
A PERFORMANCE COMPARISON OF QUADTREE-BASED
ACCESS METHODS FOR THEMATIC MAPS*

Eleni Tousidou
Data Engineering Lab

Department of Informatics
Aristotle University

54006 Thessaloniki, Greece
eleni@delab.csd.auth.gr

Yannis Manolopoulos
Data Engineering Lab

Department of Informatics
Aristotle University

54006 Thessaloniki, Greece
manolopo@delab.csd.auth.gr

ABSTRACT
In this paper, the efficient manipulation of thematic maps
that contain multiple non-overlapping features is investi-
gated. New methods based on Linear quadtrees are pro-
posed and their performance is compared to that of similar
structures. More specifically, window queries involving mul-
tiple features are described and tested having the number
of disk accesses as a performance measure. Experimentally,
it is shown that the proposed methods have a stable behav-
ior and, in general, outperform the previous structures with
respect to time and space complexity.

Keywords
spatial databases, region quadtrees, multiple features, su-
perimposed bitstrings, window queries

1. INTRODUCTION
Today, the manipulation of large volume two-dimensional
data representing multiple features is of great interest for
a variety of applications (e.g. in image databases, geo-
graphical information systems (GISs), scientific visualiza-
tion, computer-aided design). So far, a number of differ-
ent approaches have been presented to manipulate specific
classes of spatial data (i.e. points, lines, rectangles, vol-
umes and hyper-volumes), the most popular of which are
quadtrees, bintrees [15], R-trees, the cell tree and the grid
file. The interested reader can refer to [4; 6; 13] for interest-
ing surveys on the topic.
The quadtree is a spatial access method based on the hier-
archical image decomposition. Each image is regularly and
successively decomposed into four quadrants until a homoge-
neous maximal block, with respect to the contained feature,

*Research performed under the European Union's TMR
Chorochronos project, contract number ERBFMRX-CT96-
0056 (DG12-BDCN).

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and or
fee.
SAC'00 March 19-21 Como, Italy
(c) 2000 ACM 1-58113-239-5/00/003>...>$5.00

is reached. Quadtrees can be implemented either in main
memory or in secondary memory as pointer-based or point-
erless structures, respectively. As far as secondary storage is
concerned, two types of quadtree representations have been
presented:

• by extracting the collection of homogeneous (black)
leaves, which evidently carry semantic information [5],
and

• by traversing the quadtree in preorder and forming a
string, which is called DF-expression [8].

Since the need is on the random access of the quadtree
leaves, the focus will be on the first representation.
In this work the focus is in the manipulation of raster the-
matic maps that contain multiple non-overlapping features,
i.e. maps where each pixel contains one and only one fea-
ture and where pixels of the same color are aggregated into
patches. For example, such thematic maps can be widely
met in GISs. Such maps represent distinct thematic layers
where each layer, as its name states, has a distinct theme (or
subject). This theme could be the geology of the land, the
elevation of the area, or the soil type found in the depicted
area. For example, each type of soil occupies a certain space
of the area and, apparently, no other type of soil can co-exist
at the same space. This way, a map of non-overlapping cat-
egories is obtained. In the following, the words features,
colors and categories will be used interchangeably.
Some of the most important types of queries applied to spa-
tial data are window queries, since they allow extracting
only the needed information from the whole image. More
specifically, the window query types under examination are
the following:

• exist query (w, fi, fj, -.., fk): check whether one or
more features exist inside the window w.

• report query (w): report all features that are found
inside the window w.

• select query (w, fi, fj, ..., fk): select all homogeneous
blocks inside the window w containing feature f~, fj, ...
or fk.

The efficient processing of window queries has already been
studied by Nardelli and Proietti, who proposed adjusting re-
gion Linear quadtrees to manipulate the feature information
[10]. The Hybrid Linear quadtree (HL-tree) was introduced
as an enhancement to the previous method [11], whereas the
MOF-tree, which was based on the HL-tree, was presented

381

as a s t r u c t u r e t o efficiently manipulate images with multi-
ple overlapping features [9]. Apar t from these structures,
Tanimoto and Pavlidis introduced a multi-resolution repre-
sentation of images, the Py ramid da ta structure [14], two
variations of which were later proposed by Aref and Samet
[1], and Nardelli and Proie t t i [12]. Finally, in [7] a different
in philosophy structure was presented, the S+trees, which
are based on DF-expressions. The lat ter structure basically
manipulates black-and-white images and though it can be
adjusted to manipulate mult iple non-overlapping features,
this would be performed in a less efficient way due to possi-
ble large space waste.
In this paper, a quadtree-based approach will be described
a n d examined aiming to the efficient handling of thematic
layers with multiple non-overlapping features. The focus
will be on efficient processing of queries, which involve both
the features and the spat ial object locations as well. In
the sequel, only the pointerless representation of this struc-
ture will be examined, al though the same method could be
also invariably applied to the pointer-based representation.
By comparing the new s t ructure to the previously proposed
methods that were also based on Linear quadtrees, it will
be shown that there is considerable gain achieved both in
terms of storage space and t ime complexity.
The rest of the paper is organized as follows. In Section
2, some of the quadtree-based access methods tha t have al-
ready been presented in the past are reviewed. Also, the
points which motivated in introducing the new method will
be mentioned. In Section 3, the new structure will be de-
scribed in detail, along with some new algorithms for the
efficient performance of window queries. In Section 4, some
representative results t ha t were derived from the conducted
experiments will be shown. Section 5 contains concluding
remarks and some directions of possible future work.

