
Adaptive memory-aware chunk sizing techniques for
data-intensive queries over Web Services

Anastasia Theodouli
Dept. of Informatics

Aristotle University of Thessaloniki, Greece
anastath@csd.auth.gr

Anastasios Gounaris
Dept. of Informatics

Aristotle University of Thessaloniki, Greece
gounaria@csd.auth.gr

ABSTRACT

Modern applications of Web Services (WSs) that involve the
processing of large amounts of data tend to transmit data in
chunks. Several performance control techniques have been
proposed to dynamically select the appropriate chunk size
with a view to minimize the communication cost. However,
when the data consumer is slower than the data producer,
the consumer applications may suffer from memory short-
age if high volumes of data arrive in the incoming buffers.
To this end, we propose a specific approach to coupling per-
formance control with congestion control features, in order
to consider both performance and memory overflow issues
in an integrated manner. The performance results with real
data show that we can combine these controllers effectively
and efficiently, so that no memory overflow occurs at the
expense of negligible performance degradation.

1. INTRODUCTION
Web services (WSs) allow the development of network-

available applications in a standard, rapid, easy and low-cost
way; their proliferation has imposed a profound impact on
both the software development practices, giving rise to the
service-oriented architecture paradigm, and the way enter-
prize and scientific applications are integrated and exposed
over the Internet [7]. Currently, the example usages of WSs
cover a particularly wide spectrum of applications, which
are compatible with modern web, grid and cloud infrastruc-
tures.

This work has been largely motivated by applications of
WSs that involve the processing of large amounts of data.
Several WS-based scientific applications fit into this category
(e.g., [6, 5]). A common characteristic in such scenarios is
that WSs are typically repeatedly accessed and the volume
of data to be transferred remotely and processed by the WSs
is high. A similar setting is the one provided by application-
generic service-based query processing tools, which assume
a dataflow that is processed with the help of query execution
plans comprising accesses to WSs (e.g., [1, 10, 9]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

Without loss of generality, we assume a setting that is
very common in OGSA-DAI applications. OGSA-DAI is a
pioneer system in WS-based query processing and provides
a framework for access and management of remote and dis-
tributed databases that are exposed as WSs; OGSA-DAI has
been successfully applied to several domains, including as-
tronomy, meteorology, medical research, computer-aided de-
sign and engineering [1]. In Fig. 1, we depict the main inter-
actions that involve passing messages over the network. The
client program consists of two threads, namely a thread for
transferring the data from the remote source, and a thread
that performs the actual processing. In Step 1, the client
program issues a query, which, in the cases considered in this
work, returns a high volume of data for further processing
on the client side. The service-wrapped database receives
the query and prepares the results. Typically, the results
are not sent in a single message, but are split into chunks
[10, 3]. More specifically, in Step 2a, the client asks for the
next chunk of the results specifying the exact chunk size
(measured in number of tuples) as a parameter. Upon re-
ceipt of such a request, the WS encapsulating the database,
sends a chunk of results (Step 2b), which are stored in an
input queue. Steps 2a and 2b are repeated as many times as
needed to retrieve the complete result set. In parallel with
the data transfer thread, the data processing thread retrieves
data items from the input queue in order to process them.

Problem Description. As mentioned above, the fact that
the data volume to be transferred is split into chunks intro-
duces a new problem, namely the selection of the appropri-
ate chunk size. In [10, 3], firstly, it has been reported that
the size of the chunk size affects the overall performance and
the cost to transfer a dataset remotely, and secondly, appro-
priate performance control techniques to minimize this cost
have been proposed. These techniques decide the optimal
size of the chunks, either in a static or in an adaptive man-
ner. In general, the cost per data item is a unimodal function
of the chunk size: for small chunk sizes the cost is high and
decreases for larger chunk sizes up to a point where further

database

WS wrapping a database client program

data transfer

 thread

data process

 thread

input queue

1

2a

2b

Figure 1: High-level description of our setting.

increases in the chunk size lead to increase in the cost as well;
the techniques in [10, 3] basically aim to efficiently detect
that point. Although such techniques are appropriate when
the cost to transmit a chunked dataset dominates, they fall
short when the network is fast relatively to the speed that
the consumer service processes data. In those cases, data
is accumulated in the WS incoming queue because the data
transfer thread is faster than the data processing thread,
and thus, after a point, memory overflow occurs, which, in
turn, leads to significant performance degradation, e.g., due
to thrashing, or even WS failure.

