
On the Number of Recursive Calls of Recursive Functions

Yannis Manolopoulos
Data Engineering Laboratory

Department of Informatics, Aristotle University
Thessaloniki, 54006 Greece

manolopo@delab.csd.auth.gr

ABSTRACT
The advantages and disadvantages of recursion are early in-
troduced to students. Simplicity in coding but time and
space inefficiency during execution are the main characteris-
tics. In many occasions, recursive formulae lead to recursive
functions/procedures that are highly inefficient as calls with
the same parameters are executed several times. Here, we
elaborate on a previous report [2], where a generalized anal-
ysis is carried out to derive the number of recursive calls of
a recursive formula, the calculation of the Fibonacci num-
bers in particular. Here we re-examine the problem using a
different and simpler approach, which generalizes as well.

1. INTRODUCTION
It is well known frmm introductory courses in Computer

Programming, Data Structures and Algorithmics that re-
cursive formulae may be easily coded and understood. On
the other hand it is also true that recursion demands extra
space overhead for stack maintenance as well as it implies
extra time overhead in comparison to iteration since func-
tion calls are expensive operations compared to arithmetic
or logic operations. Even worse is the fact that in many
occasions direct application of a recursive formula into a re-
cursive code results in a highly inefficient program because
function calls with the same parameters are executed several
times.

Motivation of the present report is the article of John
Robertson in the June 1999 issue of Inroads [2], where an
analysis is carried out to derive the number of recursive calls
of a recursive formula using difference equations with initial
conditions, or discrete dynamical systems (DDS). The au-
thor shown that there is a linear relationship between the
Fibonacci numbers themselves and the number of recursive
calls. He also demonstrated how this relationship generalizes
to any type of DDS of second-order and DDS of higher-order.

Here we re-examine the problem of deriving the number of
recursive calls of a recursive function by using a different and
much simpler approach. Our approach generalizes equally

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

well and can be easily introduced to students.

2. FIBONACCI NUMBERS
The driving example of [2] is the calculation of Fibonacci

numbers. Given the recurrence relation:

F (n) = F (n− 1) + F (n− 2) n = 2, 3, ...

with initial conditions F (0)=0, and F (1)=1, the respective
recursive algorithm can be easily coded as follows.

function fib(n)

1. if n<=1 then return n

2. else return fib1(n-1)+fib1(n-2)

The author in [2] does not solve this recurrence but he
connects this recurrence with the following recurrence:

G(n) = G(n− 1) + G(n− 2) + 1

which expresses the number of recursive calls. He assumes
(without justification) that G(n) is a linear function of F (n)
and, finally, he concludes that:

G(n) = 2F (n)− 1

Thus, the problem we are focusing here is the derivation of
G(n) for the case of Fibonacci numbers as well as for other
similar (i.e. recursive in nature) problems. Our approach
can better understood by remarking the following figure.

®
­

©
ª4

®
­

©
ª3

®
­

©
ª2

®
­

©
ª2

®
­

©
ª1

®
­

©
ª1

®
­

©
ª0

®
­

©
ª1

®
­

©
ª0

!!!!
aaaa

¡¡ @@ ¡¡ @@

¡¡ @@

Figure 1: Calls to calculate F(4).

This figure illustrates a tree with nodes depicting the pa-
rameter values of the recursive calls. To understand the spe-
cific order of these recursive calls, someone has to traverse
the tree using dfs. Now, the derivation of the total number
of recursive calls comes from the remark that the probability
distribution of the number of recursive calls of each specific
Fibonacci number follows a certain pattern. The following

list gives the number of recursive calls for each specific Fi-
bonacci number as it appears in the exaple of the figure.

F4 is called 1=F1 time
F3 is called 1=F2 times
F2 is called 2=F3 times
F1 is called 3=F4 times
F0 is called 2=F3 times

Based on this observation, we are going to prove the follow-
ing proposition.

