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ABSTRACT
Spatiotemporal databases emerge as an evolving scientific
field due to a great variety of applications, tracking mobile
objects being one of them. For this purpose, a number of
methods have been proposed to efficiently organize and in-
dex moving objects and answer spatiotemporal queries. The
majority of all these methods are addressing either the past
or the future movement of the moving objects. Up until
now, addressing both the past and the future movement of
the objects in an integrated manner has rarely appeared in
the literature. In the current paper, based on a spatiotem-
poral access method, the XBR-tree, we propose algorithms
for the efficient processing of spatiotemporal window (past)
and timestamp (past, present and future) queries. More-
over, we experimentally study the efficiency of processing
these queries based on the XBR-tree against using an exist-
ing structure, the RPPF -tree.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design—Access
methods; H.2.4 [Database Management]: Systems—Que-
ry processing ; H.2.8 [Database Management]: Database
Applications—Spatial databases and GIS

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Moving Objects, Spatiotemporal Databases / Queries

1. INTRODUCTION
During the past few years, several advances in mobile com-

puting and wireless technologies have taken place. Hand
held devices, mobile phones and wireless Internet terminals
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are continuously increasing in number. Tracking these mo-
bile objects constitutes an important issue and will become
critical in the years to come.

Additionally, there are several modern applications which
include vehicle navigation, tracking and monitoring. In these
applications, the positions of air, sea or land-based objects,
such as airplanes, fishing boats and cars are of interest.
An example of such applications, is to keep track of fighter
planes which move very fast in air-force combat situations.
Other real life examples that involve the use of objects with
changing positions over time are: traffic control and fleet
management. Geographical Information Systems are also a
source of spatiotemporal data and require support by spa-
tiotemporal database techniques. Moreover, the problem of
video (or multimedia, in general) database management is
relevant: objects appearing in each frame can be considered
as two-dimensional moving objects, which one may want to
keep track of.

All the abovementioned categories of applications have led
to the proposal of a large number of methods to efficiently
handle the organization, indexing and querying of moving
objects. These methods can be classified in three categories,
according to the time period of the movement of the objects:
the past, future, or past-future time period.

As far as spatiotemporal queries are concerned, a variety
of types have been proposed. Nevertheless, the types that
seem to have become dominant are the following:

• window query: we are given a rectangle R and a time
interval [ts, te] and we return all the moving objects,
that intersect it from ts to te.

• nearest neighbor query: we are given a moving
object o and a time interval [ts, te] and we determine
the nearest neighbors of o from ts to te.

• join query: we are given two moving datasets S1 and
S2 and a time interval [ts, te] and we calculate all the
pairs (s1, s2), with s1 ∈ S1 and s2 ∈ S2 such that s1

and s2 meet, or are, at most, at a specified distance
apart, at some time point from ts to te.

In the current paper, we aim at handling both the past
and the future movement of the moving objects. For this
purpose, we extend a historical indexing method, namely
the XBR-tree, to deal with the future movement as well.
Additionally, the query types on which we focus are both
window and timestamp . The window query is related to
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a past time range, while the timestamp query is related to
the past, present or future. We experimentally compare the
I/O performance of this technique with the performance of
a previously proposed technique, the RPPF -tree.

The rest of the paper is organized as follows: Section 2
presents previous works that refer to the handling of moving
objects. Section 3 describes in detail the assumptions under
which the technique that we propose works. The RPPF -tree
is described in Section 4, while Section 5 presents the XBR-
tree. Section 6 presents the experimental environment and
results. Finally, in Section 7 we present our conclusions and
our plans for future work in this topic.

2. RELATED WORK
As far as the theoretical background is concerned, Sistla

et al. [10] proposed a data model called Moving Objects
Spatiotemporal (MOST) data model that is capable to rep-
resent moving objects. The authors also proposed a query
language called Future Temporal Logic. Moreover, Wolfson
et al. addressed issues related to uncertainty and the fre-
quency of updating the locations of the moving objects in
the database [15].

In the literature, a large number of indexing schemes to
efficiently organize moving objects and answer spatiotem-
poral queries have been proposed. The majority of these
schemes refer to the past movement of the objects. Some of
these indexing methods are described in the following.

Pfoser et al. suggested the STR-tree, an R-tree based
indexing scheme suitable for the past movement of the mov-
ing objects [7]. The authors also examined trajectory-based
queries. Furthermore, Hilbert R-trees were proposed by
Nascimento et al. as an indexing method for spatiotempo-
ral data and range queries [5]. Zhu et al. proposed octagon
trees (OT-trees, O-trees), a structure able to index moving
objects and handle range queries [16].

