved protocol session(s). We adopt the replay attack
classification of [25] and we formalize the following replay attack tactics (Figure 2).

Figure 2. Replay attack tactics

REFlections (R-REF):
In a reflection attack the intruder resends an altered version of a previously sent message
back to its sender. Run-internal reflections are performed within the same protocol session.
Interleaving reflections use contemporaneous protocol sessions and classic reflections use
messages obtained from already finished protocol sessions.

The R-REF attack takes place anytime after the occurrence of some action send (v,
ag, msg), with msg representing any non-encrypted msg � Msgs or after the occurrence of
some action send(v, ag, {msg}k) such that I � is_key_of (k) � k-1

� Iknowledge. The foresaid
actions result in a global state where either

exists(msg, jv
isent)max()3 = true or respectively exists({msg}k, jv

isent)max() = true

for some 1 j #Sesv, with i � 1 representing the terms of an eavesdropped message
concatenation sequence. In the performed reflection attack the intruder alters msg based on
Iknowledge and uses the altered msg�� Msgs in an action send(I, v, msg�) or respectively
send(I, v, {msg�}k�) for some k� � Iknowledge such that v � is_key_of (k�).

The R-REF attack succeeds only when v performs the action receive(v, I, msg�) or
respectively the action receive (v, I, {msg�}k�) with the following potential outcomes:

- run-internal reflection
exists(msg�, jv

ircvd)max() = true or exists({msg�}k�, jv
ircvd)max() = true

- classic or interleaving reflection
� j��j: exists(msg�, j�v

ircvd)max() = true or exists({msg�}k�, j�v
ircvd)max() = true

DEFlections (R-DEF):
In a deflection attack the intruder redirects a possibly altered sent message to some
participant that is neither the message’s recipient nor the sender. Run-internal deflections

3 Boolean predicate exists(msg, str) is true if the message msg � Msgs appears in string str

9

are performed within the same protocol session. Interleaving deflections use
contemporaneous protocol sessions and classic reflections use messages obtained from
already finished protocol sessions.

STraight Replays (R-STR):
In a straight replay attack the intruder resends a previously sent message to its intended
destination. Depending on whether this attack is performed within the same session or
contemporaneous or non-interleaved sessions, straight replays are also characterized either
as run-internal, interleaving or classic replays.

4.3 INTegrity Violation attack tactic (INTV)
For an integrity violation attack, a received msg or {msg}k derived from a receive(v, u,
msg) or a receive(v, u, {msg}k) must be replaced with a msg’ or a {msg}k�=
{msg}k�bg_data. The new composed message can be used later for performing a number
of possible attack actions.

4.4 Type flaw attack action (TFLAWS)
A type flaw attack arises when the recipient of a message accepts that message as valid, but
imposes a different interpretation on the bit sequence than the protocol participant who
created it. Type flaw attacks follow the action sequences of the replay attack tactics and
may be optionally combined with a message interception (INCPT), in order to prevent
reception of intercepted message by its recipient such as to perform a type flaw based
message replay.

I triggers a type flaw attack possibly after having altered an eavesdropped msg �
Msgs based on Iknowledge, thus resulting in some msg� � Msgs. The subsequent action
performed by I is either send (I, v, msg�) or send (I, v, {msg�}k�) for some k��Iknowledge such
that v � is_key_of (k�). This attack tactic succeeds if in the global state after the occurrence
of the action receive (v, I, msg�) or respectively receive (v, I, {msg�}k�) there is some
atomic message amsg, such that

exists(amsg, jv
ircvd)max() = true, 1 j #Sesv

with i � 1 representing the terms of jv
nrcvd and for two sets Seti and Setj from the “disjoint”

union Amsgs, amsg � Seti � Setj .
A useful term that we insert in this attack action is the protocol step s(i). A protocol

step s(i)would be assigned as the numerical sequence of the distinct authentication steps
that are required from a protocol’s session to finalize successfully (figure 3). The described
insecure global state expresses the fact that it is possible for an atomic message that was
originally intended to have one type (e.g. nonce) to be interpreted as having another type
(e.g. key or data). However, this possibility occurs only when both types are represented as
bit sequences of the same length, so that when the intruder positions an atomic message in
place of a type flawed one, the recipient is fooled into accepting the used atomic message
as the one expected according to the owned process description (P).

10

We note that type flaw attacks [34] may not lead to a direct security compromise,
since it is possible that the plaintext bit string of the atomic message used by I to be
unknown to him (the secrecy is still preserved).

