
Parallel Similarity Search based on the Dimensions
Value Cardinalities of Image Descriptor Vectors

Dimitrios Rafailidis
Department of Informatics

Aristotle University, 54124 Thessaloniki, Greece
draf@csd.auth.gr

Yannis Manolopoulos
Department of Informatics

Aristotle University, 54124 Thessaloniki, Greece
manolopo@csd.auth.gr

ABSTRACT
In this paper, we propose a parallel similarity search strategy
based on the dimensions value cardinalities, an inherit char-
acteristic of image descriptor vectors. Our strategy has low
preprocessing requirements by dividing the computational
cost of the preprocessing steps into several machines and
locating the descriptors with similar dimensions value car-
dinalities logically close. Additionally, an efficient parallel
query processing algorithm is proposed, where the dimen-
sions of image descriptors are prioritized in the searching
strategy, assuming that dimensions of high value cardinal-
ities have more discriminative power than the dimensions
of low ones. In our experiments with publicly available
datasets of 80 million and 1 billion images, we show that
the proposed method outperforms state-of-the-art parallel
similarity search strategies, in terms of preprocessing cost,
search time and accuracy. Finally, we made our source code
publicly available.

1. INTRODUCTION
Over the last two decades, several approximate similarity

search strategies have been proposed, e.g. Dimensionality
Reduction [3], Data Co-Reduction [5] and Hashing methods
[4, 9], to accelerate the search process of the high-dimensional
image vectors, a.k.a. descriptor vectors. Recently, the MSIDX
method exploited a new key factor of the image descriptor
vectors, namely the dimensions value cardinalities [11]. The
dimensions value cardinalities represent the number of dis-
crete values occurred in a specific dimension throughout a
database of image descriptor vectors. The dimensions value
cardinalities highly depend on the extraction strategy of the
image descriptors. In particular, image descriptor vectors
are extracted by forming histograms that describe the value
distribution of each attribute, defining the characteristics of
each descriptor, e.g. color, texture, shape etc. By applying
values’ normalization or quantization techniques to descrip-
tor vectors, comparable histograms are produced for search
and retrieval purposes [7]. However, the value cardinali-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2695857

ties of each dimension vary significantly, depending on the
descriptors’ extraction strategy. For instance, high dimen-
sional descriptors that come from the bag-of-words process
with large number of centroids, tend to be sparse holding
zeros in many dimensions. Therefore, these dimensions do
not have more discriminative power than the rest of dimen-
sions of high value cardinalities [11]. By considering the di-
mensions value cardinalities in the search strategy, MSIDX
clearly outperformed competitive similarity search strate-
gies.

However, MSIDX, Dimensionality Reduction, Data Re-
duction, Vantage Indexing and Hashing methods either em-
ploy a single CPU-core or work on a single machine, hav-
ing thus memory limitations, expensive computational pre-
processing costs and high search times for very large-scale
databases of a few million or billion images. Much work has
been done to parallelize similarity search in recognition that
modern databases tend to contain billions of images. How-
ever, parallel similarity search strategies cannot efficiently
query the high-dimensional vectors of images mainly for the
following reasons: (a) complex index structures (M-Trees,
R-Trees, KD-Trees, etc.) are required to be built either lo-
cally per machine or globally over all machines, increasing
thus the preprocessing cost, (b) such strategies do not sup-
port the efficient dynamical insertion of new images, and
finally, (c) they fail to preserve the visual nearest neighbors
of sequential search efficiently in low search time (Section
2).

In this paper, we propose a parallel similarity search strat-
egy based on image descriptors’ dimensions value cardinali-
ties. Our contribution is summarized as follows: (C1): The
preprocessing cost and the memory requirements are low,
by efficiently dividing the computational effort into several
machines. In each machine, the preprocessing step locates
the descriptors with similar dimensions value cardinalities
logically close. This contrasts to the most related work of
parallel similarity search strategies, which have the high pre-
processing requirement of building complex index structures
either locally per machine or globally over all the machines.
(C2): New images are efficiently inserted into the databases
by supporting dynamic real-time update. Based on our com-
plexity analysis we mathematically prove that the proposed
insertion algorithm depends on: (a) the descriptors’ dimen-
sionality, and (b) a small subset of descriptors that have sim-
ilar dimensions value cardinalities. Thus, the computational
cost of the insertion algorithm is preserved low. (C3): The
query processing is efficiently divided into several machines
by significantly speeding up the search process. In our par-

allel searching strategy, the dimensions of image descriptor
vectors are prioritized, assuming that dimensions with high
value cardinalities have more discriminative power. The pro-
posed query processing achieves high accuracy in low search
time.
The rest of the paper is organized as follows. Section

2 summarizes the related work of parallel similarity search
strategies, whereas Section 3 introduces the preliminaries
of similarity search based on dimensions value cardinalities.
Then, in Section 4 we present the proposed Parallel similar-
ity search strategy based on image descriptors’ Dimensions
Value Cardinalities (P-DVC). In Section 5 we evaluate the
proposed P-DVC method and finally, Section 6 concludes
the paper.