2. RELATED WORK AND MOTIVATION
As already mentioned, in this work the focus lies on support-
ing raster thematic maps containing multiple non-overlap-
ping features. In our representation of maps, each distinct
feature is represented by a different color. This means that
each pixel of the map will contain one and only one color
in contrast to the maps with overlapping features, where a
block of the map could contain more than one color repre-
senting different map categories. I t must be mentioned that,
since multiple features have to be handled, the hierarchical
image decomposition will s top only when a maximal block
of space that contains a single feature, i.e. a homogeneous
block, is reached.

2.1 Simple Linear Quadtree
A first step toward be t te r exploitation of thematic maps
was the use of simple Linear quadtrees (SL-trees) [10]. In
fact, the latter s t ructure is the original Linear quadtree [5],
enriched with feature information. During the procedure
of successive decomposition, once a homogeneous block is
reached, the information about the particular feature that
was found in this block is retained together with the corre-
sponding leaf quadcode. More specifically, now each quadtree
leaf will be characterized by two fields:

1. the loeational key, whose digits reflect successive quad-
rant subdivision,

2. the value field, which contains the id of the feature
that exists in the specific node.

Then, the entries for all quadtree leaves will be inserted in
a B+tree, where the locational key will serve in traversing
the latter structure.

Feature Id

[] 0

• 1

[] 2

[] 3

Figure 1: An 8x8 image and the feature-id table.

Figure 2: The Quadtree representing the image of Fig. 1.

In Figure 1, an 8x8 image is depicted which contains four
non-overlapping features. The feature id's are listed in the
table in the right part of Figure 1. In Figure 2 the ho-
mogeneous leaves of the corresponding quadtree axe shown,
whereas internal nodes axe represented with gray color. Next,
the list of generated locational codes is depicted. For exam-
ple, the leaf with locational code 132 has a value field equal
to 2, since the feature contained in the corresponding subim-
age is the one having id=2.

(Ul ,1) , (112,3), (n3,0), (114,1), (120,1), (131,0),
(132,2), (133,2), (134,0), (140,1), (210,0), (220,1),

(230,1), (240,0), (310,2), (320,0), (330,2), (340,3), (400,0)

2.2 Hybrid Linear Quadtree
Another approach has been proposed in [11], where apart
from the quadtree leaves, internal nodes are also registered
in the B+tree. However, internal nodes are heterogeneous
blocks since they contain more than one feature. Internal
nodes are coded with a locational key, whereas to represent
the feature information each quadtree node will accommo-
date a bi ts tr ing of size equal to the number of features ex-
isting in the thematic map. A specific hit of the bitstring
is set to 1, if and only if the respective feature exists in the
represented quadrant.
Evidently, this approach has a storage overhead due to the
storage of the internal nodes and the corresponding bit-
string. In [11] it is explained that this overhead is not sig-
nificant since the number of internal nodes axe not larger
than the 1/3 of the number of leaves and, consequently, the
asymptotic space occupancy will remain the same. Also,
since computer systems are based on a 32-bit architecture,

382

space can always be saved for at least 16 features, which is
a reasonable number of features.
Applying the method of HL-trees on the thematic layer of
Figure 1, the following list of nodes, either internal or exter-
nal, will be created and stored in the B+tree leaves. As can
be seen, each locational key is accompanied by a bitstring
of size four, since four axe the features existing in the rep-
resented thematic map. Nodes accompanied by a bitstring
that has only one bit set to 1 are homogeneous quadtree
leaves covered by the respective feature. For example, the
locational code 110 that corresponds to an internal node is
related to bitmap 1101, since all features exist in the repre-
sented quadrant apart from the feature with id=2.

(ooo,nn), (loo,nn),
(n3,1000), (n4,0100),
(132,0010), (133,00101,
(210,1000), (220,0100),

(no,n01), (ln,01001, (n2,0001),
(120,0100), (130,i010), (131,I000),
(134,10001, (140,01001, (200,11001,
(230,0100), (240,1000), (300,1011),

(310,0010), (320,1000), (330,0010), (340,0001), (400,1000)

2.3 Independent Linear Quadtrees
A straightforward approach adopted for comparison pur-
poses is to use Independent Linear quadtrees (IL-trees). As
its name states, a separate Linear quadtree is used for each
feature resulting in as many Linear quadtrees as the num-
ber of features in the thematic map. This approach could
present a substantial space overhead since multiple indices
have to be stored. This fact is also a weak point during
concurrent manipulation of multiple features because of the
need to traverse and join the results from multiple indices.

