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ABSTRACT 
In this paper, the efficient manipulation of thematic maps 
that contain multiple non-overlapping features is investi- 
gated. New methods based on Linear quadtrees are pro- 
posed and their performance is compared to that  of similar 
structures. More specifically, window queries involving mul- 
tiple features are described and tested having the number 
of disk accesses as a performance measure. Experimentally, 
it is shown that  the proposed methods have a stable behav- 
ior and, in general, outperform the previous structures with 
respect to time and space complexity. 

Keywords 
spatial databases, region quadtrees, multiple features, su- 
perimposed bitstrings, window queries 

1. INTRODUCTION 
Today, the manipulation of large volume two-dimensional 
data representing multiple features is of great interest for 
a variety of applications (e.g. in image databases, geo- 
graphical information systems (GISs), scientific visualiza- 
tion, computer-aided design). So far, a number of differ- 
ent approaches have been presented to manipulate specific 
classes of spatial data  (i.e. points, lines, rectangles, vol- 
umes and hyper-volumes), the most popular of which are 
quadtrees, bintrees [15], R-trees, the cell tree and the grid 
file. The interested reader can refer to [4; 6; 13] for interest- 
ing surveys on the topic. 
The quadtree is a spatial access method based on the hier- 
archical image decomposition. Each image is regularly and 
successively decomposed into four quadrants until  a homoge- 
neous maximal block, with respect to the contained feature, 
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is reached. Quadtrees can be implemented either in main 
memory or in secondary memory as pointer-based or point- 
erless structures, respectively. As far as secondary storage is 
concerned, two types of quadtree representations have been 
presented: 

• by extracting the collection of homogeneous (black) 
leaves, which evidently carry semantic information [5], 
and 

• by traversing the quadtree in preorder and forming a 
string, which is called DF-expression [8]. 

Since the need is on the random access of the quadtree 
leaves, the focus will be on the first representation. 
In this work the focus is in the manipulation of raster the- 
matic maps that contain multiple non-overlapping features, 
i.e. maps where each pixel contains one and only one fea- 
ture and where pixels of the same color are aggregated into 
patches. For example, such thematic maps can be widely 
met in GISs. Such maps represent distinct thematic layers 
where each layer, as its name states, has a distinct theme (or 
subject). This theme could be the geology of the land, the 
elevation of the area, or the soil type found in the depicted 
area. For example, each type of soil occupies a certain space 
of the area and, apparently, no other type of soil can co-exist 
at the same space. This way, a map of non-overlapping cat- 
egories is obtained. In the following, the words features, 
colors and categories will be used interchangeably. 
Some of the most important types of queries applied to spa- 
tial data are window queries, since they allow extracting 
only the needed information from the whole image. More 
specifically, the window query types under examination are 
the following: 

• exist query (w, fi, fj, -.., fk): check whether one or 
more features exist inside the window w. 

• report query (w): report all features that are found 
inside the window w. 

• select query (w, fi, fj, ..., fk): select all homogeneous 
blocks inside the window w containing feature f~, fj, ... 
or fk. 