2. RELATED WORK
Several parallel similarity search strategies have been pro-

posed. For instance, Aly et al. [1] used the Map-Reduce
architecture to efficiently build and parallelize the KD-Tree
index. A single KD-Tree is considered, where the top of
the tree is located on a single root-node and the bottom
part of the tree is divided into several machines, called leaf-
nodes. Then, similarity search is performed into the leaf-
nodes, whereas the root-node aggregates the results of the
leaf-nodes and returns the top-k results. The disadvantage
of the aforementioned similarity search strategy of [1] is that
a high preprocessing cost is required to construct both global
and local complex index structures per machine.
In [8], the FLANN library was extended, where authors

examined the best performance between the priority search
k-means trees, the multiple randomized KD-trees and the
hierarchical clustering tree. FLANN performs an automatic
configuration for the internal parameters of the examined
methods (e.g. number of randomized trees, branching fac-
tor, number of k-means iterations) and use hyperparameters
to control the relative importance of the build/preprocessing
time and memory overhead in the overall cost. Finally, the
FLANN library performs similarity search across multiple
machines of a computer cluster, based on a Map-Reduce
like algorithm and a Message Passing Interface (MPI) speci-
fication. There are several variations of the KD-trees such as
trinary projection trees [12], which differ in the way they per-
form the space partitioning by using different partitioning
functions. Despite the fact that tree-based methods achieve
high accuracy, a significant cost is required to search the
constructed trees in parallel.
Additionally, inverted index algorithms have been widely

used for similarity search due to their small memory cost.
An inverted index initiates by clustering algorithms to build
a codebook with K codewords, splitting the dataset into K
lists. Then given a query and a desired candidate list T , the
inverted index generates a list of T multimedia-points close
to the query. In [2], an Inverted Multi-Index has been pro-
posed to replace the standard quantization in an inverted
index with product quantization, by splitting high dimen-
sional vectors into more detailed dimension groups. The key
idea is to use a product quantizer generating an exponen-
tially large codebook at very low memory/time cost. The
product quantization of the vectors is performed so that the
K2 lists correspond to all possible pairs of codewords, gen-
erating thus a more detailed subdivision of the search space,
compared to the K lists that an inverted index generates.
This way, the candidate lists produced by querying multi-

indices were more accurate, compared to standard inverted
indices. However, the size of the list of the T multimedia
points plays a crucial role in the performance of Inverted
Multi-Index, where large sizes of lists significantly increase
the search time and the preprocessing cost of Inverted Multi-
index. Moreover, Inverted Multi-Index does not work in
parallel.

In contrast to the aforementioned similarity search meth-
ods, Norouzi et al. [10] proposed a multi-index hashing frame-
work by avoiding to construct complex index structures. Bi-
nary codes from the database are indexed M times into M
different hash tables, based on M disjoint binary substrings.
For large-scale datasets, the substrings must be chosen so
that the set of candidates is small and the storage require-
ments are low. The framework of [10] uses different hash-
ing methods, such as LSH [4] or MLH [9]. Consequently,
the framework preserves the search accuracy of the used
hashing methods. Since the multi-index hashing framework
performs exact similarity search in the hamming space, the
framework’s performance highly depends on the search ac-
curacy of the used hashing methods. The big advantage of
the framework is that a parallel implementation of multi-
index hashing is straightforward, where each substring hash
table is stored in a separate machine, by parallelizing thus
the similarity search process. However, the preprocessing
cost is high, since parallelization is not supported.

3. SIMILARITY SEARCH BASED ON DVC
The basic idea of similarity search based on Dimensions

Value Cardinalities (DVC) according to [11] is: to reorder the
storage positions of images’ descriptors according to value
cardinalities of their dimensions, by performing a multiple
sort algorithm, to increase the probability of having two sim-
ilar images in storage positions that do not differ more than
a specific global constant range, denoted by a parameter 2W .
Dimensions Value Cardinalities (DVC) are defined as the
unique numbers that occur in the dimensions of the image
descriptor vectors. Depending on the extraction strategy of
the image descriptor vector there are three cases when cal-
culating DVC: Integer values: In case of integer values,
only the different values are considered and the total count
is the value cardinality, denoted by cj for the j-th dimension
of the image descriptor, with j ∈ {1, . . . , D}. Normalized
real values: In case of real values produced by normaliza-
tion of previous integer values, the calculation strategy of
the value cardinality cj is the same with the case of integer
values, due to the restricted value cardinality of the origi-
nal integer-valued descriptor vector. Real values: In case
that the extraction process of the descriptor generates real
values, the calculation strategy of the value cardinality cj
is performed after limiting the decimal accuracy of the de-
scriptor values, as in the case of integer values. However,
in practice, the extracted descriptors have a limited decimal
accuracy, usually between 4 and 6 decimals, due to space and
computational restrictions [11]. In our experiments (Section
5) no additional value quantization was used in all evalua-
tion datasets.