Figure 3. Type Flaws attack action

However, if for example a nonce is used as a key, this is not a good key, because the

main concern in generating nonces is to be unique in a protocol session, as opposed to keys
that basically have to be non-predictable. Type flaw attacks may result in failures of
security properties beyond the typical secrecy and authentication properties, like for
example anonymity and non-repudiation [35].

4.5 Simple IMPersonation attack action (IMP)
An insecure state (precondition) for the performance of a simple IMP attack is any state
where I can read the contents of a protocol message sent by some ag � Agents, who acts
as initiator of a new protocol session:

{� noSessent ag
1 �Iknowledge, ag�Agents, 1 noSes #Sesag :

{ noSessent ag
1 =msg for some non-encrypted msg�Msgs}

 � { noSessent ag
1 ={msg}k: is_key_of (k) = I � (is_key_of (k) � I � k-1

� Iknowledge)}}
The IMP attack tactic takes place when the intruder performs the following three
subsequent actions against some victim v � Agents, such that v � is_key_of (k) and v � ag:

send (I, v, msg�), receive (I, v, newSesvsent1), send (I, ag, newSesvsent1)
where msg�= noSessent ag

1 , when the latter is a non-encrypted message or otherwise
msg�={msg}k�, with k�� Iknowledge and v � is_key_of (k�). Also, vnewSes is a unique session
identifier for session newSes, in which victim v acts as responder and the boolean predicate
exists(v, newSesvsent1) is false. If the last mentioned predicate would be true, ag would
realize that the responder in session agnoSes is not the one selected and would subsequently
abort the corrupted protocol session.

4.6 Parallel session attack action (PARSES)
Parallel session attacks take place by subsequent interleaving replays among
contemporaneous protocol sessions, in which the intruder manipulates protocol participants
in multiple roles (initiator or responder), in order to subvert the protocol’s goals. The
intruder can under special conditions use the cryptographic protocol dialogs:

11

- as an oracle that is, to foretell the contents of otherwise perfectly encrypted messages
(refer to the oracle session attack shown in [36]);

- to impersonate a protocol participant (e.g. the BAN-Yahalom attack in [12]); possibly
to subvert properties beyond secrecy and authentication.

In a parallel session attack (figure 4) the execution sequence � includes a series of action
cycles that open with some action send (ag, v, msg) or send (ag, v, {msg}k) and this results
in:

exists(msg, j
isentag
)max() = true or respectively exists({msg}k, jg

isenta
)max() = true

Figure 4. Parallel sessions attack action

I either opens a new protocol session newSesv� or responds to an already opened session say

mv� (with v��Agents including ag and v), for which the last action of the process
description P is not included in the prefix execution sequence of �. The attack is performed
possibly after having altered the eavesdropped msg � Msgs (based on Iknowledge), thus
resulting in sending some msg� � Msgs by send (I, v�, msg�) or send (I, v�, {msg�}k�) for
some k� � Iknowledge such that v� � is_key_of (k�). The interleaving replay succeeds if the
action cycle ends with a receive action by v�, yielding a global state such that

exists(msg�, mv�
ircvd)max() = true or respectively exists({msg�}k�, mv�

ircvd)max() = true
with max(i) = 1, if m represents a new protocol session (newSes). A number of successive
interleaving replays may end up in a fail-stop global state or in either an invalid end state or
violation of a protocol correctness assertion. The latter possibilities reveal a previously
unknown parallel session attack.

4.7 Denial of Service attack action (DoS)
A Denial of Service attack can be considered as a set of attack tactics. The DoS attack takes
place anytime after the occurrence of some action send(v, ag, msg), with msg representing
any non-encrypted msg � Msgs or after the occurrence of some action send(v, ag, {msg}k)
such that I � is_key_of (k) � k-1

� Iknowledge. The foresaid actions result in a global state
where either:

exists(msg, jv
isent)max()4 = true or respectively exists({msg}k, jv

isent)max() = true (1)

for some 1 j #Sesv, with i � 1 representing the terms of an eavesdropped message
concatenation sequence. In the performed DoS attack the intruder alters msg based on

4 Boolean predicate exists(msg, str) is true if the message msg � Msgs appears in string str

12

Iknowledge and uses the altered msg�� Msgs in an action send (I, v, msg�) or respectively send
(I, v, {msg�}k�) for some k� � Iknowledge such that v � is_key_of (k�).