Our contribution lies in that we extend the existing adap-
tive techniques for chunk size selection, so that applications
are endowed with the capability to take into account both
the need to transmit data as quickly as possible, and the
need to keep the volume of buffered data below the size
of the memory that is available. More specifically, we pro-
pose to integrate congestion control with performance con-
trol when tuning the chunk size at runtime, and, to this end,
we draw inspirations from lower-level TCP buffer sizing tech-
niques. The performance results with real data show that
we can combine these controllers effectively and efficiently,
so that no memory overflow occurs at the expense of neg-
ligible performance degradation. Our controller operates at
the client side and on top of any existing network protocols
(e.g., SOAP/HTTP for the OGSA-DAI setting). In other
words, we do not propose any new application protocol, but
appropriate techniques to specify the requested chunk size
in Step 2a in the setting of Fig. 11.

Note that the novel technique that we propose can be ex-
tended to non-WS scenarios, since it is applicable to any
setting where i) data is retrieved by a processing client in
chunks of configurable size and ii) the data consumer is
slower than the data producer (at least on average). Such
cases may be encountered in more traditional data manage-
ment; e.g., the work in [2] provides evidence about potential
memory overflows when employing the well known pipelined
join algorithm in [12]. Other cases that are tailored to our
technique are those where the data consumer performs an
intensive task, such as on-the-fly outlier detection.

Structure. The remainder of this article is structured as
follows. We discuss related work in Sec. 2. Our extensions
regarding congestion control, which come in two flavors, are
thoroughly presented in Sec. 3. Our proposal is evaluated
using real data, and the evaluation results appear in Sec. 4.
Finally, Sec. 5 concludes the paper.

2. RELATED WORK
The related work on data chunk sizing can be classified

in two main categories depending on the application set-
ting. The first category refers to the scenarios that deal with
chunk sizing during data transmission over remote software
services mainly with a view to improving the performance.
The second category regards a similar problem at a much
lower network level, and deals with the chunk sizing prob-
lem in the context of the TCP protocol mainly with a view
to avoiding memory overflow.

Data chunk sizing for software/WS clients. Transferring
large amounts of data residing on distributed and heteroge-
neous databases which are exposed via WSs has posed an

1Our chunk sizing technique should not be confused with
the HTTP chunked transfer encoding.

urge for implementing several techniques of chunked data
transmission. This urge derives mostly from the fact that
WSs are slow and thus the communication cost per se be-
comes the bottleneck. As mentioned before, the per data
item cost of a chunk follows a unimodal function of the chunk
size in the generic case, and as such there is a global min-
imum. Also, typically, there are minimum and maximum
limits in the chunk size (e.g., imposed by the network packet
lengths). The work in [10] presents a static approach that
defines the optimal chunk size through profiling information.

The techniques in [3] deal with an adaptive version of the
problem of deciding the optimal chunk size, which is tailored
for dynamic, volatile environments with no a-priori profiling
information. They assume a client that pulls data from a
remote store in chunks (as we do) and they are based on
a switching extremum control algorithm that optimizes the
data transfer by tuning the data chunk to be transferred
in each step taking into account the average transmission
time of the previous data chunks. As such, this solution is
based on control theory and more particular in the feedback
(or closed) loop control systems. Our work is orthogonal
to those techniques, since we focus on congestion control;
moreover, our proposal can encapsulate any performance
controllers as explained in Sec. 3.