An overview of similarity search based on DVC is pre-
sented in Figure 1. Given a set V of N D-dimensional image
descriptor vectors vi ∈ V, i = 1, . . . , N , we firstly calculate
the cj values of the dimensions of the image descriptor vec-
tors according the previous three cases. Then, we sort the
dimensions of the image descriptors in a descending order,

�

Figure 1: Similarity Search Based On DVC.

assuming that dimensions with high DVC (cj values) are
more discriminative [11]. For all sorted cj values, we gener-
ate a respective priority vector p corresponding to the sorted
dimensions, i.e. higher priority (pj) for the j-th dimension
based on the higher cj value. This means that based on the
priority vector p each value v′i,j

1 in Figure 1 corresponds to
the highest DVC (cj) value of the j-th dimension of the i-th
descriptor vector v. As depicted in Figure 1, based on the
priority vector p, the image descriptors are grouped as fol-
lows: firstly, descriptors are grouped based on the dimension
with the highest DVC (cj) value, i.e. those descriptors that
have the same value in the first sorted dimension. For in-
stance, in Figure 1 the first five image descriptors have the
same v′i,1 value (i = 1 . . . , 5) in the first sorted dimension
(j=1). After generating the first group based on the first
sorted dimension, descriptors that are in the same group,
are recursively grouped based on the second sorted dimen-
sion (j=2). For instance, in the previous example the group
of the first 5 descriptors splits into two groups, i.e. the first
4 image descriptors have the same v′i,2 value (i = 1, . . . , 4)
in the second sorted dimension, and the 5th image descrip-
tor generates a second group based on v′5,2. This procedure
is repeated until the last sorted D-th dimension is reached.
In case of groups with only one v′i,j value the procedure is
not applied to these groups. After the image descriptors
have been grouped and sorted recursively based on p, the
positions posi, of the N image descriptors are stored in the
double linked list L. In case of an external query q, the goal
is to firstly identify the correct position posq in the double
linked list L based on the priority vector p. After identi-
fying the correct position posq, 2W < N image descriptors
in W previous and W next to position posq are retrieved to
search for the top-k < 2W most similar results.

4. THE PROPOSED P-DVC METHOD

4.1 Problem Formulation
Given (a)M machines, (b) the set V of theN D-dimensional

image descriptor vectors, and (c) the descriptor vector vq of

1The initial value vi,j has been reordered based on p.

a query image q 2, P-DVC supports the following function-
alities: (a) parallel preprocessing of the N descriptor vectors
to generate the global double linked list L with the logical
sorted positions of all N descriptor vectors based on DVC,
(b) insertion of the query vq to global double linked list L
in real-time, by computing the correct position posq, and (c)
parallel query processing to retrieve the top-k similar results
to query vq in a result set R based on a predefined constant
range 2W , expressed as a percentage of the dataset N .

4.2 Preprocessing Algorithms
Role: To generate the global double linked list L with the
logical sorted positions of allN descriptor vectors. The basic
components are: (a) the M Dimension Value Cardinality
Extractors (Section 4.2.1), (b) the Priority Index (Section
4.2.2), (c) the M Image Sorters and the Global Image Sorter
(Section 4.2.3).
Input: V, the set of the N D-dimensional image descriptor
vectors vi ∈ V, i = 1 . . . , N .
Output: (1) L, the global double linked list, (2) p, the pri-
ority index vector of the D dimensions, (3) pk, the primary
key to the dimension with the highest value cardinality.
Parameters: M , the number of assigned machines, i.e.
M Dimension Value Cardinality Extractors and M Image
Sorters.

4.2.1 M Dimension Value Cardinality Extractors
(Preprocessing Step 1)

Role: To calculate the value cardinalities of the N D-
dimensional image descriptors.
Input: V, the set of the N D-dimensional image descriptor
vectors.
Output: M different dimensions value cardinalities vectors
c(m), where c(m) is the dimensions value cardinalities vector
of the m-th Dimension Value Cardinality Extractor, with
m = 1, . . . ,M .
Parameters: M , the number of Dimension Value Cardi-
nality Extractors.

Algorithm Description
The outline of an m-th Dimension Value Cardinality Extrac-
tor is presented in Algorithm 1. M machines are assigned
to calculate the dimensions value cardinalities. Let set S
denote the image IDs, with |S| = N . To avoid calculating
all value cardinalities of the overall D dimensions of the N
image descriptor vectors, upper ub(m) and lower lb(m) di-
mensions’ bounds, m = 1, . . . ,M , are initialized for an m-th
machine to define the dimensions’ range that the m-th ma-
chine will process. Therefore, each machine is responsible
for the computation of ⌈ D

M
⌉ dimensions value cardinalities

of the N image descriptor vectors. In line 1, ⌈ D
M
⌉ distinct

hash-maps3 HashMaph, with h = 1, . . . , ⌈ D
M
⌉ are initial-

ized to efficiently insert a new dimension’s value or search
for an already existing one. In line 2, the value cardinalities
vector c(m) is initialized. Therefore, in lines 3 to 12, N im-
age descriptor vectors vi are retrieved, with i = 1, . . . , N .
In line 4 the respective descriptor vi ∈ V is retrieved sepa-
rately for each iteration, avoiding thus the bulk-loading of

2Here we assume that the extraction of image descriptor
vectors is performed locally on each machine. Nevertheless,
several works, such as [6], achieve to parallelize the descrip-
tor vector extraction process.
3http://en.wikipedia.org/wiki/Java_collections\
_framework

all N descriptors. For each j-th dimension of a descriptor vi

within the range of the lower lb(m) and upper ub(m) dimen-
sions’ bounds, the existence of the corresponding vij value,
i = 1, . . . , N and j = lb(m), . . . , ub(m) is inspected to the
corresponding hash-map HashMaph. If the vij value does
not exist in the hash-map HashMaph, then it is inserted.
Consequently, in lines 13-17, after the N descriptor vectors
have been analyzed, the number of distinct values that are
in each hash-map HashMaph are assigned to the value car-

dinalities vector c(m). Then, the value cardinalities vector
c(m) is returned for further analysis to the Priority Index at
the next preprocessing step 2.