The efficient processing of window queries has already been 
studied by Nardelli and Proietti, who proposed adjusting re- 
gion Linear quadtrees to manipulate the feature information 
[10]. The Hybrid Linear quadtree (HL-tree) was introduced 
as an enhancement to the previous method [11], whereas the 
MOF-tree, which was based on the HL-tree, was presented 
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as  a s t r u c t u r e  t o  efficiently manipulate images with multi- 
ple overlapping features [9]. Apar t  from these structures, 
Tanimoto and Pavlidis introduced a multi-resolution repre- 
sentation of images, the  Py ramid  da ta  structure [14], two 
variations of which were later  proposed by Aref and Samet 
[1], and Nardelli and Proie t t i  [12]. Finally, in [7] a different 
in philosophy structure was presented, the S+trees, which 
are based on DF-expressions. The lat ter  structure basically 
manipulates black-and-white images and though it can be 
adjusted to manipulate  mult iple non-overlapping features, 
this would be performed in a less efficient way due to possi- 
ble large space waste. 
In this paper, a quadtree-based approach will be described 
a n d  examined aiming to the  efficient handling of thematic 
layers with multiple non-overlapping features. The focus 
will be on efficient processing of queries, which involve both 
the features and the spat ial  object locations as well. In 
the sequel, only the pointerless representation of this struc- 
ture will be examined, al though the same method could be 
also invariably applied to the pointer-based representation. 
By comparing the new s t ructure  to the previously proposed 
methods that  were also based on Linear quadtrees, it will 
be shown that  there is considerable gain achieved both in 
terms of storage space and t ime complexity. 
The rest of the paper  is organized as follows. In Section 
2, some of the quadtree-based access methods tha t  have al- 
ready been presented in the past  are reviewed. Also, the 
points which motivated in introducing the new method will 
be mentioned. In Section 3, the new structure will be de- 
scribed in detail, along with some new algorithms for the 
efficient performance of window queries. In Section 4, some 
representative results t ha t  were derived from the conducted 
experiments will be shown. Section 5 contains concluding 
remarks and some directions of possible future work. 

2. RELATED WORK AND MOTIVATION 
As already mentioned, in this work the focus lies on support-  
ing raster thematic maps  containing multiple non-overlap- 
ping features. In our representation of maps, each distinct 
feature is represented by a different color. This means that  
each pixel of the map  will contain one and only one color 
in contrast to the maps  with overlapping features, where a 
block of the map could contain more than one color repre- 
senting different map categories. I t  must be mentioned that,  
since multiple features have to be handled, the hierarchical 
image decomposition will s top only when a maximal block 
of space that  contains a single feature, i.e. a homogeneous 
block, is reached. 

2.1 Simple Linear Quadtree 
A first step toward be t te r  exploitation of thematic maps 
was the use of simple Linear quadtrees (SL-trees) [10]. In 
fact, the latter s t ructure is the original Linear quadtree [5], 
enriched with feature information. During the procedure 
of successive decomposition, once a homogeneous block is 
reached, the information about  the particular feature that  
was found in this block is retained together with the corre- 
sponding leaf quadcode. More specifically, now each quadtree 
leaf will be characterized by two fields: 

1. the loeational key, whose digits reflect successive quad- 
rant subdivision, 

2. the value field, which contains the id of the  feature 
that  exists in the  specific node. 

Then, the entries for all quadtree leaves will be inserted in 
a B+tree, where the locational key will serve in traversing 
the latter structure.  

Feature Id 

[ ]  0 

• 1 

[ ]  2 

[ ]  3 

Figure 1: An 8x8 image and the feature-id table. 

Figure 2: The Quadtree representing the image of Fig. 1. 

In Figure 1, an 8x8 image is depicted which contains four 
non-overlapping features. The feature id's are listed in the 
table in the  right part  of Figure 1. In Figure 2 the ho- 
mogeneous leaves of the corresponding quadtree axe shown, 
whereas internal nodes axe represented with gray color. Next, 
the list of generated locational codes is depicted. For exam- 
ple, the leaf with locational code 132 has a value field equal 
to 2, since the feature contained in the corresponding subim- 
age is the one having id=2. 

(Ul ,1 ) ,  (112,3), (n3,0),  (114,1), (120,1), (131,0), 
(132,2), (133,2), (134,0), (140,1), (210,0), (220,1), 

(230,1), (240,0), (310,2), (320,0), (330,2), (340,3), (400,0) 