Figure 5. DoS attack action

At this point the intruder performs an integrity violation attack of the received message

msg or {msg}k. The specific alteration of the msg can be done at both encrypted and non-
encrypted msg as we consider the intruder that concatenates some bogus data say bg_data.
In this case we have:

msg�=msg�bg_data or respectively {msg}k�= {msg}k�bg_data (2)
Having the intruder altering the received message he then performs the above action (2)

N times representing N distinct requests. For achieving that each bg_data that the intruder
concatenates to the primary intercepted message has to be distinct in order for msg to be
distinct as well. As a result the intruder has to alter for each distinct message msg’ that he
creates the bg_data bogus data he concatenates to it. Combining all the above to have:

exists(msg, jv
isent)max()= true

 do for N times
 msg�=msg�bg_data(i), i=0..N;
 bg_data’=bg_data(i)�� bg_data(i+a), 0<a < N-i
 �send(I, v, msg’)
 end_do

In order for the attack to be successful, as seen in figure 5, at the recipient’s v side, the
recipient has to perform for each distinct message msg’ the action receive(v, I, msg�). We
should have:

For each msg’: exists(msg�, jv
ircvd)max() = true or exists({msg�}k�, jv

ircvd)max() = true
The affect of the Denial of Service attack [30] on the recipient’s resource can be either on
the memory resources (when N>>0) available at its side or on the computational cost that
the recipient v after receiving say a {msg}k�= {msg}k�bg_data, enters its procedure to
decrypt all the bogus encrypted messages.

5 Experimental Results: Verification of two micropayment protocols
We assume that the protocol model is designed and implemented without any errors (proof
of correctness) and before the insertion of an intruder mechanism in it. Protocol model
should be in accordance with the predefined message approach that we saw above. We
define four basic design and implementation steps for the intruder development
methodology as follows:

13

� Refine the security properties that should be verified.
� Select the attack tactics that could prevent the successful verification of the

predefined security properties. Form the attacks with the available tactics selected
(following the proposed formal description)

� Implement the intruder’s attacks according to the protocol’s specification and the
modeling language (i.e. message content).

� Attach the intruder to the protocol model as a Man-in-the-Middle entity.
In this way, based on the formal description of the attacks described above, the internal
structure of the produced intruder model is depicted in figure 6.

Figure 6. Combining attack tactics

In the next subsections we give detail results of the two micropayment schemes that we
have analyzed using our model checking approach.

5.1 The PayWord micropayment protocol

We focus on the analysis of the PayWord micro-payment protocol that was first
proposed by Rivest and Shamir in [18]. PayWord is a credit based off-line protocol
implemented by the use of hash chains that are called chains of PayWords (Table 2). In our
work we will assume the use of the MD5 hash function [37] denoted by w(i). Three
participants are involved in a protocol session: the Customer, the Broker and the Vendor.
The Customer (C) establishes an account with the Broker (B) who issues a certificate
containing customer’s information and B’s name. This certificate will authorize C to
construct PayWord chains validating himself to some Vendor (V). The basic steps of
PayWord micro-payments are shown in Figure 7. Upon reception of the foresaid certificate
(certC), C computes the PayWord chain w in reverse order based on a randomly chosen
term. Then, he signs the so-called commitment (M) of the PayWord protocol which consists
of the calculated first term of the chain (w(0)) along with the required customer
information; M is sent to V.

14

Table 2. Glossary of the PayWord protocol notation

In every single payment, a chain term of type, P:(w(i),i) is sent to V until the last

payment, P:(w(I),I). We consider the (attacked) variable-size payment scenario, where
the value of each payment varies between 1 and n. V verifies the payments P, by applying
the hash function w to the last valid payment v times, where v is the value of the requested
payment (w(i-v)). At the end of the day, V reports to B the last (highest-indexed)
payment (w(I),I) - where I=max(i) - received from C within the current day,
together with the owned C’s commitment. Figure 7 shows PayWord’s basic steps modeled
with the developed intruder entity.

Figure 7. The modeled PayWord protocol scheme

IDc Customer ID
IDb Broker ID
IDv Vendor ID
SKb Broker’s key
PKc Customer’s public key
SKc Customer’s secret key

Addrc Customer address
certC Customer certificate
Exp Certificate expiration time

stamp
Ic Customer’s information
Im Vendor’s information
D Date

15

 While the use of the hash chain ensures reduced computational requirements for V,
the attack found on the protocol is based on V’s mechanism, when accepting an altered
hashed message. Provided the intruder’s ability to perform hash function calculations by
MD5, the detected attack takes place when the intruder intercepts and alters a variable-size
payment request. We provide simulation and verification results obtained within the SPIN
model checking environment for the developed PayWord model, when combined with the
described intruder model. The simulation output is shown by the automatically generated
Message Sequence Chart of the SPIN model checker.