ALGORITHM 1: m-th Dimension Value Cardinality Ex-

tractor

Input: S: the set of IDs of the N descriptor vectors
lb(m): dimensions’ lower bound for the m-th Dimension
Value Cardinality Extractor
ub(m): dimensions’ upper bound for the m-th Dimension
Value Cardinality Extractor
Output: c(m): the dimensions value cardinalities vector of

the m-th machine
1 set ⌈ D

M
⌉ hash-maps HashMaph ← ∅, ∀h = 1, . . . , ⌈ D

M
⌉;

2 set c(m) ← ∅
3 foreach i ∈ S do
4 vi = retrieve the i-th descriptor vector;
5 set h = 0;

6 for j = lb(m) to ub(m) do
7 if vij /∈ HashMapk then
8 insert the vij value into hash-map HashMaph;
9 end

10 h = h + 1;
11 end
12 end
13 set h = 0;

14 for j = lb(m) to ub(m) do

15 c
(m)
j = number of distinct values inserted in hash-map

HashMaph;
16 h = h + 1;
17 end

18 return c(m);

Complexity Analysis
For each dimension j of the N descriptor vectors, the value
cardinality is calculated in O(N), since the common-used
hash-map structure requires O(1) complexity for insertion.
Accordingly, in a single machine the complexity for the di-
mensions value cardinalities’ computation would be O(N ·
D). However, in our approach, since the dimensions of
each vector are divided into M distinct machines-Dimension
Value Cardinality Extractors, the complexity to compute the
value cardinalities for all D dimensions is:

O(N · D

M
) (1)

4.2.2 Priority Index (Preprocessing Step 2)
Role: To calculate the priority index vector p of the D
dimensions.
Input: M different dimensions value cardinalities vectors
c(m) (Algorithm 1).
Output: p, the priority index vector, where pj , j = 1, . . . , D,
is the priority index of the j-th dimension.
Parameters: -

Algorithm Description
The outline of Priority Index is presented in Algorithm 2.
In lines 1-7, the algorithm aggregates the values of the M
different c(m) vectors to generate the global value cardinali-
ties vector C, which contains the value cardinalities of all D
dimensions of the N image descriptor vectors. In line 8, the
global dimensions value cardinalities vector C is sorted in
descending order, generating thus the final C′ sorted vector.
Since dimensions with high value cardinalities have more
discriminative power, the higher the value cardinality of the
j-th dimension is, the higher the respective priority index for
the j-th dimension must be. Respectively, in line 9, the pri-
ority index vector p is generated based on the sorted value
cardinalities vector C′, providing high priority to the dimen-
sions of high value cardinalities. This way, dimensions with
high discriminative power are highly prioritized, reflecting
to the dimensions of high value cardinality.

ALGORITHM 2: Priority Index

Input: M c(m): the M different dimensions value
cardinalities vectors

Output: p: the priority index vector, where pj is the
priority index of the j-th dimension, ∀j = 1, . . . , D

1 for j = 1 to D do
2 for m = 1 to M do

3 if c
(m)
j ̸= 0 then

4 Cj = c
(m)
j ;

5 end
6 end
7 end
8 sort dimensions value cardinalities vector C in descending

order to generate the sorted vector C′ ;
9 create the priority index pj of dimension j based on the

sorted value cardinalities vector C′
j , ∀j = 1, . . . , D;

10 return p;

Complexity Analysis
The complexity analysis of the Priority Index algorithm is
analogous to the dimensions’ number (D) of the image de-
scriptor vectors and the number of machines (M) that are
assigned to the Dimension Value Cardinality Extractors in
the previous step. The aggregation of the M different c(m)

vectors requires a O(D · M) complexity. The cardinalities
sort procedure and, respectively, the priority index creation
is performed using the quick sort algorithm in O(D · logD)
cost. Summarizing, the total complexity of the Priority In-
dex algorithm is:

O(M ·D) +O(D · logD) (2)

4.2.3 M Image Sorters and The Global Image Sorter
(Preprocessing Step 3)

Role: To generate the global double linked list L with the
logical sorted positions of all N descriptor vectors. The de-
scriptor vectors’ sorting process is divided into M Image
Sorters and then the Global Image Sorter component per-
forms the final sorting in L with a single machine.
Input: (1) p, the priority index vector (Algorithm 2), (2)
V, the set of the N image descriptors.
Output: (1) L, the global double linked list, (2) pk, the
primary key to the dimension with the highest value cardi-
nality.
Parameters: M , the number of Image Sorters.