Data chunk sizing in TCP. The notion of data partition-
ing in an attempt to control the flow of data transmitted
between two peers is also introduced in the TCP protocol.
Both in TCP Flow and Congestion control, the amount of
data to be transferred between the two peers, termed as
sender and receiver, is predefined by taking into account
the receiver’s available buffer size and the network conges-
tion, respectively. The Sliding Windows technique [11, 8]
used in TCP Flow Control aims at avoiding the throttling
of the receiver due to a faster sender. The upcoming net-
work congestion can also be detected by the TCP interme-
diate routers that apply techniques such as Active Queue
Management (AQM) in order to notify the TCP endpoints
about early congestion; one technique that leverages AQM is
Random Early Detection (RED) [4]. These techniques have
inspired our work; however our congestion control operates
at a higher level than TCP. In general, chunk sizing has been
employed in network buffers to achieve high link utilization.
Real links almost always contain a complex mix of flow con-
nection lengths, round-trip times, UDP traffic and so on,
and measurements conform that traffic patterns change sig-
nificantly over time; this motivates adaptive approaches to
buffer sizing, where attention must be paid to cases where
no data loss is allowed [13].

3. MEMORY CONGESTION CONTROL
Since most WSs exhibit poor performance, e.g., due to

parsing and data transfer overheads [10], a major concern in
a large portion of WS-based applications is the data trans-
mission cost. To this end, the algorithms that we presented
in the previous section have been proposed in order to cope
with the data transmission cost minimization. Nevertheless,
there is an increasing number of WS-based applications that
are not network-bounded. In such applications, the through-
put depends mostly on the data processing capability of the
data consumer. More specifically, whenever the client pro-
cesses the data at an average rate that is slower than the
rate it receives it, data gets accumulated in the client’s input
queue; as such, it is possible to experience memory conges-

tion at the client side. If memory congestion persists and is
not addressed, it may lead to memory overflow with detri-
mental impacts on the performance. Note that applications
that employ a performance controller are more prone to this
phenomenon, due to their capability of optimizing the trans-
mission from the data source to the data consumer.

A naive solution to the problem of memory congestion
would be to modify the client logic, so that i) the data is
processed as soon as it arrives at the consumer side; and ii)
the next chunk of data is requested only after the processing
of the previous chunk has finished. Obviously, in such a
scenario, the maximum amount of data that is temporarily
stored in the incoming buffers of the client is equal to the
size of biggest chunk requested. If that size is no greater
than the memory available, then no memory overflow can
occur. However, such a solution is unacceptably slow, since
the data communication and processing activities take place
in a sequential rather than in a parallel manner.

In this work, we have developed a solution that does not
compromise the overlapping between processing and com-
munication time, and combines performance control with
memory congestion control thus resulting in an integrated
controller to run at the client side; such a controller adjusts
the chunk size requested at each step so that the transmis-
sion cost is minimized while no memory overflow can hap-
pen. In fact, we introduce an application of a two-layer
control, where congestion control is activated when mem-
ory congestion is detected. Our memory congestion control
proposal is inspired by and based on some of the TCP/IP
control techniques of the Internet protocol suite lower level
layers (discussed in Sec. 2.). However, our controller oper-
ates at a much higher level, regards the internal behavior of
the communication links as a black box, and is independent
of any network transport protocol implementation.

3.1 The two flavors of the controller
We present two controllers for memory congestion: the

first one builds upon ideas from TCP Flow Control and Ac-
tive Queue Management (AQM) [4], whereas the second is
inspired by the TCP/IP congestion handling mechanisms.
These controllers take over, when the incoming memory
buffers are running out of free space, as explained later.

Flavor I: Memory congestion control based on Active Queue
Management and TCP/IP flow control. On the application
layer, the client-side controller uses a control technique that
is used both in TCP/IP flow control and in AQM. In both
these mechanisms, the next data chunk size to be transferred
is decided based on the available buffer size at the side of the
receiver when referring to the TCP/IP flow control and of
the bottleneck router when referring to the AQM. As such,
the way memory congestion is handled depends on the in-
tensity of the congestion.