Figure 8. (a) INTV attack of a variable-size payment (P): V accepts an altered

message, (b) INTV attack reported by SPIN model checker

Figure 8a shows the detected INTV attack. In state 19 C sends a commitment (M),

which is not affected by the intruder and continues with the first variable-size payment
attempt (P). In state 27 the intruder alters message (w1,n1) thus resulting in the fake
message (w1’,n1-1), which is eventually accepted by V. Finally, V dispatches message
D (deposit) and the protocol session ends with a successful INTV attack that is encoded as
an invalid end state. Figure 8b shows the obtained verification output that revealed the
described attack scenario. The performed state space search reports an error and generates a
counterexample reflecting a feasible path to the defined invalid end state. By the use of the
error trail simulation feature of SPIN we roll back the protocol execution and identify the
detected flaw. Completing the verification procedure using the SPIN model checker, an
error for the specific model is reported back to us, as shown in figure 8b.

5.2 The MicroMint micropayment protocol
The second micropayment scheme that we have verified was MicroMint, presented in [18].
MicroMint is designed to be small and efficient without using any public-key cryptography.
Since cryptographic operations are considered to present a significant computational
overhead, the proposed protocol tries to achieve authentication of his participants, using
other mechanisms.

16

 Its basic idea is that the agent called Broker Br produce coins and sells them to a
Customer Cm that issue requests for them. A Customer can handle these coins to pay the
Vendor Ve anytime he wants to purchase a service or a product. In return, each Vendor will
get request and acquire its bank proposal to the Broker by redeeming these coins. In this
way MicroMint can be regarded as a debit-based payment system trying to provide
reasonable security guaranties at low cost without using any public key cryptographic
operations.

The coins are made with so-called Hash Function Collisions algorithm. Each of coins
is a bit string with certain size. These coins have a property that they have the same hash
image under a special hash function. So we say these coins are Hash Collided. A coin is a
bit-string whose validity can be easily checked by anyone, but which is hard to produce.
Table 3 gives the notation used for all the necessary MicroMint elements used in our study.

Table 3. Glossary of the MicroMint protocol notation

As we can see, the validity of these coins is very easy to check because they have the

same hash result with a public-known hash function. On the other hand, the Hash Function
Collision has an interesting property. It is very difficult to find the first hash collision. But
once the threshold is passed, the growth rate of collision is exponential. This means a
MicroMint Broker can make huge amount of coins at low per-unit cost with big initial
investment. The more coin that broker can make and sell, the cheaper each coin will be, and
the more money that broker can make if he sell coins at the same price. The general sketch
of a typical MicroMint system attached with the intruder model may include the steps
depicted in figure 10.

The protocol’s procedure shown in figure 9 is as follows: a) Broker Br at first has the
essential computational power to make coins b) Then he sells the coins to the Customer Cm
that he has requested for them in order to start purchasing from a Vendor Ve. For security
reasons, new coins have to be produced on a different hash function Hashf after a period of
time exp_date. c) When Cm buys a webpage he requests for the webpage paying by a coin.
Ve verifies the coin by checking them with validity criteria declared by the appropriate Br.
d) After confirmation, he releases the purchased webpage to Cm. e) At the end of each day
Ve returns the collected coins to Br for redemption. f) At the end of a period of time
exp_date, Br needs to recollect all the unused coins from all the Customers and assign to
them new ones.

Cm Customer’s ID
Ve Vendor’s ID
Br Broker’s ID
x1,…,xk Generated k-way hash collisions
coins k-tuple of (x1,…,xk)
Hashf Used hash function
Req_c Request for coins
Req_wp Request for webpage
wp(n) WebPages available to Vendor Vr
b(coins) Set of coins (bins)
exp_date Expiration date of produced coins

17

Figure 9.The modeled MicroMint protocol scheme

We have modeled MicroMint using the same structured intruder model as we did with

PayWord. The intruder is composed of the attack actions, with parameterized attack tactics
according to each protocol’s specifications (i.e. expected message delivery channels in
PROMELA). Although the effectiveness of the proposed technique in the PayWord
protocol, for MicroMint the SPIN model checker returned no error during the verification
of the model. Figure 10a and figure 10b presents the produced simulation and verification
results of MicroMint respectively.