Algorithm Description
M Image Sorters: Each Image Sorter performs the dimen-
sions’ sorting to ⌈ N

M
⌉ descriptor vectors. Therefore, a set

V(m) of image descriptor vectors constitute the input of the
m-th Image Sorter, m = 1, . . . ,M . Initially, each Image
Sorter reorders the descriptor vectors’ dimensions based on
the priority index p (Algorithm 2). Then, the descriptor

vectors in V(m) are sorted in descending order by perform-
ing the quicksort algorithm based on the comparative Algo-

rithm 3, which produces a new set V ′(m)
. Then, a double

linked list L(m) is computed, where L
(m)
i denotes the ID of

the image descriptor vector, which is allocated in position
posi in list L(m), i = 1, · · · , ⌈ N

M
⌉.

Global Image Sorter: The computed M distinct double
linked lists L(m) are retrieved by the Global Image Sorter.
Based on Algorithm 3, Global Image Sorter compares the M

distinct L
(m)
1 descriptor vectors, where L

(m)
1 is the ID of the

descriptor vector with the highest position in L(m). Accord-
ing to the comparison, the respective ID of the descriptor
vector is inserted into the first available slot of a global dou-
ble linked list L. Then, the inserted ID to the global list
L is removed from the respective list L(m). This process is
performed recursively until the global double linked list L
contains the positions of all N descriptor vectors.
Finally, in the current step of the preprocessing phase, we

set a primary key pk to the dimension with the highest value
cardinality, that is the dimension with the highest priority
index based on vector p. As we will explain in the follow-
ing section, the reason for setting a primary key pk is to
efficiently retrieve the minimum number of image descriptor
vectors in the insertion step of P-DVC.

ALGORITHM 3: Compare Image Descriptors

Input: va,vb: D-dimensional descriptor vectors
Output: 1 (if va > vb), -1 if(va < vb), 0 if(va = vb)

1 vaj = value of va in dimension j = 1, ..., D;
2 vbj = value of vb in dimension j = 1, ..., D;
3 for j = 1 to D do
4 if vaj > vbj then
5 return 1;
6 end
7 if vaj < vbj then
8 return -1;
9 end

10 end
11 return 0;

Complexity Analysis
The complexity of the M Image Sorters and the Global Im-
age Sorter is O(D · N

M
· log N

M
). Summarizing, the total

complexity of Preprocessing is the aggregation of the com-
plexities of: (a) the M Dimension Value Cardinality Extrac-
tors, (b) the Priority Index, and (c) the M Images Sorters
and the Global Image Sorter. Therefore, based on Eqs. (1)
and (2), the total Preprocessing cost is:

O(N · D
M

)+O(M ·D)+O(D · logD)+O(D · N
M

· log N

M
) (3)

4.3 Insertion Algorithm
Role: To insert a new image descriptor vector vq by updat-
ing the global double linked list L.

Input: (1) vq, the new image descriptor vector, (2) p, the
priority index vector (preprocessing step 2), (3) L, the global
double linked list (preprocessing step 3), (4) pk, the primary
key to the dimension with the highest value cardinality (pre-
processing step 3).
Output: posq, the logical position of the new image de-
scriptor vector vq in the updated global double linked list
L.
Parameters: -

Algorithm Description
The insertion algorithm is presented in Algorithm 4. In line
1, a set Vpk is generated (|Vpk| ≪ N), which consists of the
descriptor vectors with primary key pk equal to vqp1 . Value
vqp1 is the value of the highest priority dimension of the new
descriptor vq. In line 2, the set Vpk of descriptor vectors are
sorted in descending order based on the logical positions in
the global double linked list L. Based on Algorithm 3, the
descriptor vector vq is compared with descriptor vhp, i.e.
the descriptor vector in Vpk of the highest position in L,
to determine the logical position posq (lines 3-7). Finally,
in line 8, the new image q is inserted into the allocated
position posq and the global double linked list L is updated,
respectively.

ALGORITHM 4: Insertion Algorithm

Input: vq : the D-dimensional descriptor vector of image q
p: the priority index vector of the dimensions
L: the double linked list of the logical positions
pk: the primary key to the dimension with the highest value
cardinality
Output: posq : the position of image q in the updated

double linked list L
1 generate set Vpk of the descriptor vectors with primary key

pk equal to value vqp1 ;
2 sort v ∈ Vpk in descending order based on the logical

positions in L and retrieve the first descriptor vhp ∈ Vpk of
the highest position;

3 if (Compare Images vhp and vq) = 1 then
4 set posq after the position of vhp in L;
5 else
6 set posq prior to the position of vhp in L;
7 end
8 insert descriptor vector vq ;
9 update the double linked list L;

10 return posq ;

Complexity Analysis
The complexity of the insertion algorithm is highly corre-
lated to the size of the subset Vpk and the dimensionality D
of the image descriptor vectors. To perform the sorting of
descriptors in Vpk based on their logical locations in L, the
quicksort algorithm requires a O(|Vpk|·log |Vpk|) cost. Then,
since the comparison is always performed between the de-
scriptor vector vq and the descriptor vector vhp ∈ Vpk of the
highest logical position in L, a O(D) complexity is required.
Therefore, the total complexity of the insertion algorithm is:

O(|Vpk| · log |Vpk|) +O(D) (4)

4.4 Query Processing Algorithm
Role: To retrieve the top-k results of the query image de-
scriptor vector vq.
Input: (1) vq, the new image descriptor vector, (2) p, the
priority index vector (preprocessing step 2), (3) L, the global

double linked list (preprocessing step 3), (4) pk, the primary
key to the dimension with the highest value cardinality (pre-
processing step 3).
Output: R, the result set of the top-k results.
Parameters: (1) M , the number of Image Comparators,
(2) 2W , the search radius.