The details are as follows. During TCP flow control, the
TCP receiver of an established TCP connection, which cor-
responds to our data consumer that pulls data from the data
source, advertises to the TCP sender the size of the next
packet (the so called window or rwnd) that is willing to ac-
cept in order to avoid the congestion on its input buffer. The
receiver’s advertised window is calculated by the equation:

Window = rcvBuffer − (lastByteRcvd− lastByteRead)

where Window is the rwnd, rcvBuffer is the size of the
receiver’s buffer, lastByteRcvd is the sequence number of the

last byte that was received, and lastByteRead is the sequence
number of the last byte that was read and thus removed from
the input buffer.

In the equation above, it can be easily observed that the
window corresponds to the available input buffer size of the
receiver. The AQM mechanism relies on a similar rationale:
In the context of an established connection, the intermediate
routers constantly check the size of the used input buffer size
and of the available space in order to detect early congestion.

Our controller leverages the afore-mentioned rationale, as
it cannot adopt it in a straightforward manner. The reason
is that our controller is located at the client side and has
full control of the next chunk size to be requested; this holds
true for any pull-based data transmission. The consequence
is that simply advertising the available buffer size does not
yield any results in our case. So, we propose an approach
according to which, in each step, we check the available size
of the input buffer. Then we calculate the size of next chunk
as a percentage of the available buffer size in the following
way:

chunkSize = β · availableBufferSize (1)

where β is a configurable parameter. Through experimen-
tation we have found out that setting β to 0.1 is a good value
that helps in avoiding memory congestion, although our al-
gorithm is rather insensitive to different β values. More
results along with sensitivity analysis for this parameter ap-
pear in the evaluation section.

Flavor II: Memory congestion control based on TCP/IP
congestion control. The second flavor builds on top of tech-
niques used by the TCP/IP Congestion Control. More specif-
ically, in one of the algorithms used in TCP/IP congestion
control, called fast recovery, the window is reduced to the
half of its previous value when the sender receives the same
acknowledgement (ACK) three times, which is an evidence
of congestion; after this reduction, the sender increases the
window linearly in accordance with the congestion avoidance
algorithm and uses ACKs received by the receiver in order
to determine the rate of packet transmission.

Our controller imitates the aforementioned rationale by
reducing the next chunk size to the half when it detects
memory congestion at the client-side. The equation used
to calculate the next chunk size appears below, where it is
assumed that memory congestion has been detected during
the k-th step:

chunksizek+1 =
chunksizek

2
(2)

The relative performance of the two flavors is investigated
and discussed in Sec. 4.

3.2 An integrated controller
In order to benefit from both the performance and the

congestion control, we proceeded in the integration of the
two controllers thus resulting in a hybrid two-layer controller
that operates as a performance controller when no memory
congestion is detected, and switches to a memory congestion
controller if the memory available is lower than a threshold.
Note, that there are multiple flavors of performance control
(e.g., several flavors of a performance controller are discussed
in [3]). Any of such flavors can be combined with both the
flavors of congestion control presented above, which gives
rise to a big number of variants of the integrated controller.

Figure 2: The control areas in the integrated controller
(threshold1=lt; threshold2=ut).

Central to our integrated controller, is the detection of
memory congestion. This is performed with the help of a
configurable threshold ut, which denotes the upper threshold
of the extent to which the memory is full; a typical value of
ut is 80%. When the memory available is less than 1-ut, then
the congestion control becomes responsible for the decisions
on the size of the next chunk. However, we do not allow the
performance controller to resume as soon as the occupied
memory decreases below ut as a result of the congestion
control. The reason is that such an approach is particularly
prone to instability. To avoid that problem, we re-activate
the performance controller only after the occupied memory
becomes lower than a second threshold, lt (lower threshold),
where ut > lt. A typical value of lt is 60%.