2.4 Query Manipulation and Motivation
The original Linear quadtree was firstly proposed for black
and white images, where the only information stored were
the addresses of black quadrants [5]. This means that the
structure worked fine for window queries, since no feature
filtering was necessary, whereas the only expectation was
the good performance of the B+tree when queried with the
spatial location of objects based on the locational quadtree
codes. The next step towards the adjustment of the original
method to the efficient manipulation of multiple features
(i.e. thematic maps / was confined to the maintenance of
feature information in the quadtree leaves.
As already seen, the bottom line in all previous methods
is that this information will be stored in the B+tree leaves
making it impossible to take further advantage of the fea-
tures as a spatial filter. For example, though the HL-tree
retains information for internal and external quadtree nodes,
both of them are stored only at the B+tree leaf level. Con-
sequently, we cannot take advantage of it in higher B+tree
levels to avoid traversing some branches for queries based
on feature information. In the IL-trees, there is no need for
filtering but instead several indexes have to be traversed to
answer queries involving multiple features.
In the present paper, a method aiming at achieving bet-
ter exploitation of feature information in combination with
spatial location is proposed. This is not always trivial since
feature information and spatial location are two orthogonal
issues that have no relation with each other.

3. PROPOSED METHOD
In spatial data processing, for example in GISs where each
map constitutes a specific thematic layer with its own non-
overlapping categories, the need for fast retrieval of all or

some of the categories that exist in a given region is emerged.
In simple words, searching for a category is deduced to
searching for the specific color with which this category is
represented in the map. The efficient processing of queries
which are based both on the feature as well as on the spatial
object location is pursued.
Assume a user query for information from a thematic map
of size T x T that contains k non-overlapping features, where
T = 2 ~ and m is a positive integer. Since thematic maps con-
tain more than one feature, the regular space decomposition
process will stop when a homogeneous block, i.e. a maximal
block that is fully covered by one feature only, is reached.
As already seen in the previous examples, for the sake of
uniformity the image background is treated as a separate
feature.

3.1 Description of the New Method
Here, the pointerless representation of the new method will
be described since the pointer-based one can be developed
in a similar way. The Linear quadtree uses the B+tree as
a storage medium for the locational keys of the thematic
map, and as an efficient structure for the fast retrieval of
the represented information. The proposed method is based
on a restructuring of the B+tree nodes.
Evidently, the original B+tree traversal is based on the loca-
tional code, which is the B+tree key. To be able to efficiently
perform window queries that search for certain features in-
side a given window, it is important to know whether the
B+tree sub-structure that is about to be traversed contains
at least one of the desired features. In case it does not, this
sub-structure can be skipped resulting in fewer disk accesses.
Since this traversal has to be additionally constrained with
the feature information, a bitstring representing the kind of
needed information will be stored in the upper levels of the
B+tree.
In the following it will be made obvious that the proposed
method of posting to the parent node a second-order bit-
string can be applied to the SL-tree and the HL-tree as well.
The structures derived by such a use of the bitstring are
named BSL-tree and BHL-tree, respectively. According to
the new proposal each entry in the B+tree leaves will consist
of:

• a |ocational key of the represented quadrant,

• a value field containing the color of the specific quad-
rant or (when applied to the HL-tree) a bitstring of
size equal to the number of features. This bitstring is
encoded so that the i-th bit is set to 1, if and only if
the feature with id=i exists in the respective quadrant.

However, according to the new method, a second-order bit-
string is introduced in the entries of the internal nodes. More
specifically, the bitstrings (or value fields) of the entries of a
specific B+tree leaf are superimposed (OR-ed), thus forming
a new second-order bitstring which represents the feature in-
formation of the respective leaf in a condensed/abstract way.
In essence, for each leaf a new bitstring is encoded so that
the i-th bit is set to 1, if and only if the feature with id=i
exists in the entries of the specific leaf. Then, this second-
order bitstring is posted to the parent node of the leaf. The
idea of producing second-order bitstrings can be generalized
for all B+tree levels. Thus finally, each entry in the internal
nodes will be accompanied by this second order bitstring

383

which will have ls only at positions where the respective
features exist in the corresponding B+tree sub-structure.

I 1- 1 --I I", I
I ": I I- I

Figure 3: Layout of internal and leaf nodes.

