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ABSTRACT
Online Social Rating Networks (SRNs) such as Epinions
and Flixter, allow users to form several implicit social net-
works, through their daily interactions like co-commenting
on the same products, or similarly co-rating products. The
majority of earlier work in Rating Prediction and Recom-
mendation of products (e.g. Collaborative Filtering) mainly
takes into account ratings of users on products. However,
in SRNs users can also built their explicit social network
by adding each other as friends. In this paper, we propose
Social-Union, a method which combines similarity matrices
derived from heterogeneous (unipartite and bipartite) ex-
plicit or implicit SRNs. Moreover, we propose an effective
weighting strategy of SRNs influence based on their struc-
tured density. We also generalize our model for combining
multiple social networks. We perform an extensive experi-
mental comparison of the proposed method against existing
rating prediction and product recommendation algorithms,
using synthetic and two real data sets (Epinions and Flix-
ter). Our experimental results show that our Social-Union
algorithm is more effective in predicting rating and recom-
mending products in SRNs.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Filtering

General Terms
Algorithms, Performance

1. INTRODUCTION
Social networking sites, like Epinions and Flixter, have

attracted huge attention after the widespread adoption of
Web 2.0 technology. In such systems, people often belong
to multiple explicit or implicit social networks because of dif-
ferent interpersonal interactions. For example, in Epinions
and Flixter, people add each other as friends constructing
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a large unipartite friendship network. However, besides the
explicit friendship relations between the users, there are also
other implicit relations. For example, users can co-comment
on products and they can co-rate products. A similar situ-
ation stands for authors who co-authored a research paper,
but also have co-cited the same papers or attended the same
conferences. These implicit relations, contain edges between
two types of entities, such as user-item bipartite graphs.

There is extensive research [3, 8, 19] in rating prediction
and item recommendation from two or more social networks.
Recently, Vasuki et al. [19] proposed affiliation/group recom-
mendations based on the friendship network among users,
and the affiliation/group network between users and groups.
However, as they mentioned their method focuses only on
path counts and does not exploit other features and network
characteristics which can be informative for link formation
(i.e.local graph characteristics). Moreover, Yuan et al. [20]
proposed a linear method to integrate explicit social rela-
tionships into Collaborative Filtering methods. However,
they did not use a weighting strategy of SRNs influence
based on their structured data density.

In this paper, we propose Social-Union, a method which
combines multiple similarity matrices derived from hetero-
geneous explicit or implicit social networks. Social-Union
takes into account the local and global characteristics of the
graphs such as graph density, user’s profile density, nodes
structure etc. Moreover, we present a well-defined frame-
work for combining heterogeneous social networks, i.e. uni-
partite and bipartite networks. It is obvious that not all
social networks contribute equally or contain valuable in-
formation. In addition, even though a social network is in-
formative, particular features may be irrelevant and noisy
for a specific user. For these reasons, we propose an ef-
fective automatic weighting strategy of the social networks
influence based on their structured density. In particular,
we take into account the local (i.e. user’s profile density)
and global (i.e. network’s density) characteristics of multi-
modal social graphs. Based on these characteristics, for each
target user we analogously calibrate the influence of each
social network. For example, a user could have very few
friends in the friendship network, but many interactions in
co-commenting or co-rating products (i.e. user-items rat-
ing network). In such a case, the weighting strategy of our
model promotes the information given by the user-item rat-
ing network. Finally, we generalize our model for combining
multiple social networks. In particular, our model can in-
corporate many unipartite (e.g. user-user) or bipartite (e.g.
user-item) social networks.



The rest of this paper is organized as follows. Section 2
summarizes the related work, whereas Sections 3 and 4 present
how rating prediction is performed from bipartite and uni-
partite graphs, respectively. Our proposed algorithm, which
is based on heterogeneous social networks and several exten-
sions are described in Section 5. Experimental results are
given in Section 6. Finally, Section 7 concludes this paper.