2.2 Hybrid Linear Quadtree 
Another approach has been proposed in [11], where apart  
from the quadtree leaves, internal nodes are also registered 
in the B+tree. However, internal nodes are heterogeneous 
blocks since they contain more than one feature. Internal 
nodes are coded with a locational key, whereas to represent 
the feature information each quadtree node will accommo- 
date a bi ts tr ing of size equal to the number of features ex- 
isting in the thematic map. A specific hit of the bitstring 
is set to 1, if and only if the respective feature exists in the 
represented quadrant.  
Evidently, this approach has a storage overhead due to the 
storage of the internal nodes and the corresponding bit- 
string. In [11] it  is explained that  this overhead is not sig- 
nificant since the number of internal nodes axe not larger 
than the 1/3 of the number of leaves and, consequently, the 
asymptotic space occupancy will remain the same. Also, 
since computer  systems are based on a 32-bit architecture, 
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space can always be saved for at least 16 features, which is 
a reasonable number of features. 
Applying the method of HL-trees on the thematic layer of 
Figure 1, the following list of nodes, either internal or exter- 
nal, will be created and stored in the B+tree leaves. As can 
be seen, each locational key is accompanied by a bitstring 
of size four, since four axe the features existing in the rep- 
resented thematic map. Nodes accompanied by a bitstring 
that has only one bit set to 1 are homogeneous quadtree 
leaves covered by the respective feature. For example, the 
locational code 110 that corresponds to an internal node is 
related to bitmap 1101, since all features exist in the repre- 
sented quadrant apart from the feature with id=2. 

(ooo,nn), (loo,nn), 
(n3,1000), (n4,0100), 
(132,0010), (133,00101, 
(210,1000), (220,0100), 

(no,n01), (ln,01001, (n2,0001), 
(120,0100), (130,i010), (131,I000), 
(134,10001, (140,01001, (200,11001, 
(230,0100), (240,1000), (300,1011), 

(310,0010), (320,1000), (330,0010), (340,0001), (400,1000) 

2.3 Independent Linear Quadtrees 
A straightforward approach adopted for comparison pur- 
poses is to use Independent Linear quadtrees (IL-trees). As 
its name states, a separate Linear quadtree is used for each 
feature resulting in as many Linear quadtrees as the num- 
ber of features in the thematic map. This approach could 
present a substantial space overhead since multiple indices 
have to be stored. This fact is also a weak point during 
concurrent manipulation of multiple features because of the 
need to traverse and join the results from multiple indices. 

2.4 Query Manipulation and Motivation 
The original Linear quadtree was firstly proposed for black 
and white images, where the only information stored were 
the addresses of black quadrants [5]. This means that the 
structure worked fine for window queries, since no feature 
filtering was necessary, whereas the only expectation was 
the good performance of the B+tree when queried with the 
spatial location of objects based on the locational quadtree 
codes. The next step towards the adjustment of the original 
method to the efficient manipulation of multiple features 
(i.e. thematic maps / was confined to the maintenance of 
feature information in the quadtree leaves. 
As already seen, the bottom line in all previous methods 
is that this information will be stored in the B+tree leaves 
making it impossible to take further advantage of the fea- 
tures as a spatial filter. For example, though the HL-tree 
retains information for internal and external quadtree nodes, 
both of them are stored only at the B+tree leaf level. Con- 
sequently, we cannot take advantage of it in higher B+tree 
levels to avoid traversing some branches for queries based 
on feature information. In the IL-trees, there is no need for 
filtering but instead several indexes have to be traversed to 
answer queries involving multiple features. 
In the present paper, a method aiming at achieving bet- 
ter exploitation of feature information in combination with 
spatial location is proposed. This is not always trivial since 
feature information and spatial location are two orthogonal 
issues that have no relation with each other. 

3. PROPOSED METHOD 
In spatial data processing, for example in GISs where each 
map constitutes a specific thematic layer with its own non- 
overlapping categories, the need for fast retrieval of all or 

some of the categories that  exist in a given region is emerged. 
In simple words, searching for a category is deduced to 
searching for the specific color with which this category is 
represented in the map. The efficient processing of queries 
which are based both on the feature as well as on the spatial 
object location is pursued. 
Assume a user query for information from a thematic map 
of size T x T that contains k non-overlapping features, where 
T = 2  ~ and m is a positive integer. Since thematic maps con- 
tain more than one feature, the regular space decomposition 
process will stop when a homogeneous block, i.e. a maximal 
block that is fully covered by one feature only, is reached. 
As already seen in the previous examples, for the sake of 
uniformity the image background is treated as a separate 
feature. 