Theorem.
The probability distribution of the number of recursive calls
for each specific Fibonacci number in the case of calculating
Fn (where n > 1) is as follows:

Fn is called F1 time
Fn−1 is called F2 times
Fn−2 is called F3 times

. . .
F1 is called Fn times

F0 is called Fn−1 times

Proof.
We will prove the theorem by double induction. Obviously,
the proposition holds for n = 2 as F2 will be called 1 = F1

time, F1 will be called 1 = F2 time, and F0 will be called
1 = F1 time. Also, the proposition holds for n = 3 as F3

will be called 1 = F1 time, F2 will be called 1 = F2 time,
F1 will be called 2 = F3 times, and F0 will be called 1 = F2

time. We suppose that for n = k−2 the following probability
distribution of the number of recursive calls per each specific
Fibonacci number will hold:

Fk−2 is called 1 = F1 time
Fk−3 is called 1 = F2 times
Fk−4 is called 2 = F3 times

. . .
F1 is called Fk−2 times
F0 is called Fk−3 times.

Also, we assume that for for n = k − 1 the following proba-
bility distribution of the number of recursive calls per each
specific Fibonacci number will hold:

Fk−1 is called 1 = F1 time
Fk−2 is called 1 = F2 times
Fn−3 is called 2 = F3 times

. . .
F1 is called Fk−1 times
F0 is called Fk−2 times.

We have to prove that the probability distribution of the
number of recursive calls per each specific Fibonacci number
is as follows:

Fk is called 1 = F1 time
Fk−1 is called 1 = F2 times
Fk−2 is called 2 = F3 times

. . .
F1 is called Fk times

F0 is called Fk−1 times.

This comes easily if we remark that we have to take into
account the two previous probability distributions plus we

have to add an extra function call for the Fk case. 2

Now that we have derived the probability distribution
function of the number of recursive calls when calculating
the n-th Fibonacci number, we can add the elements of this
probability distribution and get the desired number: i.e.
the total number of recursive calls. The following corollary
closes the case.

Corollary.
The total number of recursive calls during the calculation of
the n-th Fibonacci number is 2Fn+1 − 1.

Proof.
Based on the previous theorem, we have to prove the rela-
tion:

nX
i=1

Fi + Fn−1 = 2Fn+1 − 1

After some simplifications based on Fibonacci properties,
equivalently it comes up that we have to prove that:

nX
i=1

Fi = Fn+2 − 1

This relation will be proved by induction. Apparently, it
holds for n = 1. We assume that it holds for n = k, and we
will prove that it holds for n = k + 1. In the other words,
the following relation has to be true:

k+1X
i=1

Fi = Fk+3 − 1

Departing form the left hand side we have:

k+1X
i=1

Fi =

kX
i=1

Fi + Fk+1 = Fk+2 − 1 + Fk+1 = Fk+3 − 1

2

We can reach the previous result on the total number of
recursive calls via a different path. We have proven that in
order to calulate the n-th Fibonacci number, F1 will be cal-
culated Fn times, whereas F0 will be calculated Fn−1 times.
Thus, the number of leaves of the respective tree will be
equal to Fn−1 + Fn = Fn+1. To derive the total number
of recursive calls (i.e. the total number of nodes), we have
to derive the total number of internal nodes. The following
theorem is fundamental and can be found in standard Data
Structures books. We include the proof for completeness.

Theorem.
For any binary tree with n > 0 nodes, if ni denotes the
number of nodes of degree i (for 0 ≤ i ≤ 2), then:

n0 = n2 + 1

Proof.
It is apparent that:

n = n0 + n1 + n2

Except the root, every node is connected by a branch, thus:

n = k + 1

where k is the number of branches. Also, every branch stems
from a mode of degree 1 or 2. Thus:

k = n1 + 2n2

From these three expressions the theorem comes with simple
algebra. In the present case n1 = 0, however, deliberately
we did not simplify the proof. 2

Thus in our case, the number of recursive calls is n0+n2 =
2n0−1, which means that the total number of recursive calls
is equal to 2Fn+1 − 1. This way, we have reached the same
result with [2], however, in a much simpler way from the
mathematical and pedagogical point of view.

3. OTHER EXAMPLES
This derivation for the number of recursive calls during

the Fibonacci number calculation can be easily used in other
cases as well. For example, let us examine the following
algorithm for the calculation of the n-choose-k combination.

function Comb(n,k);

1. if (k=0) or (k=n) then return 1

2. else return Comb(n-1,k-1)+Comb(n-1,k)

The following tree depicts the recursive calls for the cal-
culation of the 4-choose-2 combination. The node contents
stand for the parameter values. Again, the number of leaves
equals the value of the 4-choose-2 combination as the lat-
ter number is calculated by summing 1s from line 1 of the
code fragment. Therefore, the total number of recursive calls
equals twice the 4-choose-2 combination minus one.