Algorithm Description
Firstly, the insertion algorithm is utilized to calculate the
logical position posq in the double linked list L. Then, the
query processing algorithm compares the query image de-
scriptor vector vq to 2W descriptor vectors vi, with i =
1, . . . , 2W , whereW is a user defined search radius. The sim-
ilarity search is divided into M machines to retrieve the 2W
candidate image IDs for query q. W is a constant range de-
noting the number of the candidate images prior and next to
posq in the double linked list L. Then, two descriptor vectors
are always reserved into one Image Comparator, i.e. vq and
vi, i = 1, . . . , 2W . The output of each Image Comparator is
the respective distance between the query descriptor vector
vq and the candidate image descriptor vector vi. Each cal-
culated distance is retrieved and stored into a min-Heap4 H.
After all the 2W comparisons have been performed, the top-
k image IDs similar to query q form the result set R. The
algorithm of P-DVC’s Query Processing step is presented in
Algorithm 5.

ALGORITHM 5: Query Processing Algorithm

Input: vq : the D-dimensional descriptor vector of the query
image oq

p: the D-dimensional priority index vector
k: the number of top-k results
W : the search radius
pk: the primary key to the dimension with the highest value
cardinality
Output: the top-k results set R of the query image q

1 set R ← ∅;
2 set min-heap H ← ∅
3 posq = Insert(vq) based on Algorithm 4;
4 generate V2W by retrieving W descriptors prior to posq

and W descriptors next to posq ;
5 for iter = 1 to 2 ·W do
6 compute the distance d(viter,vq) from an available

m-th Image Comparator, with viter ∈ V2W ;
7 insert the ID of image descriptor vector viter and the

distance d(viter,vq) into H;
8 end
9 for iter = 1 to k do

10 retrieve and remove the image t located on top of H;
11 R = R

∪
t;

12 end
13 return the top-k results set R;

In line 3, the query descriptor vector vq is inserted based
on Algorithm 4, returning the respective position posq in L.
Then, vq is stored and the linked list L is updated respec-
tively. To increase the probability of retrieving the top-k
most similar images, a specific constant range is used, de-
noted by the search radius W , with W ≫ k. In line 4, a set
V2W of descriptor vectors is generated. The 2W descriptor
vectors are the W previous and W next to the position posq
in L. In lines 5 to 8, ∀ viter ∈ V2W , the respective dis-
tance d(viter,vq) is calculated by an m-th available Image
Comparator, based on a predefined distance measure d(·),
4http://en.wikipedia.org/wiki/Min-max_heap

e.g. L1, L2, squared-L1, etc. Since the Image Comparator
contains the most essential process of the query process-
ing algorithm, on each m-th Image Comparator multi-core
instances are assigned to parallelize each distance calcula-
tion in T threads. In doing so, the computational cost of
each distance calculation is further reduced, achieving thus
lower similarity search time. Then, each calculated distance
d(viter,vq) candidate image ID is inserted into a minimum-
heap H (line 7). Then, in lines 9-12, after all 2W distance
measurements have been completed, the top-k image IDs are
extracted by the top of the minimum-heap H. The final set
of top-k IDs constitutes the result set R.

Complexity Analysis
The complexity of the query processing algorithm is calcu-
lated as the aggregation of: (a) the allocation of the storage
position posq based on the Insertion Algorithm 4, (b) the
construction of the minimum-heap structure H, and (c) the
generation the result set R. Based on Eq. (4), the complex-
ity of allocating position posq is O(|Vpk| · log |Vpk|) +O(D).
Moreover, the distance calculations of the 2W closest im-
ages’ positions are performed by the corresponding M Dis-
tance Comparators. Therefore, the complexity of the dis-
tance calculations is O(2·W

M·T · D), where T is the number
of threads that are used to parallelize each distance calcu-
lation in each Image Comparator. Additionally, since 2W
image IDs are inserted into the heap H, the insertion of
each image into the heap is performed in O(log 2 ·W). How-
ever, over the execution of the Query Processing algorithm,
k images are preserved into the heap H, i.e. the already ex-
amined images that have the lowest distance d(viter,vq) to
the query and thus, the complexity of the insertion of each
image into the heap is reduced from O(log 2W) to O(log k).
In doing so, the complexity of the distance calculations is
O(2·W

M·T ·D · log k). Finally, the retrieval of the k image IDs
from the heap H has a O(k) complexity. Summarizing, the
final complexity of the Query Processing algorithm is:

O(|Vpk| · log |Vpk|) +O(D) +O(
2 ·W
M · T ·D) +O(k) (5)

5. EXPERIMENTS

5.1 Datasets And Settings
In our experiments we evaluate P-DVC on the Tiny Im-

age collection 5 of N=80M images of GIST descriptors of
D=348-dimensions (GIST-80M-348d) and N=1B images
of SIFT descriptors of D=128-dimensions of the TEXMEX
collection6 (SIFT-1B-128d).