Through the incorporation of the two thresholds men-
tioned above, the operating area of the integrated controller
is partitioned in three sub-areas, as shown in Fig. 2. The
first area corresponds to the case that no memory conges-
tion has been detected and the size of the next chunk is
decided by the performance controller. Without loss of gen-
erality, we assume that, as time goes by, data is accumu-
lated to the incoming buffer, so that, after a time point,
the size of this data exceeds ut. Then we enter, the second
sub-area, where the congestion control is activated. The
role of the congestion controller is not to allow the buffer to
become completely full, which results in memory overflow,
and the main mechanism to this end is to reduce the size of
the chunks requested as explained earlier. The congestion
controller is de-activated, when the amount of temporary
data becomes lower than lt times the size of the incoming
buffer. That corresponds to the third area, in which the
performance controller defines the chunk size. Note that the
pattern depicted in Fig. 2 may be repeated arbitrary times
during the transmission of a large dataset.

The pseudocode of the integrated controller is in Algo-
rithm 1, where we present the version of the integrated con-
troller that implements the first flavor of the congestion con-
troller. The PerformanceControl function encapsulates any
performance controller that we may employ, as discussed
above. The algorithm also employs a variable rising in or-
der to detect the operating area, and thus the type of the
controller to be applied. Note also that, when memory con-
gestion is detected, no chunk is requested for a sleeptime
period (lines 18 and 24); this heuristic further helps in avoid-
ing memory overflow. For the second flavor of the congestion
control, the changes in the algorithm are trivial: lines 20 and
26 are simply replaced with Equation (2). In all cases, the
time complexity for computing the next chunk size is O(1).

Algorithm 1 Integrated Controller

1: chunkSize← initialChunkSize

2: congestionDetected← false

3: while endOfResults is false do

4: if occupiedBufferSize < lt then

5: rising ← true

6: congestionDetected← false

7: t1 ← timestamp()
8: WebService.requestNewBlock(chunkSize)
9: t2 ← timestamp()
10: chunkSize ← PerformanceControl(t2 −

t1, chunkSize)
11: else if occupiedBufferSize < ut then

12: if rising is true then

13: t1 ← timestamp()
14: WebService.requestNewBlock(chunkSize)
15: t2 ← timestamp()
16: chunkSize ← PerformanceControl(t2 −

t1, chunksize)
17: else

18: WebService.sleep(sleeptime)
19: WebService.requestNewBlock(chunkSize)
20: chunkSize← β · freeBufferSize()
21: congestionDetected← true

22: end if

23: else

24: WebService.sleep(sleeptime)
25: WebService.requestNewBlock(chunkSize)
26: chunkSize ← β · freeBufferSize()
27: rising ← false

28: congestionDetected← true

29: end if

30: end while

4. EVALUATION
The evaluation of our approach is based on real data with

regards to the actual transmission time of chunks of data.
We installed an OGSA-DAI service, which provides a service
interface to pull data from a background database in chunks
of configurable size. As explained earlier, our approach is
tailored to environments, where the communication cost is
not the only dominant cost; more specifically, we are in-
terested in case where the average computation cost is at
least as high as the average communication cost at least for
certain chunk sizes, so that memory congestion phenomena
may arise. In our experiment setting, we used a client that
is connected to the same LAN as the database server. In all
experiments, the chunk size is measured in the amount of
database tuples retrieved; each tuple has an average length
of approximately 100 bytes thus the size of each chunk in
bytes can be computed in a straightforward manner as well.