The layout of internal and leaf nodes is illustrated in the
upper and lower part of Figure 3, respectively. Basically,
leaves comprise of m pairs (locational key, value field or
bitstring), whereas internal nodes comprise of l triplets (tree
pointer, locational key, bitstring), where I is the tree fanout*.
The size of a tree pointer is 4 bytes (32 bits). The value field
of the leaves is used in the case of the BSL-tree since only the
color of the homogeneous quadrant needs to be stored. The
bitstring is used in the case of the BHL-tree since, in case of
a heterogeneous quadrant, it might be needed to store more
than one feature.
Regarding the internal nodes of the tree, since their average
space requirements would be about 30 or 40 MB, it can be
safely assumed that they can be easily accommodated in the
main memory of modern computers. On the other hand, for
images of size 1024 × 1024 or 2048 × 2048 pixels, the quadtree
depth is 10 or 11 levels and the length of the locational key
is 24 or 26 bits, respectively. Assuming that the locational
key is represented by an integer, in the case of the BSL-tree,
as far as the leaves are concerned, the remaining one or two
bytes can be used in order to store the color.
As stated in the previous, this is the reason for ignoring
the space occupied by the value field when calculating the
introduced storage overhead in the case of the BSL-tree.
Also, there is no change in the case of the BHL-tree since
the leaves of the original HL-tree already contained those
bitstrings.

/llll' °J i i,t j

JlMl'O0~2~~llO~2tOll~ ~201010~2301010~2401100 ~ 13001101113'01001~3201100~
Figure 4: Branch of the B+tree.

As expected, the B+tree root and some entries at the level
below the root will probably contain bitstrings with many
positions set to 1 since the respective subtrees will contain
almost all features. More specifically, in the case of widely
spread features, the number of bitstring positions set to 1
will be large, resulting in visiting all queried maximal blocks
inside the query window. It should be noticed though, that
for such thematic maps, whatever the method used, they will
result in a great number of disk accesses since the queried

*To be more precise, internal nodes store I bitstrings and
tree pointers toward the l leaves, and l-1 locational keys
which axe sufficient to traverse the tree.

features will be spread in almost all B+tree leaves. On the
other hand, if the queried maps contain features which are
concentrated in specific areas, this would result in only a
few positions set to 1 in the B+tree leaves, allowing to avoid
visiting some irrelevant tree branches. Figure 4 illustrates
an example of a BHL-tree, where m= 3 and 1=3.

3.2 Algorithm Description

3.2.1 The Creation Algorithm
The first step to build the proposed structure (either BSL-
trees or BHL-trees) is the image decomposition, which will
result in a list of maximal blocks. In the case of BSL-trees,
this list will contain only homogeneous blocks, while in the
case of the BHL-tree this list will also contain the internal
quadtree nodes, that is the non-homogeneous blocks. Each
entry in the list will consist of the locational code of the
represented quadrant followed by the bitstring standing for
the feature(s) that is(are) found in this quadrant. All entries
of this list will be inserted in a B+tree and will be stored at
its leaves.
A bottom-up procedure is then followed to post the feature
information of the stored quadrants to the upper B+tree
levels; i.e. a bitstring for each entry in all B+tree nodes
is extracted. At the leaf level this bitstring is identical to
the original (in the sense of HL-trees) bitstring that was
generated in the quadtree list. For the internal B+tree lev-
els though, the superimposition method (OR-ing) is used
to propagate the feature information to higher tree levels.
Thus, by superimposing the bitstrings which exist in a node,
a new second-order bitstring is produced and stored in the
entry that is the ancestor of this node at the next higher
level. This procedure propagates upwards until the root is
reached.

3.2.2 Window Queries
In case of window queries, the basic approach of decom-
posing the window query into a sequence of smaller queries
is followed, where each smaller query comprises a maximal
block of the image inside the window [2]. In the following,
it is explained how these queries proceed according to the
proposed method.

The Exist Query
Consider a query over a specified window, where a search for
the existence of features fi, fj, -.. or fk has to be performed.
For each maximal block, searching starts fxom the B+tree
root. Before descending the tree levels, each entry's bitstring
is examined. If at least one bit corresponding to one of the
queried features is set to 1, only then the respective subtree
is followed; otherwise we skip to the next entry of the node.
The same procedure is followed at the remaining tree levels;
searching stops only when the leaf level is reached. However,
in case of the BSL-trees it should be emphasized that two
possibilities may arise when the leaf level is reached:

• the search is successful and the desired locational key
(maximal block) has been located,

• the search is unsuccessful, bu t searching continues for
the ancestor or the descendant of the desired locational
key, since they correspond to larger or smaller maximal
blocks containing or contained in the desired maximal
block.

384

i

In the latter case, one more disk access may be needed to
retrieve the previous or the next page of the reached leaf,
where the ancestor or the descendant of the desired loca-
tional key may be stared, respectively. In case of the BIlL-
tree, it is certain that the searched maximal block will be
located since all quadrants axe stored, and by looking at its
bitstring the question can be answered immediately gaining
one disk access.

The Report Query
In a report query, the user asks for all the features that
comprise the queried window. In this kind of query the
bitstring will play no role, since only when reaching the leaf
level its bitstring is searched to return the features whose
corresponding positions in the bitstring are set to 1. At the
leaf level, the BHL-tree will work in exactly the same way
as described in [11], i.e. similarly to the exist query.