2. RELATED WORK
In this Section, we review related work on item recommen-

dation in social networks. We first review memory-based
approaches in collaborative filtering (CF), which have been
used for recommendation in bipartite social networks (i.e.
user-item networks). The GroupLens system [16] imple-
mented a CF algorithm based on common users preferences,
known as user-based CF, which employed users’ similari-
ties for the formation of the neighborhood of nearest users.
Many improvements of user-based CF have been suggested,
e.g., [1, 5]. Moreover, item-based CF [17, 9] is based on the
items’ similarities for a neighborhood generation of nearest
items. Most recent work followed the two aforementioned
directions (i.e., user-based and item-based). Herlocker et
al. [6] weight similarities by the number of common rat-
ings between users/items. Deshpande and Karypis [2] apply
item-based CF combined with conditional-based probability
similarity and Cosine Similarity.
There are several methods [3, 8, 19], that combine infor-

mation from unipartite and bipartite graphs, focusing in the
rating prediction (i.e. item/group recommendation) prob-
lem. For example, TidalTrust [3] and MoleTrust [13] com-
bine the rating data of collaborative filtering systems with
the link data of trust-based social networks to improve the
item recommendation accuracy. In particular, TidalTrust [3]
performs a modified breadth first search in the trust network
to compute a rating prediction. Furthermore, MoleTrust [13]
considers paths of friends to a user-defined maximum-depth.
Recently, Vasuki et al. [19] proposed affiliation/group recom-
mendations based on the friendship network among users,
and the affiliation/group network between users and groups.
In particular, they suggested two models of user-community
affinity for the purpose of making affiliation recommenda-
tions: one based on graph proximity, and another using la-
tent factors to model users and communities. Moreover, Ja-
mali and Ester [8] proposed a matrix factorization technique
with trust propagation for leveraging item recommendations
in social networks. They explored a model-based approach
for item recommendation in social networks, employing ma-
trix factorization techniques, by incorporating the mecha-
nism of trust propagation into their model. However, they
have not theoretically considered the ability of their model
to take into account more than two social networks. More-
over, they control the influence and impact of each social
network in their model, through a user-defined parameter
λT , which additionally requires user-controlled parameter
tuning. Moreover, Li et al. [11] proposed a novel model,
called AffRank, that utilizes an array of six features (prod-
uct community size, member connectivity, social context,
affinity rank history, evolution distance, and average rating)
to predict the future rank of products according to their
affinities. Finally, He and Chu [4] developed a probabilistic
model to make item recommendations based on information
in social networks, including user preferences, item’s general
acceptance and influence from social friends.

3. RATING PREDICTION BASED ON
USER-ITEM BIPARTITE GRAPH

As described in Section 1, users can form several implicit
social rating networks through their daily interactions
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Figure 1: User-Item bipartite network example.

The user-item bipartite graph of our running example, can
be also presented by a matrix R, where the rating of a user u
over an item i is given from the element R(u, i). An example
of such a matrix is given in Table 1, where I1−2 are items
and U1−3 are users. The null cells (no rating) are presented
with dash.

I1 I2
U1 4 5
U2 2 1
U3 3 -

Table 1: Running example: User-Item matrix R.

Related work in Collaborative Filtering [6, 14, 15, 17] has
used Pearson correlation or Cosine similarity to compute
similarity among users of a bipartite graph. In our imple-
mentation, we will use the cosine similarity (Equation 1),
which measures the similarity between two users, u and v,
where rx,i = R(x, i).

sim(u, v) =

∑
∀i∈I

(ru,i · rv,i)√∑
∀i∈I

(ru,i)
2

√∑
∀i∈I

(rv,i)
2

(1)

The application of Equation 1 to our running example,
constructs the rating similarity matrix simR, which is de-
picted in Table 2.

U1 U2 U3

U1 1 0.908 0.625
U2 0.908 1 0.894
U3 0.625 0.894 1

Table 2: simR similarity matrix based on rating ma-
trix.

