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ABSTRACT
In several applications, user preferences can be fairly dy-
namic, since users tend to exploit a wide range of items and
modify their tastes accordingly over time. In this paper, we
model continuous user-item interactions over time using a
tensor that has time as a dimension (mode). To account for
the fact that user preferences are dynamic and change indi-
vidually, we propose a new measure of user-preference dy-
namics (UPD) that captures the rate with which the current
preferences of each user have been shifted. We generate rec-
ommendations based on factorizing the tensor, by weighting
the importance of past user preferences according to their
UPD values. We additionally exploit users’ side data, such
as demographics, which can help improving the accuracy of
recommendations based on a coupled, tensor-matrix factor-
ization scheme. Our empirical evaluation uses a real data
set from last.fm, which allows us to demonstrate that user
preferences can become very dynamic. Our experimental re-
sults show that the proposed method, by taking into account
these dynamics, outperforms several baselines.

Categories and Subject Descriptors
H.2.8 [Information Systems Applications]: Miscella-
neous

Keywords
Preference dynamics; Coupled tensor factorization.

1. INTRODUCTION
Users may change their interest over time, especially in ap-

plications where they interact customarily with a wide range
of items when consuming news or music online. For this rea-
son, recent research started to incorporate temporal effects
into model-based collaborative filtering [2, 6, 8], by observ-
ing drifts in rating behavior and modeling the way user and
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item characteristics change over time (e.g., users liking car-
toons when they are young, but disliking them when grow-
ing up). However, such approaches do not take into account
the facts that in several applications: (i) users interact con-
tinuously with items over time [3], e.g., when consuming
music online or purchasing several categories of retail prod-
ucts (e.g., household items); or (ii) that implicit quantitative
feedback may be provided by users, such as the number of
times they listened to a song or downloaded a video within
a time period (in contrast, [3] focused on explicit feedback
in the form of ratings).

Continuous user-item interactions over time can be cap-
tured with a sparse tensor whose dimensions (modes) cor-
respond to user, items, and time. Each non-empty tensor
cell can record explicit or implicit (quantitative) feedback
within the given period. For instance, Xio et al. [7] used a
Bayesian probabilistic tensor factorization model for movie
recommendation. Spiegel et al. [5] used tensor factorization
on evolving data with different time-periods being modeled
as time slices in the tensor. They proposed the use of a
Smoothing Factor (SF), by exponentially decreasing the im-
portance of past preferences. Nevertheless, these approaches
ignore the fact that changes in user preferences can vary indi-
vidually, i.e., some users’ tastes may be very volatile whereas
others may keep their tastes relatively stable over time.

In this paper, we follow the aforementioned approaches
and model varying user preferences with tensors. We con-
sider individual changes in preferences based on a new mea-
sure of user-preference dynamics (UPD) that captures the
rate with which the current preferences of each user have
shifted compared to his past preferences. Recommendations
are generated based on tensor factorization, by weighting
the importance of past user preferences according to their
UPD values. Motivated by recent research on auxiliary in-
formation (a.k.a. side information) [4], we examine users’
side data, such as demographics, to improve the recom-
mendation accuracy based on a coupled tensor factorization
model, which captures shared latent factors across the time-
varying user preference data and the side information about
the users. Our empirical evaluation uses a real data set
from last.fm, which demonstrates that user preferences can
become very dynamic. Our experimental results show that
the proposed method outperforms several baselines.

2. THE PROPOSED MODEL
The inputs of the proposed model are (1) a third-order

tensor X ∈ R
|U|×|I|×|T |, where U , I and T denote the sets
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of users, items and time-periods, respectively and each non-
empty tensor cell X (u, i, t) contains the number of inter-
actions of user u ∈ U to item i ∈ I at the time-period
t ∈ T ; (2) an auxiliary matrix Y ∈ R

|U|×|D| of users’ side
information with a set of D attributes, coupled in the user
dimension (mode) U of tensor X ; and (3) the rank R of
X . Firstly, we model the temporal and users’ side infor-
mation (Section 2.1), and then the proposed model reweigh
the past interactions of tensor X based on the users’ recent
interaction behavior to items(Section 2.2). The output of
the proposed model is a low rank R approximation of X ,
denoted by X̂ , using a CANDECOMP/PARAFAC (CP) de-
composition (Section 2.3).