The Select Query
The last window query is the selection query where the user
asks for the blocks of the map in the queried window where
the wanted features are found. As in the 'c~e Of the exist
query, for each maximal block searching starts by examining
the entries at B+tree root. As already described, only the
branches where the respective entry's bitstring has at least
one position of the queried features set to 1, are followed.
Once the leaf level is reached, then the queried maximal
block is searched. As described in the previous subsection,
if this searching is not successful, then we first try to see if
its descendants exist in the tree. In such a case, only those
descendants that are homogeneous with respect to one of
the queried features are returned. If the descendants are not
stored in the tree, then we have to look for its ancestor. Only
then, it can be verified whether the ancestor is covered by
one of the queried features or not. This procedure operates
in exactly the same way as in the HL-tree, since we need
to report the exact blocks where the features exist and in
this case searching cannot be avoided with the use of the
quadtree's internal nodes.

4. PERFORMANCE EVALUATION
Detailed experiments were performed to compare the SL-
tree, the HL-tree and the lL-trees against the new proposed
technique applied to both the SL-tree (BSL-tree) and on
the HL-tree (BHL-tree). All kinds of queries were tested,
however the results of the report query were only used to
show the drawbacks of the IL-trees, as it will be shortly
explained in the following section. The exist and selection
query were considered as the most important ones, since
they can extensively show how the bitstring can accelerate
processing in queries involving features. The selection of the
queried features was based on their frequencies. Suppose
that i features are to be selected out of j ones. First, the
features were sorted according to decreasing frequency and,
then, the 1st, the [~J-th, [~ J - t h , ..., [~ J - t h feature was
selected. For instance, if i=4 and j=64, then the 1st, the
16th, the 32nd and the 48th feature should be selected.
All structures were implemented in C + + programming lan-
guage under Windows NT and the experiments run on a
Pentium II workstation. Far a thematic map of size 256 × 256,
512x512 or 1024x1024 pixels, the B+tree that will be cre-
ated will have a height of at most 4 levels. The window

385

queries of size 25x25, 50x50 and 100×100 pixels were exe-
cuted on 256×256 and 512x512 images containing 8, 16 and
64 features. The page size used was 1K for smaller maps and
2K for larger maps leading to a fanout of 84 and 169 entries,
respectively. The number of maximal blocks created for each
thematic map ranges approximately from 40,000 to 240,000.
The first group of thematic layers (i.e. 256 x 256 images) was
downloaded from the GRASS site, a public domain GIS sys-
tem 2, while the second group of maps (i.e. 512x512 maps)
were meteorological satellite views of Europe and Asian re-
gions from Meteosat Imagery site 3. The measurements were
based on the number of disk accesses where only the accessed
leaves were counted. For each thematic map, 50 queries were
performed for four different window sizes and the results
were averaged. Due to space limitations, the results for the
512x512 images only are shown since the conclusions are
similar for all cases.

4.1 Space Overhead
In the first set of experiments the space overhead involved in
each method was measured. As explained in Section 3.1, no
space overhead due to the use of the bitstring in the B+tree
nodes for the BSL-tree and the BHL-tree was considered.
As a result, both SL and BSL nodes on one hand, and HL
and BHL nodes on the other hand will have exactly the same
number of entries for a given page size. This is the reason
why in the experiments performed measuring the space over-
head, only the three columns of the IL-trees, the BSL-trees
and the BHL-trees are shown. The column of the SL-tree
would be exactly the same to that of the BSL-tree, as the
column of the Hi~tree would be exactly the same to that of
the BHL-tree.

Space Overhead - Image Size 512 x 512 - 64 Features

5600

5400

o 5200
f

5000
N
o 4800
d

4200
C6d_17 I)4__24 D630 D806 D5_30

[] BSL

• BHL

~tL

Names Of Maps

Figure 5: Space Overhead involved in five different 512×512
images containing 64 features.

As can be seen in Figure 5, the (B)HL-tree is the worst
method regarding the space overhead, due to the storage of
internM quadtree nodes in the B+tree leaves and upwards.
The space occupied by the IL-trees was found by summing
up the space size occupied for each one of the feature-indices
involved, i.e. the 64 indices of our experiment. It is also
noticed that the (B)SL-trees are almost always the best ones,
whereas the IL-trees are close with respect to the storage
overhead.

~http://moon.cecer.army.mil
a http: / /www.nott ingham.ac.uk/~cczsteve/graphif .shtml

22O

2OO

180

160

140

120

100

8O

6O

4O

2O
2O

Average OA-Repo l t Que~y-512x512 IrnageSize-64 Features

30 40 50 60 70 80 90 100
w i n d o w Size

F i g u r e 6: A v e r a g e d r e s u l t s o f a r e p o r t q u e r y o n i m a g e s o f
5 1 2 × 5 1 2 s ize c o n t a i n i n g 64 f e a t u r e s .

