
Binomial Coefficient Computation:
Recursion or Iteration?

Yannis Manolopoulos
Data Engineering Laboratory

Department of Informatics, Aristotle University
Thessaloniki, 54006 Greece

manolopo@delab.csd.auth.gr

ABSTRACT
Binomial coeÆcient computation, i.e. the calculation of the
number of combinations of n objects taken k at a time,
C(n,k), can be performed either by using recursion or by

iteration. Here, we elaborate on a previous report [6], which
presented recursive methods on binomial coeÆcient calcula-
tion and propose alternative eÆcient iterative methods for
this purpose.

1. INTRODUCTION
Recursion vs. iteration is a topic on which students have

to be exposed in several courses, like Computer Program-
ming, Algorithms and Data Structures etc. When compar-
ing the advantages and disadvantages of recursion against
iteration, we mention the simplicity in writing and under-
standing a recursive program (especially if it based on a re-

cursive mathematical function), but on the other hand, we
emphasize the fact that recursive programs are not as eÆ-
cient as iterative ones, due to the extra time cost for function
calls and extra space cost for stack bookkeeping. Thus, the
epilogue in such a lecture is that if we need to simply have
a correct program, then we can use recursion; however, if

time is a critical issue, then we have to use iteration.
Motivation of the present report is the article of Timothy

Rolfe in the June 2001 issue of Inroads [6], where a number
of tips for eÆcient calculation of binomial coeÆcients by
using recursion were examined. Basically, the author pre-
sented a recurrence relation based on the Pascal triangle,

then he derived a more eÆcient recurrence relation by using
some algebra and binomial coeÆcient properties, and �nally
he suggested using the greatest common divisor to further
improve the latter method.

2. ITERATIVE APPROACHES
When lecturing on recursion and recursive programs, at

the same time we spend quite some time to compare with
equivalent iterative programs. Moreover, we comment on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGCSE Bulletin InRoads, Vol.34, No.4, December 2002.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

all these methods and try to show how we can improve by
elaborating gradually each method. Thus, students capital-
ize from this engineering approach. In this respect, classical
are the books by Bentley [1, 2, 3]. For speci�c examples
that build on such a progressive approach, see Section 5.3 on

Minimum Spanning Trees in the book by Moret and Shapiro
[5]), or Column 7 on the Maximum Subsequence Problem in
[2].
Several examples can be used for such a purpose in the

classroom. For instance, the calculation of powers, facto-
rials, greatest common divisors and Fibonacci numbers are

classic simple cases, whereas both recursive and iterative
versions have been proposed for well-known algorithms such
as binary search, quicksort and mergesort among others.
In the sequel, �rst we present a recursive and then an it-

erative PASCAL variation for the calculation of factorials.
These functions will be used for the calculation of binomial

coeÆcients. From the theoretical point of view, both vari-
ants are equivalent since they perform O(n) operations to
calculate n! However, from the practical point of view, the
previous comment holds: function calls have a cost that
is more signi�cant in comparison to the cost spent for the
control structures and other assignment operations. Also,

have in mind that in this case, the performed operations are
multiplications, but we use the general term operations in-
stead of multiplications, since the number of divisions will be
equally important in the subsequent e�orts. In other words,
multiplications and divisions are our barometer metrics in
the course of estimating the algorithmic complexity [4].

FUNCTION Factorial1(n: INTEGER): INTEGER;

BEGIN

IF n=0

THEN Factorial:=1

ELSE Factorial1:=n*Factorial1(n-1)

END;

FUNCTION Factorial2(n: INTEGER): INTEGER;

VAR i,product: INTEGER;

BEGIN

i:=n; product:=1;

WHILE i<>0 DO

BEGIN

product:=i*product;

i:=i-1

END;

Factorial2:=product

END;

The following code fragment depicts a PASCAL imple-

mentation of the �rst recursive solution for the binomial co-
eÆcient calculation, which has been reported in [6]. Appar-
ently, this implementation is very ineÆcient since its com-
plexity is O(C(n,k)). More speci�cally, it performs 2C(n,k)-
1 multiplications to calculate C(n,k).

FUNCTION Comb1(n,k: INTEGER): INTEGER;

BEGIN

IF (k=0) OR (k=n)

THEN Comb1:=1

ELSE Comb1:=Comb1(n-1,k-1)+Comb1(n-1,k)

END;

From the above starting point, we will move gradually to
smarter solutions. First e�ort is to get rid of the recursion.

This can be achieved by calling any of the previous two
Factorial functions. Although, the following straightforward
fragment has a O(n) computation complexity, it has to be
noted that there is a hidden constant equal to 2.