Following the evaluation protocol of [8, 10, 11], we per-
formed 1,000 test queries, where the search accuracy mAP
for each query is measured according to the following ratio:

mAP =
|Rseq ∩Rind|

k

where Rseq is the set of the top-k results (Euclidean neigh-
bors) retrieved by the sequential search based on the Eu-
clidean distance, whereas Rind is the set of the top-k results
retrieved by the examined similarity search method. The
final performance of each method is measured by the mAP

5http://horatio.cs.nyu.edu/mit/tiny/data/index.
html
6http://corpus-texmex.irisa.fr/

variable, which is defined as the average search accuracy of
the 1,000 performed queries.
Two are the most crucial parameters in P-DVC, the num-

ber of machines M=(2,8) and the search radius 2W= (0.1%,
1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%),
expressed as a percentage of the N total dataset size.
According to Eq. (4), the insertion time of a new image

descriptor vq depends on the dimensionality D of the de-
scriptors and the size of the small subset |Vpk| ≪ N . There-
fore, the insertion time does not depend on the number of M
machines and the dataset size N . Insertion times of P-DVC
are 4.217 and 8.27 msec for SIFT-1B-128d and GIST-
80M-348d, respectively.
The proposed P-DVC framework was implemented in Java

using the Windows Azure Emulator 7 under the SDK 2.1.
All experiments were conducted on a machine of 3.3 GHz
CPU with 18 GB main memory, running Windows Server
2008 R2 Enterprise Edition 64-bit. In our experiments, we
allocated 1 CPU and 2 GB RAM, corresponding into one em-
ulated machine, and in the case of each Image Comparator
we provided the maximum amount of T=8 parallel threads.
Our source code is publicly available 8.

5.2 Results
In our experiments, we compared P-DVC against the fol-

lowing parallel similarity search strategies:
(1) Multi Index Hashing (MIH) [10]: MIH 9 achieves

parallel processing by using multiple hash tables. For mak-
ing fair comparison, we evaluate the performance of P-DVC
of M machines against MIH of M hash tables. Following
the experimental evaluation of MIH, we used the hashing
methods of LSH and MLH [9]. For both hashing methods in
the MIH framework, we varied the number of bits by 8, 16,
32 and 64. The reason for limiting the number of bits vari-
ation to 64 bits is that the implementation of MIH caused
memory overflows for higher number of bits for both LSH
and MLH methods. The number of the M hash tables were
varied as the number of the M machines in P-DVC.
(2) KD-Trees [1]: Following the evaluation strategy of

[1], we used the parameter of backtracking steps, denoting
the fixed budget for doing backtracking steps for every di-
mension which is shared among all the KD-Trees searched
for this dimension. The backtracking steps for KD-Trees 10

were varied in (0.5%, 1%, 3%, 5%, 7%, 9%, 10%, 11%, 12%),
expressed as a percentage of the total dataset size N . The
reason for limiting the backtracking steps is that the search
time is exponentially increased for large number of back-
tracking steps. For the KD-Trees method, the number of
the M machines in P-DVC is equal to the number of the M
KD-Trees that are required to be built.
(3) FLANN[8]: Following the evaluation strategy of [8]

on large-scale datasets we used the randomized KD-trees
algorithm using M=(2,8) machines to search in parallel over
the constructed KD-trees, by varying the branching factor
as in [8, 12]. In the preprocessing step, the publicly available
implementation of FLANN 11 by default uses all available
machines.

7http://www.windowsazure.com/en-us/
8http://delab.csd.auth.gr/~draf/pdvc.zip
9https://github.com/norouzi/mih

10Following [1] we parallelized the implementation of the Cal-
tech Large Scale Image Search Toolbox.

11https://github.com/mariusmuja/flann

(4) Inverted Multi-Index [2]: According to the ex-
perimental evaluation in [2], for Inverted Multi-Index 12

we varied the list length in the range of (28,212,216) us-
ing a codebook with size 214. Inverted Multi-Index does
not work in parallel; however it was also evaluated on the
common SIFT-1B-128d andGIST-80M-348d evaluation
datasets.

In Figure 2, we evaluate the performance of P-DVC against
the competitive strategies. In both datasets, P-DVC out-
performs the competitive similarity search strategies for the
same settings, i.e. the number of M machines is equal to the
number of M hash tables. This is achieved by exploiting
the dimensions value cardinalities and efficiently splitting
the computational effort of the query processing algorithm
(Algorithm 5). This contrasts to the competitive similarity
search strategies which do not reach high mAP in low search
time. For instance, despite the fact that the search time of
MIH is low, MIH preserves the limited mAP accuracy of
the hashing methods (LSH and MLH). The most compet-
itive method is FLANN; however, it searches the complex
structure of KD-tree in parallel, increasing thus the search
time.