Average DA-Ex is t Q u e r y (t 0 Feat .) -G12x512 ImageSlze,64 Features

8 ~ ~ ~ ~ L + ~ + +

7 .,...~..-~-~ + ~ + + i-
SL ~ !

BSL ~ i
HL "-~"- i i . , .

6 "~RL:"::~:~ .

i i J i -. .

i l J ~ ! ! i " \ i

2 : : : : i "~ :7.::~=. ~..=.=.:.: :.:.:.:.:.:~..:.:.:. i
. ~ ~ ~- :...- ..+..72.2:2: z,: : : . : =r.=r.= =;

i ! i i i
+ i i i i i i

30 40 S0 60 70 80 90 100
w i n d o w Size

F i g u r e 9: A v e r a g e d r e s u l t s f or a n e x i s t q u e r y w h e r e 10 f e a t u r e s
w e r e q u e r i e d , i m a g e s i z e 5 1 2 x 5 1 2 , 6 4 f e a t u r e s .

140

120

100

8O

6O

4O

20

0
30

Avera, le OA-Extst Query (2 Feat .) -S12x512 ImageSize-64 Features

.... St~+...~._ ~ ~ , ~ i "i "-:~

~ L H L ~ i i, i
BHL ~ ~ :
...... IE:x:~: ! i . . "

................... ~ t ~ ! , i

................. i t>: i i ! i
i + " i ~ + ~

. ! - -

............ +. i +
40 50 60 70 80 90 1 O0

W i n d o w Size

F i g u r e 7: A v e r a g e d r e s u l t s fo r a n ex i s t q u e r y w h e r e 2 f e a t u r e s
w e r e q u e r i e d , i m a g e size 5 1 . 2 x 5 1 2 , 64 f e a t u r e s .

6O

5O

40

3O

20

10

0
0

Exist Que ly -Wk ' l dow Size 30x30-1mageSize 512x512+64 Fea tu res
t i

i
. +l~...-m----} ~ .. i ~ " ; ; : "

SL "+- - + i . . - $ - "
HL - e - - ! i +o-" !

ssL +- - i ~ !
..BHL. + + + ~.~+ ...

+ i + . - " i
... i /: , ~

i ..~f i

........................ i /:: i i i

+.. i ..-"i i ~--~-~\ i
.......... i >

t ~ " <',. ! ,. xx i / "..

i - ~ - - - ~ - '~ i
10 20 30 40 50 60

N u m b e r of Features

F i g u r e 10: A v e r a g e d r e s u l t s f o r a n e x i s t q u e r y for a v a r y i n g n u m -
b e r o f q u e r i e d f e a t u r e s , i m a g e s ize 5 1 2 x 5 1 2 , 64 f e a t u r e s , q u e r y

w i n d o w 3 0 x 3 0 .

m

Average DA-Exist Query(5 Feat ,) -512x512 ImageSize+64 Features
9 ! ! ~ I

SL -~---+ i ,.-P- i i
t L - ' e ' ' ~ ~ /" i "'-. !

8 B S L = e - ~ ~ . :> ' " i -: ~
HL -~-~ ! i . / i ~ " ' - . :

BHL -.~. ~ ! " " -~

s :::::++:i i i i i +
[i i i 4-- ... i

4 ~ IF ~ ; + i

3 ~ ~ + i + i i .

__.___L. _A. ~ - t - - ~ ~
2 i i i i i i

30 40 50 6 0 70 80 90 100
W i n d o w Size

F i g u r e 8: A v e r a g e d r e s u l t s f o r a n ex i s t q u e r y w h e r e 5 f e a t u r e s
w e r e q u e r i e d , i m a g e size 5 1 2 x 5 1 2 , 64 f e a t u r e s .

250

2 0 0

150

~ loo

50

0
30

Average DA-Select Query (2 Feat .) -512x512 ImageSlze-64 Fea tu res

HI~ -(:l- - i i .|
S~ "+-"" ~ ii / 1

8HIJ -e.-- ! ! ,-"
8SIJ -~--" :: i . . ,~" . .~:.

t~ ! ': ..-~ ./
i : i ! /" ~/

.............................. i

• --~-..=. :~"-~--'+-;=" !~:= i i t ~

.............. t- t ~ + + i
40 50 60 70 80 90 100

W i n d o w Size

F i g u r e 11: A v e r a g e d r e s u l t s fo r a s e l e c t q u e r y w h e r e 2 f e a t u r e s
w e r e q u e r i e d , i m a g e size 5 1 2 × 5 1 2 , 64 f e a t u r e s .