In [13], a Quadtree based indexing method for spatiotem-
poral data to handle range queries was proposed. In [8, 14],
another quadtree based indexing method called the XBR-
tree, where the movement of the objects is related to his-
tory, has been proposed. Furthermore, the processing of
window queries based on XBR-trees has been presented. In
the current paper, we further extend the XBR-tree based
techniques to cover the future movement of the moving ob-
jects as well.

Additionally, Hadjieleftheriou et al. proposed the Par-
tially Persistent (PPR-tree) as a method for indexing and
querying the history of the moving objects [3]. In their im-
plementation, the authors considered that the objects have a
changing extent (for example, a moving object could shrink).
Furthermore, the movement of the objects was described by
polynomial functions (and not by linear ones) and the im-
plemented queries were range ones.

Apart from the indexing methods for the past movement
of the objects, in the literature there exists a limited num-
ber of research efforts that is related to the support of the
future movement of the objects. For example, Saltenis et
al. proposed an R∗-tree based indexing method (TPR-tree)
to index the current and the future locations of the mov-
ing objects [9]. The authors have implemented algorithms
to handle range queries as well. Another indexing method
was suggested by Agarwal et al. in [1], who extended the
External Range Tree to form the Kinetic Range Tree. This
indexing scheme is capable to index the future locations of

the moving objects and support range queries.
Other attempts have also been made under a different

approach, namely, the use of transformations to index the
trajectories of the moving objects. In [4], Kollios et al. used
the dual transformation to improve the performance during
range queries. Similarly, Chon et al. [2]. proposed the
SVmodel as an alternative method of transformation.

Currently, there exits a very limited number of index-
ing methods able to handle both the past and the future
movement of the moving objects. Sun et al [11] proposed
an Adaptive Multi-Dimensional Histogram (AMH), which
in each bucket stores the rectangular extend R, the aver-
age frequency f of all the cells in R and the average of the
squared frequency g of those cells. The implemented queries
were aggregate ones. In such a query q(qR, qT ), the result
returns the number of objects which fall in a rectangle re-
gion qR at timestamp qT . If qT = 0 then the aggregation
query is a present timestamp, if qT < 0 then the aggregation
query has a historical timestamp, whereas if qT > 0 then the
aggregation query has a future timestamp. In [6] Pelanis et
al. proposed an index (RPPF -tree) to support both the past
and the future movement of the objects. The implemented
query types are only timestamp ones, for all points in time.

In this paper, we extend the XBR-tree, a historical tree,
to deal with future, as well. Moreover, we implement al-
gorithms to handle both window and timestamp queries.
Finally, we compare the XBR-tree with the RPPF -tree, for
both of these query types.

3. ASSUMPTIONS
We made several assumptions with respect to the move-

ment of the objects. In the sequel, we describe how the
objects are represented and how the updates are carried out.

We assume that time is discrete and that the location and
the velocity vector (direction of movement and speed) of
each object is updated only at predefined time points that
divide time in a number of time intervals. For each time
interval of the past (up to the current time point), a line
segment that expresses the movement of each object during
this interval is maintained. For the interval starting at the
current time point, a line segment that expresses the initial
location and velocity vector of each object is maintained.
All these line segments make up a polyline that expresses
the trajectory of each object from the starting time point
to the point that follows the current time point. Especially,
the last line segment expresses not the actual trajectory, but
the expected trajectory from the current time point to the
next one.

When time advances to the next time point, each object
notifies the system of its actual location and velocity vec-
tor. With this data, the last line segment of the polyline
is updated (meaning that, in general, the last line segment
must be deleted and reinserted to reflect the actual data)
and a new segment that expresses the expected trajectory
from the new current time point to the next one is inserted.
Note that the use of the last line segment of the trajectory of
each object that corresponds to the future allows to answer
predictive queries about the positions of the moving objects
in the near future.

Although, it is possible to handle both the x and the y
coordinate of each object (along with time) at the same
structure (with tree versions that can handle 3-dimensional
data), following the approach of [13], we handle x and y coor-
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Figure 1: Monitoring of Moving Objects

dinates independently with XBR-trees (unlike RPPF -trees).
This means that we keep one 2-dimensional tree for the X
coordinate, along with time and another 2-dimensional tree
for the Y coordinate, along with time. We answer a query
using each of the trees and then combine the subanswers.
Accordingly, at each time point, we update both trees. In
Figure 1, the movement of an object along the x-axis (verti-
cal axis) in the course of time (horizontal axis) is depicted.