In Table 1, we present the preprocessing cost of the ex-
amined methods. The MIH framework performs parallel
processing only in the case of online similarity search by
using multiple hash tables. However, the number of hash
tables does not affect the offline preprocessing cost. There-
fore, for the MIH framework we report the preprocessing
time requirements for all number of bits variations. For
the KD-Trees method, the number of machines is equal to
the number of the KD-Trees that are required to be built.
As aforementioned, the publicly available implementation of
FLANN by default uses all available machines in the prepro-
cessing step and thus we report only one preprocessing cost.
Inverted Multi-Index does not support parallel preprocess-
ing. The proposed P-DVC strategy has the less preprocess-
ing requirements. This happens because the preprocessing
algorithms of P-DVC (Section 4.2) avoid using complex in-
dex structures and function efficiently in parallel. The main
differences between P-DVC and the competitive methods
are that the MIH’s preprocessing step does not function
in parallel, whereas the KD-Tree method and FLANN re-
quire a significant preprocessing cost to build the complex
structures of multiple KD-Trees and randomized KD-trees,
respectively. Meanwhile, Inverted Multi-Index has heavy
computational costs, by increasing the list length, without
paying off in terms of search time and mAP in the online
search.

6. CONCLUSIONS
In this paper, we presented a Parallel similarity search

strategy based on the image descriptors’ Dimensions Value
Cardinalities, called P-DVC. By considering DVC in our
similarity search strategy, we avoid constructing complex
index structures (KD-trees, Inverted Multi-Index, Hash Ta-
bles) and thus we preserve the preprocessing cost low. More-
over, since no complex structures have been built, searching
in these structures is avoided and thus the search time is
significantly reduced, by prioritizing dimensions with high
DVC in our parallel searching strategy. In doing so, the
proposed method preserves the mAP accuracy high in low

12https://github.com/arbabenko/MultiIndex

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

20

40

60

80

100

Search Time (msec)

GIST−80M−384d (M=2)

P−DVC
MIH−MLH
MIH−LSH
KD−Trees
FLANN
Inverted Multi−Index

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

20

40

60

80

100

Search Time (msec)

GIST−80M−384d (M=8)

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

Search Time (msec)

SIFT−1B−128d (M=2)

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

Search Time (msec)

SIFT−1B−128d (M=8)

Figure 2: Performance Evaluation.

search time. An interesting topic for future work is to eval-
uate the proposed P-DVC framework on a real cloud infras-
tructure, including the network’s latency and overhead.

7. REFERENCES
[1] M. Aly, M. E. Munich, and P. Perona. Distributed

kd-trees for ultra large scale object recognition. In
Proceedings 22nd British Machine Vision Conference
(BMVC), pages 1–11, 2011.

[2] A. Babenko and V. S. Lempitsky. The inverted
multi-index. In Proceedings IEEE Conference on

Table 1: Preprocessing Cost (sec)
SIFT-1B-128d GIST-80M-384d

P-DVC (M=2) 25.07 27.68
P-DVC (M=8) 20.07 21.99
KD-Trees (M=2) 948 972
KD-Trees (M=8) 797.04 830.94
FLANN 618 918

Inverted Multi-Index (28) 94,740 69,660

Inverted Multi-Index (212) 116,640 83,880

Inverted Multi-Index (216) 134,940 106,620
MIH-LSH (8-bit) 55.97 69.57
MIH-LSH (16-bit) 61.76 78.15
MIH-LSH (32-bit) 87.18 102.78
MIH-LSH (64-bit) 120.84 156.80
MIH-MLH (8-bit) 50.35 67.2
MIH-MLH (16-bit) 63.82 81.30
MIH-MLH (32-bit) 91.07 124.67
MIH-MLH (64-bit) 114.92 167.32

Computer Vision and Pattern Recognition (CVPR),
pages 3069–3076, 2012.

[3] H. Cheng, K. A. Hua, K. Vu, and D. Liu.
Semi-supervised dimensionality reduction in image
feature space. In Proceedings 23rd ACM Symposium
on Applied Computing (SAC), pages 1207–1211, 2008.

[4] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In Proceedings
25th International Conference on Very Large Data
Bases (VLDB), pages 518–529, 1999.

[5] Z. Huang, H. T. Shen, J. Liu, and X. Zhou. Effective
data co-reduction for multimedia similarity search. In
Proceedings ACM SIGMOD International Conference
on Management of Data, pages 1021–1032, 2011.

[6] K. Jarrah and L. Guan. Content-based image retrieval
via distributed databases. In Proceedings 7th ACM
International Conference on Image and Video
Retrieval (CIVR), pages 389–394, 2008.

[7] D. G. Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

[8] M. Muja and D. G. Lowe. Scalable nearest neighbour
algorithms for high dimensional data. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, to appear.

[9] M. Norouzi and D. J. Fleet. Minimal loss hashing for
compact binary codes. In Proceedings 28th
International Conference on Machine Learning
(ICML), pages 353–360, 2011.

[10] M. Norouzi, A. Punjani, and D. J. Fleet. Fast exact
search in hamming space with multi-index hashing.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(6):1107–1119, 2014.

[11] E. Tiakas, D. Rafailidis, A. Dimou, and P. Daras.
MSIDX: multi-sort indexing for efficient content-based
image search and retrieval. IEEE Transactions on
Multimedia, 15(6):1415–1430, 2013.

[12] J. Wang, N. Wang, Y. Jia, J. Li, G. Zeng, H. Zha, and
X. Hua. Trinary-projection trees for approximate
nearest neighbor search. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
36(2):388–403, 2014.