Let’s assume in our running example, that we want to
predict the rating of user U3 on item I2. Based on Table 1,
someone could suggest the predicted rating of U3 on item I2
to be equal to 3, by simply averaging the ratings of users U1

and U2 on item I2 [e.g. (5+1)/2 = 3], since U3 has equal
distance from users U1 and U2 based on their rating on I1.
However, if we take into account also the cosine similarity
between users (see Table 2), then we compute the predicted
rating of a user for an item by using Equation 2:



pu,i =

∑
v∈U

[sim(u, v) · rv,i]∑
v∈U

sim(u, v)
(2)

Based on Equation 2, in our running example, the rating
prediction of U3 on item I2, is equal to 3.709 [(0.624 ∗ 5 +
0.894 ∗ 1)/(0.624 + 0.894) = 3.709].

4. RATING PREDICTION BASED ON
USER-USER UNIPARTITE GRAPH

As described in Section 1, users can form an explicit social
network by adding each other as friends. Let G be a graph
with a set of nodes V and a set of edges E . Every edge
is defined by a specific pair of graph nodes (vi, vj), where
vi, vj ∈ V. An example of such a graph can be seen in
Figure 2, which presents a friendship network and will be
used as our running example.
We assume that the graph G is undirected and un-weighted,

thus the graph edges do not have any weights, plus the or-
der of nodes in an edge is not important. Therefore, (vi, vj)
and (vj , vi) denote the same edge on G. Moreover, graph G
cannot have multiple edges that connect two nodes, thus if
two nodes vi, vj are connected with an edge of E , then there
cannot exist another edge in E also connecting them. Fi-
nally, we assume that there cannot be loop edges on G (i.e.
a node cannot be connected to itself).

U1

U3U2

Figure 2: Unipartite friendship Network example.

A common graph representation is the adjacency matrix
A. It is an n × n matrix, where n = |V| is the number of
nodes in G. The adjacency matrix of our running example
is depicted in Table 3.

U1 U2 U3

U1 0 1 1
U2 1 0 0
U3 1 0 0

Table 3: Running example: User-User adjacency
matrix A.

There is a variety of similarity measures [12] (i.e. Adamic
and Adar index, FriendTNS, Jaccard Coefficient, Common
Neighbors index, Random Walk with Restart (RWR) etc.)
for analyzing the “proximity” of nodes in a network. We use
the FriendTNS [18] similarity measure, because it is exper-
imentally [18] shown that outperforms the aforementioned
measures. However, any of the aforementioned similarity
measures can be alternatively applied in our approach. The
intuition behind FriendTNS is that if the shortest path be-
tween two nodes goes through a lot of high degree nodes, the

two nodes are less likely to become friends. This similarity
measure is defined as follows:

sim(vi, vj) =

{
0, if (vi, vj) /∈ E∧(vj , vi) /∈ E

1
deg(vi)+deg(vj)−1

, otherwise

(3)
where deg(vi) and deg(vj) are the degrees of nodes vi and
vj , respectively. For non-adjacent nodes vi, vj , we multiply
the similarity values between the intermediate nodes of the
shortest path between vi and vj .

Collecting all similarity values between the nodes of a
graph G, we construct the node similarity matrix simA of
G, which is an n × n matrix having n rows and n columns
labeled by the graph nodes. In our running example, simA is
depicted in Table 4. As shown, we can infer new interactions
for user U3 (e.g. sim(U3, U2) = sim(U3, U1) · sim(U1, U2) =

1
1+2−1

· 1
2+1−1

= 0.25).

U1 U2 U3

U1 0 0.5 0.5
U2 0.5 0 0.25
U3 0.5 0.25 0

Table 4: simA Similarity Matrix based on Adjacency
Matrix.

Again let’s assume in our running example that we want
to predict the rating of user U3 on item I2. Based on Equa-
tion 2, in our running example, the rating prediction of U3 on
item I2, is equal to 3.66 [0.5∗5+0.25∗1)/(0.5+0.25) = 3.66].