In the following, we first present the profiles of the func-
tion of the per tuple communication cost as a function of
the chunk size, and then we present our experiments. The
aim of the experiments is: i) to demonstrate the effective-
ness of our congestion controllers to avoid memory overflow
issues; (ii) to show that the aforementioned effectiveness is
combined with high efficiency, in the sense that the perfor-
mance degradation when no memory congestion occurs is
negligible; and (iii) to provide evidence about the sensitiv-
ity of our results with regards to the controller parameters

0 0.5 1 1.5 2

x 10
4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
per tuple communication cost

chunk size

m
ill

is
e
c
o
n
d
s

0 0.5 1 1.5 2

x 10
4

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
per tuple communication cost

chunk size

m
ill

is
e
c
o
n
d
s

(a) (b)

0 0.5 1 1.5 2

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
per tuple communication cost

chunk size

m
ill

is
e
c
o
n
d
s

0 0.5 1 1.5 2

x 10
4

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
average per tuple communication cost

chunk size

m
ill

is
e
c
o
n
d
s

(c) (d)

Figure 3: (a)-(c): profiles of the per tuple communication
cost in different time periods; (d): the average per tuple
communication cost.

and the evaluation environment settings.
Profiles. In order to construct the real profiles of the per

tuple communication cost for different chunk sizes, we took
measurements in 12 distinct time periods, during which both
the client and server machines were relatively unloaded (i.e.,
they were running only the client and the database and web
server software, respectively), but the network was shared
among dozens of users. In each time period, we took mea-
surement for chunk sizes between 1000 and 20000 tuples. For
each chunk size, we repeated the measurements 10 times,
and we created a profile for each time period; i.e., overall we
created 12 profiles. Fig. 3 shows some representative sam-
ples. In Fig. 3(a) and (b), the profiles contain numerous
local minima, but in general the per tuple communication
cost decreases with increased chunk sizes. The point that the
decrease becomes steep and the features of the local optimal
areas differ. Fig. 3(c) represents a profile that is more typ-
ically encountered in wide settings, given also the evidence
in [3]. In our experiments, such a profile trend appeared
only once in the 12 time periods and provides evidence that
allowing the chunk size to increase arbitrarily may lead to
detrimental effects. Finally, the average behavior is depicted
in Fig. 3(d).

4.1 Experiments
The experiments to evaluate our proposal utilize the pro-

files constructed in the way described above so that a real-
istic environment is emulated; this is done in order to avoid
non-determinism in the experiments while taking measure-
ments that fully map to realistic settings. So, in our experi-
ments, the client adopts a modified version of the Algorithm
1, where there is no actual data transmission, but the client
calculated the time cost need to receive a chunk size based
on the profiles. The second modification we made to the
algorithm is that we imposed hard limits on the smaller and
bigger chunk size, as discussed earlier.

The evaluation environment is parallel: we assume that
the data consumer on the client side, processes data as soon
as it arrives in parallel with the arrival of additional data

Parameter Value

Result Set 1000000 tuples
initialChunkSize 20000 tuples
sleeptime 10 msecs
β (used in flavor I) 0.1
lt 0.6
ut 0.8

Table 1: Fixed parameters for the first set of the experiments

per tuple
processing
cost (in
msecs)

0.5 0.6 0.7 dynamic aggregate

- memory
available

5 % 0/0/11 2/2/11 3/3/11 0/0/11 5/5/44
25 % 0/0/3 0/0/11 3/3/11 0/0/11 3/3/36
50 % 0/0/0 0/0/0 0/0/3 0/0/0 0/0/3
75 % 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
aggregate 0/0/14 2/2/22 6/6/35 0/0/22 8/8/83

Table 2: Number of the occurrence of memory overflows for
flavor I / flavor II / No congestion control.

chunks. As such, it constantly checks its internal buffer
where data arrives to check whether it is empty or not; and
if it is not empty it processes the next tuple. Regarding the
performance controller, we take the simplest approach that
is compliant with the profiles constructed: we assume that
the chunk size is fixed at 20000 tuples, which is the value
that leads to the optimal per tuple communication cost in
11 out of 12 profiles. More sophisticated dynamic solutions
can converge to this value, even if that was not known a-
priori. In other words, our selection for this constant chunk
size is equivalent to a the choice of an effective performance
controller while avoiding any problems stemming from non-
determinism in our experiments. This allows us to concen-
trate solely on the impact of the congestion controller.