2.1 Modeling Changing User Preferences and
Side Information

Each non-empty tensor cell X (u, i, t) contains the num-
ber of interactions of user u to item i at the time period t
(assuming implicit quantitative feedback). The time period
can be days, months, semiannuals (i.e., 6 months), or whole
years, corresponding to the |T | different time slices |U | × |I |t
of tensor X , with t ∈ 1 . . . |T |. The choice of the time pe-
riod mainly depends on the application of the recommender
system. This means that the test time period, e.g., the test
month where the personalized recommendations have to be
generated, is included in the last time slice |U | × |I ||T |, e.g.,
the current semiannual, of the tensor X .

With respect to the users’ side information the u-th, u ∈
U , row of the auxiliary matrix Y corresponds to the set D
of attributes of user u. In case of numerical attributes, e.g.,
age, we perform an equal-width binning, where for each nu-
merical entry in the matrix Y we store the respective number
of the bin. In the case of categorical attributes, such county
and gender, we calculate the c distinct categorical values
and then we create a binary vector ci ∈ R

c×1 , where 1
denotes the categorical attribute of user ui. Finally, we ap-
pend the transformed numerical and categorical attributes
to generate the final |D| attributes in matrix Y .

2.2 Users Preference Dynamics (UPD)
Given a test period t+1 within the current/last time slice

|U | × |I ||T | of the tensor X , e.g., the test month in the last
semiannual, for each user u we calculate the UPDu value as
follows:

UPDu = 1− |Iucur ∩ Iuprev|
|Iucur ∪ Iuprev| (1)

where Iucur ⊆ I denotes the set of items that user u has
interacted at the current/last time slice |U | × |I ||T | of X
and Iuprev ⊆ I is the union set of the items that user u
has interacted at all the previous time slices |U | × |I |t, with
t = 1 . . . |T | − 1. The numerator of the fraction in Eq. 1 is
the number of common items that user u has interacted at
the current and the previous time periods, whereas the de-
nominator of the fraction is the number of the distinct items
that user u has interacted overall. According to Eq. 1, low
UPDu values indicate that user u preserved his preferences,
whereas high ones correspond to users’ u high tendency to
change his preferences at the current time period (the |T |-
th time slice of X ). After calculating the |U | different UPD
values, we decrease the weights of each interaction of user u
at the |T | − 1 different past time slices |U | × |I |t, by multi-

plying them with the smoothing factor sfu = 1−UPDu, as
follows ∀u ∈ U and |T | > 11:

X (u, i, t) := sfu ∗ X (u, i, t) (2)

with t = 1, . . . , |T | − 1 and i ∈ Iuprev

We have to mention that the smoothing factor sfu is dif-
ferent for each user u, depending on the users’ current in-
teraction behavior to items within the current time period.
This comes in contrast to several works such as [5], where the
smoothing factor is applied in an non-personalized way. The
outcome of this process is the recalculation of the respective
entries (number of interactions) of X based on Eq. 2.

2.3 The Low Rank R Approximation Of The
Tensor X

In our model we used the CP decomposition of X with
the recalculated entries based on Eq. 2. To generate the
output of the proposed model, we calculate the X̂ low rank
R approximation as follows:

X̂ =
R∑

r=R

ur ◦ ir ◦ tr (3)

where ◦ is the outer product operation and ur, ir, tr are the
respective user, item, time vectors of the r-th component.
The goal of the proposed model is to minimize the low rank
approximation error ||X − X̂ ||2F , where || · ||F indicates the
Frobenius norm. The R component of a tensor X and the
auxiliary matrix Y is defined as:

f(A,B,C, V ) = ||X − [A,B,C]||2 + ||Y −AV T ||2 (4)

where matrices A ∈ R
|U|×R, B ∈ R

|I|×R and C ∈ R
|T |×R are

the factor matrices of X , extracted by CP; matrices A and
V ∈ R

|D|×R are the factor matrices extracted from matrix Y
(with users’ side information) by a matrix factorization tech-

nique. Also, in Eq. 4 we use the notation X̂ = [A,B,C] to
denote the low rank approximation based on the CP model.
Our goal is to calculate the matrices A,B,C and V that
minimize the objective function of Eq. 4. In order to solve
the minimization problem we used the CMTF-OPT algo-
rithm of the CMTF toolbox2, which also handles missing
data, since X is usually sparse.