386

4.2 Report
As described previously, the report query returns the fea-
tures that exist inside the queried window. As far as the
IL-trees are concerned, this means that for our data set, 64
indices should be visited to check whether the corresponding
feature exists inside the window. This explains the reason
why IL-trees have by fax the worst performance, as depicted
in Figure 6. The SL- and BSL-tree have exactly the same
performance, since the bitstring is not taken into any con-
sideration. The same applies for the case of HI_,- and the
BHL-tree. The BSL-tree is the best access method, while
the slightly worse performance of the BHL-tree can be ex-
plained by considering the larger number of leaves.

4.3 Exist
As far as the exist query is concerned, the performance dif-
ference of each examined method can be seen clearly. For
each queried window, the existence of a number of features
was searched. More specifically, the focus was in finding
out whether at least one of the queried features existed in-
side the queried window. As soon as one of them was met,
processing stopped.
In Figures 7, 8, 9 the results, when 2, 5 and 10 features are
queried respectively, axe illustrated. A first observation is
that the methods using the bitstring always perform better
than their counterparts which do not use a bitstring. In
addition, the BHL-tree outperforms all methods for more
than 2 features. This is explained by considering two facts:

• the HL-tree stores locational keys for internal quadtree
nodes as well. As explained in Section 3.2.2, this can
lead to less disk accesses since very soon it can be
identified whether the region that it is looked for is
homogeneous or not, and which features it contains.

• at upper levels, the use of the bitstring can help skip-
ping those tree portions that do not contain any of the
queried features.

The bad performance of the SL-tree is explained by the
fact that the specific quadblocks of which, the region that
is searched is comprised, have to be found out in order to
check the contained features. As fax as the IL-trees axe con-
cerned, all the feature-indices have to be processed always
without knowing whether the specific feature is contained
inside the queried window or not. In addition, the order of
accessing the independent indiccs is random and there is no
means to bypass non useful indices. Figure 10 depicts how
the IL-trees' behavior worsens with respect to the number
of features.

4.4 Select
Regarding the select query, in the first set of experiments for
each queried window the blocks, where the queried features
were found, were searched. The results can be seen in Fig-
ures 11, 12 and 13. As observed before, the methods where
the new bitstring is embedded always perform much better
than the respective ones without the bitstring since we can
avoid to visit tree branches where the queried' •features do
not exist.
More specifically, in Figures 11, 12 and 13 where we search
for 2, 5 and 10 features respectively, it cart be observed that
the IL-trees seem to have a good performance in compari-
son to the other methods. However, their performance is not
stable since it will always depend on the number of queried

features (as demonstarted in Figure 6 where all features are
queried). The explanation is that the IL-trees' performance
is tightly connected to the number of features queried, as
well as to their occurrence frequency. More specifically,
sparse features with low occurrence will create very small
trees, possibly of even one node only, while the tree of a more
frequent feature will be bigger and will affect the method's
performance substantially. In general, the IL-trees seem to
work very well for a few features only, which are rarely met
in the thematic map.
In the previous graphs, it is shown that with an increasing
number of queried features, the performance of the IL-trees
becomes worse and this tendency is apparent in the second
set of experiments. In this second set of experiments, the
methods' performance was tested for two fixed window sizes,
where the number of the queried features was increasing.
As can be seen in Figure 14, the performance of the IL-trees
decreases progressively with the number of queried features
resulting in a quite bad performance when a large number
of features is queried, whereas on the contrary the BHL-
and BSL-tree show a comparatively stable behavior. As ex-
pected, on one hand SL- and BSL-trees, and on the other
hand HL- and BHL-trees behave similarly when a large num-
ber of features is queried and that is why the graphs of the
BSL- and BHL-tree only are shown.
As a conclusion, the previous experiments show that the
technique of posting feature information by means of a bit-
string to upper levels of a linear-type quadtree results in
superior performance for:

• large thematic maps because they produce a greater
number of locational keys and, therefore, the height
of the B+tree will be bigger. Thus, filtering based
on queried features can be applied at higher tree lev-
els and, thus, traversing some B+tree branches can be
avoided,

• the exist query because at a very early stage the bit-
string helps responding to the user query,

• thematic maps with concentrated features, such as typ-
ical GIS raster images. Otherwise the features will be
spread to various locations leading to non-homogeneous
leaf nodes, as far as the features axe concerned, and
consequently to bitstrings with many positions set to
1 that allow no filtering.

5. CONCLUSIONS
In this paper, a technique has been introduced for use in
quadtree-based access methods to improve previously pro-
posed methods and efficiently process window queries in the-
matic maps with multiple non-overlapping features. A vari-
ation of the Linear quadtree has been presented and algo-
rithms to process window queries have been described. The
results of the conducted experiments concerning the per-
formance of the new method when applied to the window
queries have been discussed. It has been shown that this
new method has a stable behavior in all cases, performing
either the best or close to the best.
Future work may focus on a more efficient clustering of
quadrants with similar features. This could be achieved
either with the use of signature trees (S-trees) [3] or two-
dimensional R-trees, where the first dimension would be
dedicated for feature information and the second one would
be the locational code.