3.1 Description of the New Method 
Here, the pointerless representation of the new method will 
be described since the pointer-based one can be developed 
in a similar way. The Linear quadtree uses the B+tree as 
a storage medium for the locational keys of the thematic 
map, and as an efficient structure for the fast retrieval of 
the represented information. The proposed method is based 
on a restructuring of the B+tree nodes. 
Evidently, the original B+tree traversal is based on the loca- 
tional code, which is the B+tree key. To be able to efficiently 
perform window queries that  search for certain features in- 
side a given window, it is important to know whether the 
B+tree sub-structure that  is about to be traversed contains 
at least one of the desired features. In case it does not, this 
sub-structure can be skipped resulting in fewer disk accesses. 
Since this traversal has to be additionally constrained with 
the feature information, a bitstring representing the kind of 
needed information will be stored in the upper levels of the 
B+tree. 
In the following it will be made obvious that  the proposed 
method of posting to the parent node a second-order bit- 
string can be applied to the SL-tree and the HL-tree as well. 
The structures derived by such a use of the bitstring are 
named BSL-tree and BHL-tree, respectively. According to 
the new proposal each entry in the B+tree leaves will consist 
of: 

• a |ocational key of the represented quadrant,  

• a value field containing the color of the specific quad- 
rant or (when applied to the HL-tree) a bitstring of 
size equal to the number of features. This bitstring is 
encoded so that the i-th bit is set to 1, if and only if 
the feature with id=i exists in the respective quadrant. 

However, according to the new method, a second-order bit- 
string is introduced in the entries of the internal nodes. More 
specifically, the bitstrings (or value fields) of the entries of a 
specific B+tree leaf are superimposed (OR-ed), thus forming 
a new second-order bitstring which represents the feature in- 
formation of the respective leaf in a condensed/abstract way. 
In essence, for each leaf a new bitstring is encoded so that 
the i-th bit is set to 1, if and only if the feature with id=i 
exists in the entries of the specific leaf. Then, this second- 
order bitstring is posted to the parent node of the leaf. The 
idea of producing second-order bitstrings can be generalized 
for all B+tree levels. Thus finally, each entry in the internal 
nodes will be accompanied by this second order bitstring 
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which will have ls only at positions where the respective 
features exist in the corresponding B+tree sub-structure. 

I 1- 1 --I I", I 
I ": I I- I 

Figure 3: Layout of internal and leaf nodes. 

The layout of internal and leaf nodes is illustrated in the 
upper and lower part of Figure 3, respectively. Basically, 
leaves comprise of m pairs (locational key, value field or 
bitstring), whereas internal nodes comprise of l triplets (tree 
pointer, locational key, bitstring), where I is the tree fanout*. 
The size of a tree pointer is 4 bytes (32 bits). The value field 
of the leaves is used in the case of the BSL-tree since only the 
color of the homogeneous quadrant needs to be stored. The 
bitstring is used in the case of the BHL-tree since, in case of 
a heterogeneous quadrant, it might be needed to store more 
than one feature. 
Regarding the internal nodes of the tree, since their average 
space requirements would be about 30 or 40 MB, it can be 
safely assumed that they can be easily accommodated in the 
main memory of modern computers. On the other hand, for 
images of size 1024 × 1024 or 2048 × 2048 pixels, the quadtree 
depth is 10 or 11 levels and the length of the locational key 
is 24 or 26 bits, respectively. Assuming that the locational 
key is represented by an integer, in the case of the BSL-tree, 
as far as the leaves are concerned, the remaining one or two 
bytes can be used in order to store the color. 
As stated in the previous, this is the reason for ignoring 
the space occupied by the value field when calculating the 
introduced storage overhead in the case of the BSL-tree. 
Also, there is no change in the case of the BHL-tree since 
the leaves of the original HL-tree already contained those 
bitstrings. 