Avoidance of memory overflow. Initially, we examine the
capability to avoid memory overflow. We experiment with
i) different sizes of the memory available; and ii) different
speed of processing of incoming tuples (so that the space in
the memory buffer is freed). The rest of the parameters and
the environmental settings are shown in Table 1.

Table 2 shows the number of memory overflow for the two
flavors of the memory congestion controller compared to the
case that there is no chunk sizing control and the chunk size
remains fixed throughout the data transmission. The values
of the available memory we examined are 5%, 25%, 50%
and 75% of the complete dataset to be transmitted. The
values for the processing speed per tuple are chosen based
on the profiles so that they both are commensurate with
the transmission cost per tuple and may lead to memory
congestion. More specifically, we experimented with 3 fixed
consumer speeds (0.5, 0.6, and 0.7 msecs) and a dynamic
one, where, for each profile, the consumer speed was equal
to the per tuple transmission cost when the chunk size is
1000. When the value of the data consumer speed is 0.5
msecs, then the data processor is relatively fast, whereas,
when the value is 0.7 msecs, the consumer is relatively slow.

In each cell of Table 2, we show for how many of the 12
profiles, memory overflow took place. For example, when the
consumer speed is fixed at 0.7 for all profiles, and the mem-
ory available can store only 5% of the complete result set of
1000000 tuples, then memory overflow happens 3 times if we
employ congestion control and 11 times if we do not employ

congestion control. As expected, the number of memory
overflow decreases as the memory available increases and/or
the consumer processing cost per tuple decreases. On aver-
age we examined 4 · 4 · 12 = 192 profile-configuration pairs.
Without memory congestion control, in 83 cases we expe-
rience memory overflow, whereas, with the help of memory
congestion control, the number of time this happens is 8
only; the cases that memory overflow takes place despite
the existence of a congestion controller refer to scenarios
where the memory available is small and the consumer too
slow for the congestion controller to avoid overflow by ask-
ing smaller chunks. Note that the effects of the two flavors
are similar. This proves the effectiveness of our approach to
avoiding memory congestion.

Performance Overhead. A question may arise as to whether
there is a trade-off between tolerance to memory congestion
problems and performance. To investigate this hypothesis,
we compared the aggregate running time of both the data
transmission and the processing task for all the configura-
tions, for which all controllers did not exhibit memory over-
flow. In total 192−83 = 109 such configurations meet these
criteria. The evaluation results show that the difference be-
tween the running time is within a range of ±0.01%. Con-
sequently, we can claim that the associated overhead (i.e.,
the time cost of the incurred delays) when there is no need
for memory congestion control is totally negligible.

Sensitivity analysis. We have experimented with a wide
range of values for the sleeptime and β parameters, and the
lt and ut thresholds. No detailed figures are presented due
to space constraints. More specifically, for a fixed value of
memory available (25%) and consumer processing rate 0.6
msecs or 0.7 msecs, the sensitivity analysis results are as fol-
lows. Varying the β parameter of the first flavor from 0.001
to 0.3 and keeping the rest of the parameters as they appear
in Table 1, did not lead to a modification in the number
of memory overflows. However, the sleeptime parameter
had a (positive) impact on the effectiveness. For consumer
processing rate at 0.7 msecs per tuple, flavor I exhibited 2
memory overflows if the sleeptime increased to 100, and no
overflows at all if it increased to even larger values (e.g.,
500). Flavor II did not experience any memory overflow
even for sleeptime set to 100. The values of the threshold
tested were between 0.3 and 0.7 for lt, and 0.7 and 0.95
for ut. The only observed impact on the effectiveness of the
congestion controllers compared to the values in Table 2 was
2 memory overflows when the processing rate is 0.6 msecs
and the ut is 0.95. Overall, the analysis shows that the con-
gestion controllers are rather insensitive to their parameters
and can totally eliminate memory overflows if sleeptime is
increased significantly. Also, none of the values considered
had resulted in a significant increase in the running time in
cases where there was no memory congestion.