5. SOCIAL-UNION: RATING PREDICTION
BASED ON MULTI-MODAL GRAPHS

In this section, we present our approach, Social-Union,
which combines multiple similarity matrices from heteroge-
neous unipartite and bipartite graphs, as discussed in sec-
tions 4 and 3, respectively. The multi-modal graph express-
ing (i) friendship among users and (ii) user ratings on items,
can be seen in Figure 3.
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Figure 3: Example of a multi-modal Network.

In our running example, both similarity matrices, i.e simi-
larity matrix simR which is based on the user-item network,
and similarity matrix simA, which is based on friendship
network, contain valuable information. To measure the sim-
ilarity between two users u and v of a multi-modal social
network, we combine simA and simR matrices into a single
one similarity matrix, as shown by Equation 4:

sim(u, v) = (1− a) · simA + a · simR (4)

In Equation 4, a takes values between [0,1]. This pa-
rameter can be adjusted by the user. When a takes values



greater than 0.5, then the similarity values based on ratings
matrix have much more impact in the final similarity val-
ues than the similarity values based on adjacency matrix.
When a becomes zero, the final similarity values are exactly
the similarity values based on adjacency matrix only. When
a becomes one, the final similarity values are exactly the
similarity values based on ratings matrix only.
In several cases the distribution of the similarity values

in the interval [0,1] between simA and simR differ signifi-
cantly. For example, consider the case that the most sim-
ilarity values in A are normally distributed between 0 and
0.3, whereas the most similarity values in R are normally
distributed between 0.4 and 0.7. Then, it is unfair to take a
simple weighted average of them using Equation 4, because
the similarity values of A will always be dominated by those
of R, and only few small values of the a parameter can be
chosen for equivalence. In opposition, we want the user to
be able to use the a parameter freely in the whole range.
Therefore, in that case, we use the following transformation
procedure for X = A and X = R:

• We compute the mean similarity value mX of the ma-
trix X.

• We compute the standard deviation value sX of the
matrix X.

• Wemake the following transformations to all similarity
values of the X matrix:

simX(u, v) =
simX(u, v)−mX

sX
(5)

• Finally, we scale and translate the derived similarity
values back in the interval [0,1].

5.1 Auto adjustment of the a parameter
The adjustment of a parameter by the user is definitely

useful when the user requires to calibrate manually the sim-
ilarity calculations. For example, consider the scenario that
the final similarity values are used in a clustering applica-
tion. Then, by varying the a parameter, the user can cal-
ibrate the number of final derived clusters to the desired.
However, there are also applications where the manual ad-
justment of the a parameter does not have a visual impact
into their results, thus the user cannot manage the variations
and requires an auto-adjustment.
As described in Section 2, there are local and global fea-

tures of social networks. By Equation 6, we provide an in-
dependent automatic adjustment of a parameter that takes
into account the local (i.e. user’s density) and global (i.e.
network’s density) characteristics of multi-modal graphs:

a =
dR

dA+ dR
(6)

where:

• dA = localA
globalA

is the local to global density coefficient of
the selected user into the adjacency matrix A. localA
is the local density of the selected user u into the ad-
jacency matrix, i.e. the number of non-zero values in
its row divided by the number of users (deg(u)/n).
globalA is the global density of the adjacency matrix,
i.e. the number of non-zero values in the full A matrix
divided by the square of number of users (/n2).

• dR = localR
globalR

is the local to global density coefficient of
the selected user into the ratings matrix R. localR is
the local density of the selected user u into the ratings
matrix, i.e. the number of non-zero values in its row
(non-zero ratings) divided by the number of items |I|.
globalR is the global density of the ratings matrix, i.e.
the number of non-zero values in the full R matrix
divided by the number of users and the number of
items (/(n|I|)).

The construction and derivation of Formula 6 is simple:
The denominator expresses the total weighted density from
both R and A data, whereas the nominator expresses the
total weighted density only from the R data, as a expresses
the ratio of the similarity values based on R (see Equation 4).

By substitution of dA, dR in Equation 6 we have:

a =
localR · globalA

localA · globalR+ localR · globalA (7)

in case we want to express the a parameter using only the
local and global densities.