/llll'  °J i i,t j 

JlMl'O0~2~~llO~2tOll~ ~201010~2301010~2401100 ~ 13001101113'01001~3201100~ 
Figure 4: Branch of the B+tree. 

As expected, the B+tree root and some entries at the level 
below the root will probably contain bitstrings with many 
positions set to 1 since the respective subtrees will contain 
almost all features. More specifically, in the case of widely 
spread features, the number of bitstring positions set to 1 
will be large, resulting in visiting all queried maximal blocks 
inside the query window. It should be noticed though, that 
for such thematic maps, whatever the method used, they will 
result in a great number of disk accesses since the queried 

*To be more precise, internal nodes store I bitstrings and 
tree pointers toward the l leaves, and l-1 locational keys 
which axe sufficient to traverse the tree. 

features will be spread in almost all B+tree leaves. On the 
other hand, if the queried maps contain features which are 
concentrated in specific areas, this would result in only a 
few positions set to 1 in the B+tree leaves, allowing to avoid 
visiting some irrelevant tree branches. Figure 4 illustrates 
an example of a BHL-tree, where m= 3  and 1=3. 

3.2 Algorithm Description 

3.2.1 The Creation Algorithm 
The first step to build the proposed structure (either BSL- 
trees or BHL-trees) is the image decomposition, which will 
result in a list of maximal blocks. In the case of BSL-trees, 
this list will contain only homogeneous blocks, while in the 
case of the BHL-tree this list will also contain the internal 
quadtree nodes, that is the non-homogeneous blocks. Each 
entry in the list will consist of the locational code of the 
represented quadrant followed by the bitstring standing for 
the feature(s) that is(are) found in this quadrant. All entries 
of this list will be inserted in a B+tree and will be stored at 
its leaves. 
A bottom-up procedure is then followed to post the feature 
information of the stored quadrants  to the upper B+tree 
levels; i.e. a bitstring for each entry in all B+tree nodes 
is extracted. At the leaf level this bitstring is identical to 
the original (in the sense of HL-trees) bitstring that was 
generated in the quadtree list. For the internal B+tree lev- 
els though, the superimposition method (OR-ing) is used 
to propagate the feature information to higher tree levels. 
Thus, by superimposing the bitstrings which exist in a node, 
a new second-order bitstring is produced and stored in the 
entry that  is the ancestor of this node at the next higher 
level. This procedure propagates upwards until the root is 
reached. 

3.2.2 Window Queries 
In case of window queries, the basic approach of decom- 
posing the window query into a sequence of smaller queries 
is followed, where each smaller query comprises a maximal 
block of the image inside the window [2]. In the following, 
it is explained how these queries proceed according to the 
proposed method. 

The Exist Query 
Consider a query over a specified window, where a search for 
the existence of features fi, fj, -.. or fk has to be performed. 
For each maximal block, searching starts fxom the B+tree 
root. Before descending the tree levels, each entry's bitstring 
is examined. If at least one bit  corresponding to one of the 
queried features is set to 1, only then the respective subtree 
is followed; otherwise we skip to the next entry of the node. 
The same procedure is followed at the remaining tree levels; 
searching stops only when the leaf level is reached. However, 
in case of the BSL-trees it should be emphasized that two 
possibilities may arise when the leaf level is reached: 

• the search is successful and the desired locational key 
(maximal block) has been located, 

• the search is unsuccessful, bu t  searching continues for 
the ancestor or the descendant of the desired locational 
key, since they correspond to larger or smaller maximal 
blocks containing or contained in the desired maximal 
block. 
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In the latter case, one more disk access may be needed to 
retrieve the previous or the next page of the reached leaf, 
where the ancestor or the descendant of the desired loca- 
tional key may be stared, respectively. In case of the BIlL- 
tree, it is certain that the searched maximal block will be 
located since all quadrants axe stored, and by looking at its 
bitstring the question can be answered immediately gaining 
one disk access. 