4. THE RPPF -TREE
The RPPF -tree [6] consists of a partially persistent R-tree

used to store the past and the present trajectories of the
moving objects and a partially persistent TPR-tree used to
store the present and the future trajectories. More details
about the partially persistent R-tree appear in [12], whereas
the partially persistent TPR-tree is briefly described in the
sequel.

4.1 TPR Internal and External Nodes
The internal nodes are of the form: < ptr, tpbr, t−,−t >,

where ptr is a pointer to a child node, tpbr is a Time-
Parameterized Bounding Rectangle, and [t−,−t] is the in-
terval of time. The external nodes are of the form: <
oid, tpp, t−,−t >, where oid is the object identifier, tpp is a
time-parameterized point and [t−,−t] is the interval of the
validity. tpp = (x;u) = [x1, x2, . . . , xm;u1, u2, . . . , um] with
xi and ui the coordinates of the position and the velocity of
the object at time t−.

The Time-Parameterized Bounding Rectangles (TPBRs)
of the TPR-tree are not necessarily valid for the past time
points. Moreover, they do not take into consideration the
different insertion and deletion times of the moving objects.
Therefore, they cannot be used in the partially persistent
TPR-tree. In the next section, we refer to different TPBR
variations that deal with this problem.

4.2 Optimized and Double TPBRs
When computing an optimized TPBR in two dimensions,

its spatial and velocity coordinates should be chosen to min-
imize the integral of the area of the bounding rectangle, from
t− to CT +H (CT represents current time, while H repre-
sents H time units in the future and it is a workload-specific
parameter). In more dimensions, a near-optimal TPBR can
be computed by combining the solutions of the different di-
mensions. The disadvantage of the optimized TPBRs is that
their computation is complex and that they cannot be tight-
ened. Therefore, in our implementation we chose the double
TPBRs.

The double TPBRs are TPBRs which allow tightening.
Each TPBR is divided into two parts the “head” and the
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Figure 2: An XBR-tree

“tail”. The tail begins at the time of the last update (inser-
tion or deletion), tlu, and extends to the infinity. The tail
is a common TPBR of the TPR-tree. The head bounds the
finite segments of the trajectories, from t− to tlu. This can
be done by using either an optimized TPBR or a common
TPBR of the TPR-tree.

5. THE XBR-TREE
The XBR-tree [8] consists of two node types. The first

type is for the internal nodes that form a multiway index.
The second node type is for the leaves which store the line
segments that are inserted in the tree. Both node types
are being kept on disk. Due to space limitations and for
the sake of presentation, we assume 2 dimensions. For 2
dimensions the hierarchical decomposition of the space is
the same as the one in quadtrees. More specifically, the
space is subdivided into 4 equal subquadrants, any of which
may be further recursively subdivided into 4 subquadrants.

5.1 Internal Nodes
In an internal node, pairs of the form <address, pointer>

are contained. The number of these pairs is non-predefined
because the addresses being used are of variable size. An
address expresses a child node region and is paired with the
pointer to this child node. Apparently, both the size of an
address and the total space occupied by all pairs within a
node must not exceed the node size. The addresses in these
pairs are used to represent certain subquadrants that result
from the repetitive subdivision of the initial space. This is
done by assigning the numbers 0, 1, 2 and 3 to NW, NE, SW
and SW quadrants respectively. For example the address 1 is
used to represent the NE quadrant of the initial space, while
the address 10 to represent the NW subquadrant of the NE
quadrant of the initial space. The XBR-tree, introduces a
new idea. That is, the region of a child is the subquadrant
specified by the address in its pair, minus the subquadrants
corresponding to all the previous pairs of the internal node
to which it belongs.

Figure 2 depicts a three-level XBR-tree. The “*” being
used in the figure denotes the end of each address. As shown
in the figure, the left child of the internal node is the SW
of the initial space, as it is denoted from its address 2*.
Moreover, the right child of the internal node is the initial
space if we subtract from it its SW subquadrant.

When a search or an insertion of a point is performed,
descending the tree from the root specifies the appropriate
leaves and their regions. At the root, the region that has
to be checked is the whole space. When visiting an internal
node, we check in turn every contained pair. The first pair
with a subquadrant that contains the particular coordinates
is chosen and its pointer to the next level is followed. By
examining this way the pairs in each node, the region under
consideration is refined, since we subtract the subquadrants
of the pairs appearing to the left of this pair. The insertion,
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or search procedure of a line segment in the XBR-tree is
similar to the ones described above, with one key difference:
a line segment is stored in the XBR-tree to all the leafs that
it crosses. This means that during our descend from the root
to the leaf nodes level, in each internal node, we sequentially
examine the <address, pointer> pairs and recursively visit
every (and not simply the first) child node with a region
that is crossed by the specific line segment.