In a random simulation of our model the intruder procedure is the one that initiates a
protocol’s session with a Micromint participant trying to impersonate Alice, while the

18

intruder has intercepted a protocol message from the customer C. Upon the intruder’s
message arrival to the legitimate participant’s knowledge, the participant aborts the
protocol (figure 10a, step 18). Verification results do not indicate any error found in the
state space produced by the developed model, as seen in figure 10b.

Figure 10. (a) Simulation Results for the Micromint Micropayment Protocol, (b)
Verification Results of the Micromint

6 Conclusion
This work introduces an open-ended Dolev - Yao intruder model that combines elementary
attack tactics to form more complex attack actions, in an attempt to subvert security
protocol guarantees. We provided a formalized description of the most often reported attack
tactics, which were implemented within the SPIN model-checking environment. We have
composed a successful target-oriented intruder model, as a formal guidance manuscript
giving the opportunity to correct model a protocol system while enforcing an intruder with
specific attack tactics, aiming in this way, the model checker to validate the protocol
against known attack actions. Although the difference of the used formal analysis in [3] and
[4], we denote in this paper the scalability and the effectiveness of adopting such an
intruder development approach for the verification of security protocols.

The obtained intruder model was applied successfully to two known electronic
micropayment protocols, PayWord and MicroMint. Although the proposed model is bound
to the absence of model checking completeness - as all published approaches - it constitutes
a supplemental model-checking mean, capable to reveal violations of protocol correctness
properties, beyond those checked by existing security model checkers. In this case the
model checker do not lose its capability of capturing general security flaws; instead of this
we force the model to reveal possible attack states that can occur in a protocol’s operation
provided a malicious ontology. Finally, the proposed intruder model is open to extensions
aiming to integrate more specialized attack tactics or actions that may subvert e-commerce
security guarantees like non-repudiation, fairness, anonymity and so on.

19

References
1. Dolev D., Yao A., On the security of public-key protocols, IEEE Transactions on Information

Theory 2/29, pp. 198-208, 1983.
2. Woo T. Y. C., Lam S. S., A semantic model for authentication protocols, In Proc. of the IEEE

Symposium on Research in Security and Privacy, 1993.
3 Basagiannis S., Katsaros P., Pombortsis A. Intrusion Attack Tactics for the model checking of

e-commerce security guarantees, In Proc. of the 26th International Conference on Computer
Safety, Reliability and Security (SAFECOMP), Nuremberg, Germany, LNCS 4680, Springer
Verlag, 238-251, 2007.

4 Basagiannis S., Katsaros P., Pombortsis A, Alexiou N., A probabilistic attacker model for
quantitative verification of DoS security threats, In Proc. of the 32nd Annual International
Computer and Applications Software (COMPSAC) , Turku, Finland, 2008.

5 The Spin Model Checker: Primer and Reference Manual Addison-Wesley, ISBN 0-321-
22862-6.

6 Host Identity Protocol, Internet Engineering Task Force (IETF) - Network Working Group,
Internet Draft, February 2007.

7 Cederquist J.G., Dashti M.T., An intruder model for verifying liveness in security protocols,
In Proc. of the fourth ACM workshop on Formal methods in security (FMSE '06),
Alexandria, Virginia, USA, pp. 23-32, 2006.

8 Dan M. Nessett, A critique of the Burrows, Abadi and Needham logic (ACM SIGOPS)
Operating Systems Review, v.24 n.2, pp.35-38, 1990.

9 Hamdi M., Boudriga N., Computer and network security risk management: Theory,
challenges, and countermeasures, International Journal of Communication Systems, Vol.
18(8), pp.763-793, 2005.

10 Meadows C. A., Formal verification of cryptographic protocols: A survey, Advances in
Cryptology International Conference on the Theory and Application of Cryptology
(Asiacrypt), LNCS 917 Springer-Verlag, pp. 133-150, 1995.

11 Burrows M., Abadi M., Needham R., A logic of authentication, ACM Transaction on
Computer Systems 8/1, pp. 18-36, 1990.

12 Syverson P., Cervesato I., The logic of authentication protocols, In Proc. of the 1st
International School on Foundations of Security Analysis and Design (FOSAD 2000), LNCS
2171, Springer-Verlag, pp. 63-137, 2001.