The Report Query 
In a report query, the user asks for all the features that  
comprise the queried window. In this kind of query the 
bitstring will play no role, since only when reaching the leaf 
level its bitstring is searched to return the features whose 
corresponding positions in the bitstring are set to 1. At the 
leaf level, the BHL-tree will work in exactly the same way 
as described in [11], i.e. similarly to the exist query. 

The Select Query 
The last window query is the selection query where the user 
asks for the blocks of the map in the queried window where 
the wanted features are found. As in the 'c~e Of the exist 
query, for each maximal block searching starts by examining 
the entries at B+tree root. As already described, only the 
branches where the respective entry's bitstring has at least 
one position of the queried features set to 1, are followed. 
Once the leaf level is reached, then the queried maximal 
block is searched. As described in the previous subsection, 
if this searching is not successful, then we first try to see if 
its descendants exist in the tree. In such a case, only those 
descendants that are homogeneous with respect to one of 
the queried features are returned. If the descendants are not 
stored in the tree, then we have to look for its ancestor. Only 
then, it can be verified whether the ancestor is covered by 
one of the queried features or not. This procedure operates 
in exactly the same way as in the HL-tree, since we need 
to report the exact blocks where the features exist and in 
this case searching cannot be avoided with the use of the 
quadtree's internal nodes. 

4. PERFORMANCE EVALUATION 
Detailed experiments were performed to compare the SL- 
tree, the HL-tree and the lL-trees against the new proposed 
technique applied to both the SL-tree (BSL-tree) and on 
the HL-tree (BHL-tree). All kinds of queries were tested, 
however the results of the report query were only used to 
show the drawbacks of the IL-trees, as it will be shortly 
explained in the following section. The exist and selection 
query were considered as the most important ones, since 
they can extensively show how the bitstring can accelerate 
processing in queries involving features. The selection of the 
queried features was based on their frequencies. Suppose 
that i features are to be selected out of j ones. First, the 
features were sorted according to decreasing frequency and, 
then, the 1st, the [~J-th, [~ J - t h ,  ..., [ ~ J - t h  feature was 
selected. For instance, if i=4  and j=64, then the 1st, the 
16th, the 32nd and the 48th feature should be selected. 
All structures were implemented in C + +  programming lan- 
guage under Windows NT and the experiments run on a 
Pentium II workstation. Far a thematic map of size 256 × 256, 
512x512 or 1024x1024 pixels, the B+tree that will be cre- 
ated will have a height of at most 4 levels. The window 
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queries of size 25x25, 50x50 and 100×100 pixels were exe- 
cuted on 256×256 and 512x512 images containing 8, 16 and 
64 features. The page size used was 1K for smaller maps and 
2K for larger maps leading to a fanout of 84 and 169 entries, 
respectively. The number of maximal blocks created for each 
thematic map ranges approximately from 40,000 to 240,000. 
The first group of thematic layers (i.e. 256 x 256 images) was 
downloaded from the GRASS site, a public domain GIS sys- 
tem 2, while the second group of maps (i.e. 512x512 maps) 
were meteorological satellite views of Europe and Asian re- 
gions from Meteosat Imagery site 3. The measurements were 
based on the number of disk accesses where only the accessed 
leaves were counted. For each thematic map, 50 queries were 
performed for four different window sizes and the results 
were averaged. Due to space limitations, the results for the 
512x512 images only are shown since the conclusions are 
similar for all cases. 