387

Average DAoSetect Q~e~ j (5 F e a t) - 5 1 2 x S t 2 ImageSIze-64 Features
250 !

BH~ . + -] i i . . - "
SlJ ~ i i { . " /

~ o o B ~ . . ~ - " ~ ~ i , , , ~ " "
1.4 ~ ~ i . ' f . .

.................... i ~ ~ ~ ' ' " " : ; : ~ " , : : 7 " !

, o o i i - ~

30 40 SO 60 70 80 90 1 CO
W i n d o w Size

Figure 12: Averaged results for a select query where 5 features
were queried, image size 512×512, 64 features.

250

200

150

~ o o

5 0

O
3 0

Average DA-Se lec t Que ry (10 Feat .) -512x512 ImageSlze-64 Features

HLJ -,B--- i i '~
/

SHE - .+--~ i i .,/>]
S U - * - - i i ...~" |

. BS~ :~=:: ~ ~ .. i i ~ r ~ . % . . . ~ . 4

i i i ,~:~ i i
. ~ ; . ~ : ~ . ~ . ! .

~ i i i i i
40 50 60 70 80 90 100

W i n d o w Size

Figure 13: Averaged results for a select query where 10 features
were queried, image size 512×512, 64 features.

Select O u e l y - W i n d o w Size 30x30-512x512 lmageSize-64 Features
100 t ~ t

90 tE...4:~ - . ! i ~ ::. :. y'::'."
BHL ~e- - i ~ ,..-'~ / : BSL ~ i ; . ~ a t

8 o i ~ " ::

70 i : . ~ : ; i

6 0 . :" / " "; .

4 O

i . . - ~ - z , _ . _ . , - - - _ , _ . _ . _ . _ . _ . . , ~ . _ - - ~

3 0 - = = = = ~ : : : . - " ~ --..~- "~"- - - . .~- - ~ . - ' t = ' ' ~

. i.... L : ... i .
2 o ~ . i i i i

10 i~ I i] i i

o i ; i i
10 20 30 40 50 60

N u m b e r of Features

Figure 14: Select query for a varying number of queried features,
image size 512x512, window size 30x30.

6. ACKNOWLEDGEMENTS
The authors would like to thank Mr. Alexandros Nanopou-
los for his helpful comments and suggestions.

7. REFERENCES

[1] W. Aref and H. Samet. Efficient processing of window
queries in the pyramid data structure. In Proceedings
9th ACM PODS Conference, pages 265-272, 1990.

[2] W. Aref and H. Samet. Decomposing a window into
maximal quadtree blocks. Acts Informatica, 30:425-
439, 1993.

[3] U. Deppisch. S-tree: a dynamic balanced signature in-
dex for office retrieval. In Proceedings of the ACM SI-
GIR Conference, pages 77-87, 1986.

[4] V. Gaede. Multidimensional access methods. ACM
Computing Surveys, 30(2):170-231, 1998.

[5] I. Gargantini. An effective way to represent quadtree.
Communications of the ACM, 25(12):905-910, 1982.

[6] O. Guenther. E~cient Structures for Geometric Data
Management. LNCS 337, Springer Verlag, 1988.

[7] W. D. Jonge, P. Scheuermann, and A. Schijf. S+trees:
an efficient structure for the representation of large pic-
tures. Computer Vision, Graphics and Image Process-
ing: Image Understanding, 59(3):265-280, 1994.

[8] E. Kawaguchi, T. Endo, and M. Yokota. Depth-first ex-
pression viewed from digital picture processing. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, pages 373-384, 1983.

[9] Y. Manolopoulos, E. Nardelli, A. Papadopoulos, and
G. Proietti. MOF-tree: a spatial access method to
manipulate multiple overlapping features. Information
Systems, 22(8):465-481, 1997.

[10] E. Nardelli and G. Proietti. Efficient secondary memory
processing of window queries on spatial data. Informa-
tion Sciences, 80:1-17, 1994.

[11] E. Nardelli and G. Proietti. A hybrid pointerless repre-
sentation of quadtrees for efficient processing of window
queries. In Proceedings International Workshop on Ad-
vanced Research in GIS (IG[S), 1994.

[12] E. Nardelli and G. Proietti. An optimal resolution sen-
sitive pyramid representation for hierarchical memory
models. Journal of Computing and Information, 1:385-
402, 1994.

[13] H. Samet. The Design and Analysis of Spatial
Data Structures. Addison-Wesley Publishing Company,
Reading, MA, 1990.

[14] S. Tanimoto and T. Pavlidis. A hierarchical da ta struc-
ture for picture processing. Computer Graphics and Im-
age Processing, 4(2):104-119, 1975.

[15] M. Vassilakopoulos and Y. Manolopoulos. Analytical
comparisons of two spatial da ta structures. Information
Systems, 19(7):569-582, 1994.

388