13 The SPIN model checker official website, available at http://spinroot.com/ (last accessed
12/12/2008).

14 Holzmann G. J., Design and Validation of Computer Protocols, Prentice-Hall, 1991.
15 Kremer S., Markowitch O., Zhou J., An intensive survey of fair non-repudiation protocols,

Computer Communications, 25/17, pp. 1606-1621, 2002.
16 Shmatikov V., Mitchell J. C., Finite-state analysis of two contract signing protocols,

Theoretical Computer Science, 283, pp. 419-450, 2002.
17 Cremers C. J. F., Feasibility of multi-protocol attacks, In Proc. of the First International

Conference on Availability, Reliability and Security, IEEE Computer Society Press, 2006.
18 Rivest R. L., Shamir A., Payword and Micromint: Two simple micropayment schemes, In

Proc. of the Fourth International Workshop on Security Protocols, LNCS 1189 Springer-
Verlag, pp. 69-87, 1996.

19 Millen J. K., Clark S. C., Freedman S. B., The Interrogator: Protocol Security Analysis, IEEE
Transactions on Software Engineering Vol13/2, 1987.

20

20 Clarke E. M., Jha S., Marrero W., Verifying security protocols with Brutus, ACM
Transactions on Software Engineering and Methodology 9/4, pp. 443-487, 2000.

21 Mitchell J. C., Mitchell M., Stern U., Automated analysis of cryptographic protocols using
Mur�, In Proc. of the IEEE Symposium on Research in Security and Privacy, IEEE Computer
Society, pp. 141-153, 1997.

22 Roscoe A. W., Modeling and verifying key-exchange protocols using CSP and FDR, In Proc.
of the 8th IEEE Computer Security Foundations Workshop, IEEE Computer Society, pp. 98-
107, 1995.

23 Obaidat M. S., A Methodology for Improving Computer Access Security, Computers &
Security, Vol. 12, pp.657-662, 1993.

24 Roscoe A. W., The theory and practice of concurrency, Prentice Hall, 1997.
25 Roscoe A. W., Goldsmith, M., The perfect spy for model-checking cryptoprotocols, In Proc.

of the Workshop on Design and Formal Verification of Security Protocols (DIMACS), 1997.
26 Lowe G., Casper: a compiler for the analysis of security protocols, In Proc. of the IEEE

Computer Security Foundations Workshop, IEEE Computer Society, pp. 18-30, 1997.
27 Meadows C., Kemmerer R., Millen, J., Three systems for cryptographic protocol analysis,

Journal of Cryptology 7/2, pp.79-130, 1994.
28 Yi Qian, Kejie Lu, Bo Rong, Tipper D., A Design of Optimal Key Management Scheme for

Secure and Survivable Wireless Sensor Networks, Security and Communication Networks,
Vol. 1, No. 1, pp. 75-82, Jan. 2008.

29 Gritzalis S., Spinellis D., Georgiadis, P., Security protocols over open networks and
distributed systems: formal methods for their analysis, design, and verification, Computer
Communications 22, pp.697-709, 1999.

30 Liao Q., Cieslak D. A., Striegel A. D., Chawla N. V., Using selective, short-term memory to
improve resilience against DDoS exhaustion attacks, in Security and Communication
Networks, vol. 1, no. 4, pp. 287-299, Jul/Aug 2008.

31 Basin D., Modersheim S., Vigano L., OFMC: A Symbolic Model-Checker for Security
Protocols, International Journal of Information Security, 2004.

32 AVISPA: Automated validation of internet security protocols and applications, 2003, FET
Open Project IST-2001-39252, http://www.avispa-project.org

33 Lowe G., Towards a completeness result for model-checking of Security Protocols, In Proc.
of the 11th Computer Security Foundations Workshop. IEEE Computer Society Press, 1998.

34 Clark J., Jacob J., A survey of authentication protocol literature: version 1.0, Technical
Report, University of York, 1997.

35 Heather J., Lowe G., Schneider S., How to prevent type flaw attacks on security protocols, In
Proc. of the 13th IEEE Computer Security Foundations Workshop, IEEE Computer Society,
pp, 255-268, 2000.

36 Carlsen U., Cryptographic protocol flaws – Know your enemy, In Proc. of the 7th IEEE
Computer Security Foundations Workshop, IEEE Computer Society, pp. 192-200, 1994.

37 Rivest R. L., The MD5 Message-Digest Algorithm, Internet informational RFC 1321, 1992.