4.1 Space Overhead 
In the first set of experiments the space overhead involved in 
each method was measured. As explained in Section 3.1, no 
space overhead due to the use of the bitstring in the B+tree 
nodes for the BSL-tree and the BHL-tree was considered. 
As a result, both SL and BSL nodes on one hand, and HL 
and BHL nodes on the other hand will have exactly the same 
number of entries for a given page size. This is the reason 
why in the experiments performed measuring the space over- 
head, only the three columns of the IL-trees, the BSL-trees 
and the BHL-trees are shown. The column of the SL-tree 
would be exactly the same to that  of the BSL-tree, as the 
column of the Hi~tree would be exactly the same to that of 
the BHL-tree. 

Space Overhead - Image Size 512 x 512 - 64 Features 

5600 

# 5400 

o 5200 
f 

5000 
N 
o 4800 
d 

4200 
C6d_17 I)4__24 D630 D806 D5_30 

[]  BSL 

• BHL 

~tL  

Names Of Maps 

Figure 5: Space Overhead involved in five different 512×512 
images containing 64 features. 

As can be seen in Figure 5, the (B)HL-tree is the worst 
method regarding the space overhead, due to the storage of 
internM quadtree nodes in the B+tree leaves and upwards. 
The space occupied by the IL-trees was found by summing 
up the space size occupied for each one of the feature-indices 
involved, i.e. the 64 indices of our experiment. It is also 
noticed that the (B)SL-trees are almost always the best ones, 
whereas the IL-trees are close with respect to the storage 
overhead. 

~http://moon.cecer.army.mil 
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4.2 Report 
As described previously, the report query returns the fea- 
tures that exist inside the queried window. As far as the 
IL-trees are concerned, this means that  for our data set, 64 
indices should be visited to check whether the corresponding 
feature exists inside the window. This explains the reason 
why IL-trees have by fax the worst performance, as depicted 
in Figure 6. The SL- and BSL-tree have exactly the same 
performance, since the bitstring is not taken into any con- 
sideration. The same applies for the case of HI_,- and the 
BHL-tree. The BSL-tree is the best access method, while 
the slightly worse performance of the BHL-tree can be ex- 
plained by considering the larger number of leaves. 

4.3 Exist 
As far as the exist query is concerned, the performance dif- 
ference of each examined method can be seen clearly. For 
each queried window, the existence of a number of features 
was searched. More specifically, the focus was in finding 
out whether at least one of the queried features existed in- 
side the queried window. As soon as one of them was met, 
processing stopped. 
In Figures 7, 8, 9 the results, when 2, 5 and 10 features are 
queried respectively, axe illustrated. A first observation is 
that the methods using the bitstring always perform better 
than their counterparts which do not use a bitstring. In 
addition, the BHL-tree outperforms all methods for more 
than 2 features. This is explained by considering two facts: 

• the HL-tree stores locational keys for internal quadtree 
nodes as well. As explained in Section 3.2.2, this can 
lead to less disk accesses since very soon it can be 
identified whether the region that it is looked for is 
homogeneous or not, and which features it contains. 

• at upper levels, the use of the bitstring can help skip- 
ping those tree portions that do not contain any of the 
queried features. 

The bad performance of the SL-tree is explained by the 
fact that the specific quadblocks of which, the region that 
is searched is comprised, have to be found out in order to 
check the contained features. As fax as the IL-trees axe con- 
cerned, all the feature-indices have to be processed always 
without knowing whether the specific feature is contained 
inside the queried window or not. In addition, the order of 
accessing the independent indiccs is random and there is no 
means to bypass non useful indices. Figure 10 depicts how 
the IL-trees' behavior worsens with respect to the number 
of features. 