Whenever an internal node overflows, then a split into
two occurs. This split is done in such a way, so that a good
balance between the regions of the two resulting nodes is
achieved. More details regarding internal node overflows
can be found in [8].

5.2 Leaf Nodes
The leaves of the XBR-tree contain all the line segments

inserted in the tree. The total number of line segments
in each leaf node are restricted by a predefined capacity C
which cannot be exceeded. When after an insertion of a line
segment a specific leaf node overflows then it is split into
four equal subquadrants.

All the resulting subquadrants that contain any of the
lines segments of the old leaf node, are inserted in the inter-
nal node. The subquadrants that contain more line segments
than the predefined capacity, store these segments in over-
flow pages. For example, if repetitive insertions occur in the
SW subquadrant of the left child in the tree of the Figure
2, then this leaf will split into four subquadrants. Each and
every resulting subquadrant, which includes any of the line
segments, will be added to the internal node.

Deletion is used while updating the location and the ve-
locity vector of each object, at each time point. That is, the
last line segment of the trajectory of each moving object is
updated at the end of each time interval (in general, it must
be deleted and reinserted to reflect the actual data). In ad-
dition to the updated old line segment, a new one is inserted
to express the expected trajectory from the new current to
the next time point. Since a line segment may cross the
regions of several XBR-tree leaf nodes, it has to be removed
from all these leaf nodes. More details regarding deletions
and the XBR-tree, in general, can be found in [8].

6. EXPERIMENTATION
For experimentation, we used a Pentium on 1,6 GHz and

1 GB memory. Furthermore, the page size was 4K, and, as
a result, the number of the line segments in the leaves was
204. After thorough experimentation, we came to the con-
clusion, that a buffer of 100 K, with LRU shows improved
performance in comparison with other methods, and there-
fore it has been adopted for the experiments execution.

The past time horizon was of 1000 distinct time units
which were separated into 10 equal intervals, each one of
100 time units. The queries executed were of four types:
past window queries and past, present and future timestamp
queries. As a performance measure, we counted the number
of the disc accesses for all four types of the queries. In all
the experiments, the number of the moving objects N varied
from 1000 to 10000. Additionally, the range of the queries
was the 0.1, 0.01 and 0.001 fraction of the dataspace.

Due to space limitations, in this paper we graphically
present an indicative part only of the results of our exper-
iments. However, the trends remained the same for all the
experiments performed. In left and center parts of Figure

3, we present the disc accesses for past window queries (the
range of the queries equals 0.1 on the left part and 0.001
on the center part). In the right part of the same figure
we present the number of disc accesses for past timestamp
queries with range 0.01. The left part of Figure 4 depicts
the number of disk accesses for present timestamp queries,
where the query range equals 0.01. The center and right
parts of the same figure, depict the number of disk accesses
for future timestamp queries with range 0.1 and 0.001, re-
spectively.

In all cases, the XBR-tree outperformed the RPPF -tree.
It is apparent from the above figures that the number of
disk accesses of the XBR-tree is smaller than the number
of disk accesses of RPPF -tree, for all the queries executed.
The superiority of XBR-tree can be explained by its com-
pactness (it is a very compact tree, due to the compressed
representation of addresses) and by the fact that there is no
spatial overlapping between nodes and thus, no revisiting of
the same nodes during queries execution.

7. CONCLUSIONS AND FUTURE WORK
The efficient organization, indexing and querying of mov-

ing objects is of great demand in several modern applica-
tions. In the current paper, we have adapted a historical
tree, namely the XBR-tree, to handle the future movement
of the objects. Moreover, we have implemented three types
of timestamp queries: the past, the present and the future
timestamp query. We have also implemented a past window
query type. Our experiments show that the XBR-tree out-
performs the only known thus far three structure for past
and future queries, the RPPF -tree.

As possible future work we consider the following:

• The implementation of other types of queries (apart
from window and timestamp queries), such as join
queries and nearest neighbor queries.

• The use of a single 3-dimensional XBR-tree (x, y, t)
and not two 2-dimensional XBR-trees, one for the di-
mensions (x, t) and one for the dimensions (y, t).

• A study of the computational overheads required to
deal with compression and uncompression of addresses,
especially when calculating compliments of regions.
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