®
­

©
ª4,2

®
­

©
ª3,2

®
­

©
ª3,1

®
­

©
ª2,2

®
­

©
ª2,1

®
­

©
ª2,0

®
­

©
ª2,1

®
­

©
ª1,1

®
­

©
ª1,0

!!!!
aaaa

¡¡ @@ ¡¡ @@

¡¡ @@ ®
­

©
ª1,1

®
­

©
ª1,0

¡¡ @@

Figure 2: Calls to calculate the 4-choose-2 combina-
tion.

The following fragment is an abstraction of the mergesort
algorithm [3]. Again, as can be easily derived form a similar
figure, the number of recursive calls is twice the number of
table elements minus one (2n− 1).

procedure merge_sort(left,right);

1. if left<right then

2. middle <-- (left+right) div 2;

3. merge_sort(left,middle);

4. merge_sort(middle+1,right);

5. merge(left,middle,right)

As a final example, consider the following fragment which
is an effort to calculate the power ab (for integer b > 0) based
on a divide-and-conquer philosophy. (For a discussion on the
exponentiation problem see [1, 3].)

®
­

©
ª5

®
­

©
ª2

®
­

©
ª3

®
­

©
ª1

®
­

©
ª1

®
­

©
ª1

®
­

©
ª2

®
­

©
ª1

®
­

©
ª1

!!!!
aaaa

¡¡ @@ ¡¡ @@

¡¡ @@

Figure 3: Calls to calculate a5.

function power(a,b)

1. if b=1 then return a

2. else return power(a,b/2)*power(a,(b+1)/2)

The same way, we remark here that the number of leaves
equals the number that line 1 is executed (which is equal to
the exponent b). Therefore, the total number of recursive
calls equals twice the exponent minus one (2b− 1).

4. GENERALIZATION
The recurrence relations of the examined examples of Fi-

bonacci numbers, combination calculation, mergesort and
exponentiation are second order in the sense that the right-
hand side contains two smaller instances than the instance
of the left-hand side. What happens in case of a recurrence
relation of third order, e.g. of the form:

T (n) = T (n− 1) + T (n− 2) + T (n− 3)

with T (0) = T (1) = T (2) = 1; In [2] the function D(n),
standing for the number of recursive calls, equals:

D(n) = D(n− 1) + D(n− 2) + D(n− 3) + 1

and by assuming a linear function (without justification) of
D(n) from T (n) it is concluded that:

D(n) = 3T (n)/2− 1/2

h

h

h

hh h

"
"

""
"

"
""

b
b

bb
b

b
bb

¿
¿¿

\
\\

¿
¿¿

\
\\

¿
¿¿

\
\\

¿
¿¿

\
\\

h

hh h

hh h hh h hh h

Figure 4: Ternary tree.

Here, we follow a different approach based on the previous
theorem for binary trees.

Corollary.
For any ternary tree with n > 0 nodes, if ni denotes the
number of nodes of degree i (for 0 ≤ i ≤ 3), then:

n0 = 2n3 + 1

Proof.
It is apparent that:

n = n0 + n3

Except the root, every node is connected by a branch, thus:

n = k + 1

where k is the number of branches. Also, in our case (see
figure with the ternary tree), every branch stems from a
mode of degree 3. Thus:

k = 3n3

From these three expressions the corollary comes with sim-
ple algebra. 2

Thus the total number of recursive calls is:

n0 + n3 = n0 +
n0 − 1

2
=

3n0

2
− 1

2

Thus, we have reached the same result with [2] via a simpler
way.

5. CONCLUSIONS
Motivation to this report was the article by Robertson

[2] on the number of recursive calls of a recursive formula.
Here we re-examine the problem using a different and much
simpler approach.

6. REFERENCES
[1] Brassard G. and Bratley P.: Fundamentals of

Algorithmics, Prentice Hall, 1996.

[2] Robertson J.: How Many Recursive Calls a Recursive
Function Make; ACM SIGCSE Bulletin Inroads,
Vol.31, No.2, pp.60-61, 1999.

[3] Weiss M.A.: Data Structures and Algorithm Analysis
in C++, Benjamin/Cummings, 1993.