4.4 Select 
Regarding the select query, in the first set of experiments for 
each queried window the blocks, where the queried features 
were found, were searched. The results can be seen in Fig- 
ures 11, 12 and 13. As observed before, the methods where 
the new bitstring is embedded always perform much better 
than the respective ones without the bitstring since we can 
avoid to visit tree branches where the queried' •features do 
not exist. 
More specifically, in Figures 11, 12 and 13 where we search 
for 2, 5 and 10 features respectively, it cart be observed that 
the IL-trees seem to have a good performance in compari- 
son to the other methods. However, their performance is not 
stable since it will always depend on the number of queried 

features (as demonstarted in Figure 6 where all features are 
queried). The explanation is that  the IL-trees' performance 
is tightly connected to the number of features queried, as 
well as to their occurrence frequency. More specifically, 
sparse features with low occurrence will create very small 
trees, possibly of even one node only, while the tree of a more 
frequent feature will be bigger and will affect the method's 
performance substantially. In general, the IL-trees seem to 
work very well for a few features only, which are rarely met 
in the thematic map. 
In the previous graphs, it is shown that  with an increasing 
number of queried features, the performance of the IL-trees 
becomes worse and this tendency is apparent in the second 
set of experiments. In this second set of experiments, the 
methods' performance was tested for two fixed window sizes, 
where the number of the queried features was increasing. 
As can be seen in Figure 14, the performance of the IL-trees 
decreases progressively with the number of queried features 
resulting in a quite bad performance when a large number 
of features is queried, whereas on the contrary the BHL- 
and BSL-tree show a comparatively stable behavior. As ex- 
pected, on one hand SL- and BSL-trees, and on the other 
hand HL- and BHL-trees behave similarly when a large num- 
ber of features is queried and that  is why the graphs of the 
BSL- and BHL-tree only are shown. 
As a conclusion, the previous experiments show that the 
technique of posting feature information by means of a bit- 
string to upper levels of a linear-type quadtree results in 
superior performance for: 

• large thematic maps because they produce a greater 
number of locational keys and, therefore, the height 
of the B+tree will be bigger. Thus, filtering based 
on queried features can be applied at higher tree lev- 
els and, thus, traversing some B+tree branches can be 
avoided, 

• the exist query because at a very early stage the bit- 
string helps responding to the user query, 

• thematic maps with concentrated features, such as typ- 
ical GIS raster images. Otherwise the features will be 
spread to various locations leading to non-homogeneous 
leaf nodes, as far as the features axe concerned, and 
consequently to bitstrings with many positions set to 
1 that allow no filtering. 

5. CONCLUSIONS 
In this paper, a technique has been introduced for use in 
quadtree-based access methods to improve previously pro- 
posed methods and efficiently process window queries in the- 
matic maps with multiple non-overlapping features. A vari- 
ation of the Linear quadtree has been presented and algo- 
rithms to process window queries have been described. The 
results of the conducted experiments concerning the per- 
formance of the new method when applied to the window 
queries have been discussed. It has been shown that this 
new method has a stable behavior in all cases, performing 
either the best or close to the best. 
Future work may focus on a more efficient clustering of 
quadrants with similar features. This could be achieved 
either with the use of signature trees (S-trees) [3] or two- 
dimensional R-trees, where the first dimension would be 
dedicated for feature information and the second one would 
be the locational code. 
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Figure 12: Averaged results for a select query where 5 features 
were queried, image size 512×512, 64 features. 

250  

200 

150 

~ o o  

5 0  

O 
3 0  

Average DA-Se lec t  Que ry (10  Feat . ) -512x512 ImageSlze-64 Features  

HLJ -,B--- i i '~ 
/ 

SHE - .+--~ i i .,/>] 
S U  - * - -  i i ...~" | 

. . . . .  BS~ :~=:: .......... ~ ................... ~ .......................................... i .................... i ~ r ~ . % . . . ~ . 4  

i i i ,~:~ ....... i i 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . .  ; . ~ : .  . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . .  ! . . . . . . . . . . . . . . . . . . . .  

~ i i i i i 
40 50  60  70 80  90 100 

W i n d o w  Size 

Figure 13: Averaged results for a select query where 10 features 
were queried, image size 512×512, 64 features. 
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Figure 14: Select query for a varying number of queried features, 
image size 512x512, window size 30x30. 
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