The final top-k recommendations for each user u at the
current test time-period t are generated by ordering in de-
scending order the entries of X̂ (u, :, t), i.e. the respective
column of items with indices u ∈ U and t within the cur-
rent/last time slice of X̂ . Thus, the outcome of the proposed
model is the respective top-k (recommended) items.

3. EXPERIMENTS

3.1 The last.fm Dataset
In our experiments, we used the last.fm Dataset - 1K

users3 which contains the listening habits for |U |=992 users.
The dataset consists of tuples in the form of user-artist-
song-timestamp over 54 months (till May, 5th 2009). In to-

1For |T |=1, ∀u ∈ U sfu = 1
2www.models.life.ku.dk/joda/CMTF_Toolbox/
3www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/
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tal, there are |I |=176,948 artists4 and 19,150,868 listening
events, corresponding to track-listenings. The distribution
of the listening events is presented in Figure 1. In our exper-
iments, we split the dataset into 9 time periods (time slots
S1 . . . S9), corresponding to 9 semiannuals. Thus, we have
|T |=9 different time slices in the tensor, where each slice cor-
responds to a six-months period. In this dataset, users’ side
information is also available, including age, gender, country
(with missing values, however). Users in this dataset come
from 68 different countries. Since gender and country are
categorical values, we used the transformation technique of
Section 2.1 to generate |D| = 71 attributes in total.
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Figure 1: Users listening events (track-listenings) in
the last.fm dataset.

3.2 Evaluation Protocol
Tuples were transformed in the form of user-artist-time

slot-# of listening events, corresponding to how many times
(number of interactions) a user has listened tracks of an
artist within the time slot. In doing so, we generated 2,963,653
tuples. Given a set of training months the goal of the pro-
posed model is to perform top-k artist recommendation for
a user at a test month. In our experiments we used a time
window equal to semiannual, where as training set we con-
sidered all the past months of the previous semiannuals and
the first five months of the current semiannual. The goal is
to predict the artists that each user is going to listen at the
last (6-th) test month of the current semiannual. Therefore,
we have nine different test sets of tuples at test months 6,
12, 18, 24, 30, 36, 42, 48 and 54, denoted by red lines in
Figure 1, and nine different training sets of tuples at the re-
spective past months. Since we noticed in the dataset that
each user does not listen to more than 100 artists for a test
month, in our experiments we report Average Recall (AR),
with k=100 artists.

3.3 Preference Dynamics
In Figures 2 and 3, we group users from the test months

into 3 different groups based on their listening events and
their UPD value (Eq. 1), respectively. From Figure 2 we
can observe that users increase the number of their listening
events over time. The evolution of the 3 different groups
based on the UPD metric in Figure 3 shows that users tend
to significantly shift their preferences over time, since the
percentage of users in the group UPD ≥ 0.75 is highly in-
creased over time. According to Eq. 1, the user group with

4To remove extreme sparsity for artists, we applied the p-
core filtering technique, with p =0.2%|I |.

UPD ≥ 0.75 contains the users at the test months that have
listened more than a 75% percentage of new artists than
they have listened at the past months. An interesting ob-
servation is that we have a critical point at 18 months, where
users start to significantly shift their preferences, denoted by
the starting point of the high increase of the percentage of
users in group UPD ≥ 0.75 and the starting point of the
high decrease of groups UPD ≤ 0.5 and 0.5 < UPD < 0.75 .
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Figure 2: The evolution of the 3 different users
groups based on the listening events.
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Figure 3: The evolution of the 3 different users
groups based on UPD.

3.4 Settings
In our experiments, we evaluated the proposed model, by

considering (a) only the modeling of side information with
the CP decomposition, performing thus Coupled Tensor Fac-
torization (CTF) and (b) the combination of side informa-
tion with the weighting scheme based on UPD in Eq. 1 and
2 (UPD-CTF). As competitive methods we consider the
TF method of [1] and the SF method of [5]. For SF, we
varied the smoothing factor from 0.1 to 0.9 and selected the
value 0.3 as best performing. Lower values of the smooth-
ing factor mean that the SF method down-weigh more the
past preferences, in our case listening events. As baseline
method, we used the most-popular artists methods, which
recommends the top-k most popular artists for each user
within the training months.