Comparison of the two flavors. The two flavors exhibit
similar performance as shown in the results presented above.
As such, there seems to be no clear winner between them.
However, the first flavor has one input parameter more,
namely the β parameter, and thus may be slightly less prac-
tical in some applications. Nevertheless, this is not sup-
ported by the sensitivity analysis above, where both flavors
have been shown to be rather insensitive to their parameters.

5. CONCLUSIONS
Nowadays, more and more data sources are publicly avail-

able on the web and may be exposed as services. Transfer-
ring large datasets to remote data consumers may incur a
high communication cost that is mitigated by splitting the
datasets in several chunks. The problem we deal with is that,
when a remote data source sends chunks of data at a speed
higher than the processing speed of the data consumer, the
data consumer may experience memory congestion problems
or even memory overflow if the amount of available memory
is limited. In this paper, we present a two-flavored solution
to this problem. More specifically, we propose an integrated
controller that dynamically tunes the chunk size at runtime
so that both the communication cost is minimized and no
memory overflow occurs. Our memory congestion control
mechanisms have been inspired by their counterparts in-
corporated within the TCP/IP protocol; however, in our
case we have managed to efficiently apply those techniques
at a higher level where a data consumer interacts with a
service-based database using SOAP/HTTP. The evaluation
was based on real data. The results presented support our
claim that our proposal is effective, in the sense that it re-
duces the cases where memory overflow occurs, and efficient,
in the sense that it incurs negligible overhead. An interesting
avenue for future work is to investigate the impact of choices
regarding lower-level network layers on our approach.

6. REFERENCES
[1] M. Antonioletti et al. The design and implementation of

grid database services in OGSA-DAI. Concurrency -
Practice and Experience, 17(2-4):357–376, 2005.

[2] M. A. Bornea, V. Vassalos, Y. Kotidis, and
A. Deligiannakis. Adaptive join operators for result rate
optimization on streaming inputs. IEEE Trans. Knowl.
Data Eng., 22(8):1110–1125, 2010.

[3] A. Gounaris, C. Yfoulis, R. Sakellariou, and M. D.
Dikaiakos. Robust runtime optimization of data transfer in
queries over web services. In Proc. of ICDE, pages 596–605,
2008.

[4] C. Hollot, V. Misra, D. Towsley, and W. Gong. Analysis
and design of controllers for aqm routers supporting tcp
flows. In IEEE Trans. on Automatic Control, volume 47,
June 2002.

[5] D. T. Liu and M. J. Franklin. The design of griddb: A
data-centric overlay for the scientific grid. In VLDB, pages
600–611, 2004.

[6] S. Narayanan, U. V. Catalyrek, T. M. Kurc, X. Zhang, and
J. H. Saltz. Applying database support for large scale data
driven science in distributed environments. In GRID, 2003.

[7] M. Papazoglou. Web Services: Principles and Technology.
Pearson, 2nd edition, 2011.

[8] Peterson and Davie. Computer Networks A Systems
Approach. Morgan Kaufmann, 3rd edition, 2003.

[9] M. Sabesan and T. Risch. Adaptive parallelization of
queries over dependent web service calls. In WISS, ICDE,
pages 1725–1732, 2009.

[10] U. Srivastava, K. Munagala, J. Widom, and R. Motwani.
Query optimization over web services. In VLDB, pages
355–366, 2006.

[11] W. Stallings. Data and Computer Communications.
Prentice-Hall, 6th edition, 2000.

[12] Y. Tao, M. L. Yiu, D. Papadias, M. Hadjieleftheriou, and
N. Mamoulis. Rpj: Producing fast join results on streams
through rate-based optimization. In SIGMOD, pages
371–382, 2005.

[13] G. Vu-Brugier, R. S. Stanojevic, D. J. Leith, and R. N.
Shorten. A critique of recently proposed buffer-sizing
strategies. SIGCOMM Comput. Commun. Rev.,
37(1):43–48, 2007.