FUNCTION Comb2(n,k:INTEGER): INTEGER;

VAR t1,t2,t3: INTEGER;

BEGIN

t1:=Factorial2(n);

t2:=Factorial2(k);

t3:=Factorial2(n-k);

Comb2:=t1/(t2*t3)

END;

The previous iterative function has made an impressive

improvement in eÆciency in comparison to the Comb1 func-
tion. However, further improvement can be achieved by
avoiding performing a certain number of multiplications on
the numerator for a term that will be simpli�ed by a same
term of the denominator. The following fragment Comb3
is a PASCAL implementation in place of the second recur-

sive formula that has been reported in [6]. Here, we remark
that a division operation comes into play. The computation
complexity of Comb3 is O(k), i.e. irrelevant of n, with a
hidden constant equal to 2. This is derived by simply re-
marking that after simpli�cations, both the numerator and
denominator comprise of k terms.

FUNCTION Comb3(n,k: INTEGER): INTEGER;

BEGIN

IF (k=0)

THEN Comb3:=1

ELSE Comb3:=Comb3(n-1,k-1)*n/k

END;

As mentioned in [6], the latter method can be improved by

using the binomial coeÆcient property that C(n,k)=C(n,n-
k). Next, we present a more eÆcient iterative version based
on this remark. Thus, the following Comb4 fragment �rst
calculates the maximum between k and n-k, in order to
save a number of operations. Although Comb4 fragment is
longer, apparently its computation complexity is O(min(k,n-

k)), also with a hidden constant equal to 2.

FUNCTION Comb4(n,k:INTEGER): INTEGER;

VAR t1,t2: INTEGER;

BEGIN

IF k<n-k THEN DO

BEGIN

t1:=1;

FOR i:=n DOWNTO n-k+1 DO t1:=t1*i;

t2:=Factorial2(k); Comb4:=t1/t2

END

ELSE

BEGIN

t1:=1;

FOR i:=n DOWNTO k+1 DO t1:=t1*i;

t2:=Factorial2(n-k); Comb4:=t1/t2

END

END;

As noted in [6], the Comb3 method has the disadvantage
that intermediate results are larger in magnitude than the

�nal number. Our Comb4 method has the same disadvan-
tage. For large values of n and k, this may lead to over
ows
due to the inadequacy of the used data types. For this rea-
son, a third recursive solution was provided in [6], where di-
visions are performed before multiplications to prevent such
a situation. This is achieved by �rst calculating the great-

est common divisor (gcd) of n and k, a task that can be
solved by the well-known Euclidean algorithm of O(logn)
complexity [4]. Assuming that d:=Gcd(n,k) and q:=k/d,
the following fragment Comb5 is easy to follow.

FUNCTION Comb5(n,k: INTEGER): INTEGER;

VAR d,q: INTEGER;

BEGIN

IF (k=0)

THEN Comb5:=1

ELSE Comb5:=(Comb5(n-1,k-1)/q)*n/d

END;

The above fragment Comb5 has the same computation
complexity as the previous Comb3 function. The advantage
of Comb5 over Comb3 is that the former is more robust
for various n and k values, whereas the disadvantage is the
cost of the gcd calculation. Next, we give a �nal iterative
function Comb6, which is more eÆcient from the theoretical

and the practical point of view.

FUNCTION Comb6(n,k:INTEGER): INTEGER;

VAR t: INTEGER;

BEGIN

t:=1

IF k<n-k

THEN FOR i:=n DOWNTO n-k+1 DO

t:=t*i/(n-i+1)

ELSE FOR i:=n DOWNTO k+1 DO

t:=t*i/(n-i+1);

Comb6:=t

END;

Thus, with Comb6 we have reached our �nal word. This
method is characterized by three advantages:

1. it is iterative, thus avoiding time overhead for function
calls and space overhead for stacks,

2. it has optimal complexity, that is O(min(k,n-k)),

3. it is robust, as it performs multiplications and division
alternatively, thus avoiding data type over
ows.

3. CONCLUSIONS
Motivation to this report was the article by Rolfe [6] on bi-

nomial coeÆcient calculation by using recurrence relations.

Here, we make a step further and argue on alternative it-
erative methods. We presented a number of PASCAL frag-
ments, which evolve from the less eÆcient to more eÆcient
variants. Such an approach shows that programming is a
science (i.e. methodology) and an art.

4. REFERENCES
[1] Bentley J.L.: Writing EÆcient Programs, Prentice

Hall, 1982.

[2] Bentley J.L.: Programming Pearls, Addison Wesley,
1986.

[3] Bentley J.L.: More Programming Pearls - Confessions

of a Coder, Addison Wesley, 1988.

[4] Brassard G. and Bratley P.: Fundamentals of
Algorithmics, Prentice Hall, 1996.

[5] Moret B.M.E. and Shapiro H.D.: Algorithms from P

to NP, Volume I: Design and EÆciency,
Benjamin/Cummings, 1991.

[6] Rolfe T.: Binomial CoeÆcient Recursion: the Good,
and the Bad and Ugly, ACM SIGCSE Bulletin

Inroads, Vol.33, No.2, pp.35-36, 2001.