Since determining the rankR of the tensor is a NP-problem,
we varied R by 5, 10, 15 and 20. We concluded to R=15,
since a further increase of rank R results in a higher compu-
tational cost without paying off in terms of recommendation
accuracy. TF and SF method have similar computational
complexities, whereas CTF and UPD-CTF have higher com-
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putational complexity for the required coupling of matrix Y
with the users’ side information. For the methods (a) with
and (b) without the coupling the computational times (for
R=15) are 126 and 432 secs, respectively (on a Windows 7
PC with Intel core i7 2700K at 3.50 GHz, 8GB Ram).

3.5 Results
The results on the nine test months are presented in Fig-

ure 4. The proposed UPD-CTF method outperforms TF, SF
and the baseline, because it captures users’ preference dy-
namics in a personalized way and also incorporates auxiliary
information. Using paired t-test we found that the difference
between the reported results for the proposed UPD-CTF
method against the competitive approaches is statistically
significant at level 0.05. An important observation is that
after the critical point of 18 months, where users start to
significantly shift their preferences (see description in Sec-
tion 3.3), the accuracy of TF and SF starts to decrease fast,
even lower than the baseline method. This happens because
both methods neither handle the users’ personalized pref-
erence dynamics nor use auxiliary information. Finally, an
interesting observation is that, despite the fact that CTF
does not handle users’ preference dynamics, it preserves the
recommendation accuracy relatively high, which means that
users’ auxiliary information plays a crucial role in recom-
mender systems.
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Figure 4: Methods comparison.

In Table 1 we report the performance of the examined
methods separately for the three users groups based on UPD
for the test months 12 and 54. We selected these months
because they are before and after the critical point of 18
months, where the users preference dynamics (UPD) start
to change significantly. As expected the baseline method
performs worse in the case of users in the groups of UPD ≥
0.75 and 0.5 < UPD < 0.75 than users in group UPD ≤ 0.5,
since in the latter group we have users that remain stable
to their preferences over time. Additionally, the proposed
UPD-CTF method preserves the recommendation accuracy
high in all 3 different groups of users based on UPD, by
handling the users’ preferences dynamics and exploiting side
information.

4. CONCLUSIONS
We modeled users preference dynamics and users’ side in-

formation in coupled tensor factorization. Our experiments
showed that the proposed model can achieve significant im-
provement in recommendation accuracy against competitive

Table 1: Methods performance for the 3 different
users groups based on UPD (test months 12 and
54).

12 months UPD ≥ 0.75 0.5 < UPD < 0.75 UPD ≤ 0.5
Perc. users 38.6% 36.28% 25.12%
Baseline 0.21± 0.02 0.24 ± 0.09 0.26 ± 0.06
TF 0.30± 0.13 0.32 ± 0.08 0.27 ± 0.11
SF 0.31± 0.13 0.34 ± 0.09 0.28 ± 0.13
CTF 0.27± 0.12 0.31 ± 0.08 0.26 ± 0.12
UPD-CTF 0.41± 0.11 0.42± 0.06 0.4± 0.08
54 months
Perc. users 96.77% 3.23% 0%
Baseline 0.16± 0.09 0.30 ± 0.12 N/A
TF 0.09± 0.08 0.06 ± 0.05 N/A
SF 0.11± 0.06 0.07 ± 0.07 N/A
CTF 0.32± 0.12 0.34 ± 0.08 N/A
UPD-CTF 0.43± 0.09 0.42± 0.11 N/A

methods. This happens because our model considers con-
tinuous user-item interactions over time, by capturing the
rate with which user preferences change, and also exploits
user’s side information. Since for each test time-period we
have to recalculate the approximation of the tensor offline,
we plan to extend the proposed model to incremental ten-
sor factorization techniques. Another research direction is
to address the cold-start problem when computing change
rates for users without adequate number of interactions.
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