5.2 Generalization of Social-Union for more
similarity matrices

As already mentioned, a corresponds to the ratio of the
similarity based on the ratings matrix in Equation 4. There-
fore, let us denote it as aR, i.e. aR = a. Moreover, (1 − a)
corresponds to the ratio of the similarity based on the adja-
cency matrix in Equation 4. Therefore, let us denote it as
aA, i.e. aA = 1−a. By substituting parameter a in Equation
4 with Equation 6, the Social-Union similarity becomes:

sim(u, v) =
dA

dA+ dR
· simA +

dR

dA+ dR
· simR

or equivalently:

sim(u, v) = aA · simA + aR · simR (8)

Therefore, we have a specific general rule for the auto
adjustment of the ratio similarity coefficients: aX is always
equal to its corresponding final density coefficient dX divided
by the sum of all existing final density coefficients.

Now, Equation 8 can be generalized for any number of
additional similarity matrices as follows:

sim(u, v) = aS1 · simS1 +aS2 · simS2 + ...+aSk · simSk (9)

where:

aSi =
dSi

dS1 + dS2 + ...+ dSk
(10)

and

dSi =
localSi

globalSi
(11)

and localSi, globalSi are the local and global densities for
the matrix Si, ∀i = 1, 2, ..., k as defined previously.

5.3 Using Social-Union results for Rating Pre-
diction

To derive rating predictions for a specific user u we take
into account the ratings of the top-m similar users to u,
where m < n is a user-defined parameter. This methodology
was used also in [1, 5, 6].

More specifically, let s1, s2, ..., sm the corresponding final
similarity values of the top-m similar users u1, u2, ..., um



to u (those values have already been calculated with the
Social-Union methodology, i.e. si = sim(u, ui)). Let also,
rij the corresponding known ratings, and avgi the average
ratings value, of the user ui in the ratings matrix R, for
i = 1, 2, ...,m. Let also avg the average known ratings of
the user u in the ratings matrix. Then, the predicted rat-
ings for the user u are defined as follows:

r̂u,j = avg +

m∑
i=1

si · |rij − avgi|

m∑
i=1

si

(12)

where j is any unrated item by the user u.
If some rij are not defined into the R matrix (i.e. the user

ui has not rated the item j), then the corresponding terms
into the previous summations of equation 12 are deleted.
Finally, we sort the predicted ratings r̂u,j of user u and

we suggest the top-e items, where e is a desired cardinality
value.

5.4 The Social-Union Algorithm
Figure 4 depicts the outline of the algorithmic procedure

of the proposed methodology. In lines 1 − 8, the similarity
values of each source network are calculated separately for
the selected user u. In lines 9-11, the density values and the
coefficients are calculated for the selected user u. In lines
12-13, the unified similarity values are calculated. Finally,
in lines 14-20, the predicted ratings are calculated and the
top items are returned to the user.

Algorithm Social-Union
Input
u: the selected user
SNi, i = 1, ..., k: k unipartite or bipartite social networks
(including the ratings R)
Output
E: a set of suggested items

01. for i = 1 to k
02. if SNi is unipartite then
03. compute the similarity values (simSi

) of SNi, using Eq. 3
or any other link prediction similarity measure for user u.
(i.e. Adamic/Adar, Common Neighbors,
Random Walk with Restart, Katz index etc.)

04. else if SNi is bipartite then
05. compute the similarity values (simSi

) of SNi, using Eq. 1
or any other user-based collaborative filtering similarity
measure (i.e. Pearson Correlation, Jaccard Coefficient etc.)
for user u.

06. end if
07. apply the transformation of Eq. 5 in all similarity values of u.
08. end for
09. for i = 1 to k
10. compute the local and global densities localSi, globalSi

and their ratio dSi using Eq. 11 for the user u.
11. end for
12. compute the coefficients aSi

using Eq. 10 for the user u.
13. compute final similarity values of user u using Eq. 9 in US
14. find the top-m similar users u1, ..., um to u.
15. get the corresponding final similarity values s1, ..., sm from US.
16. get the corresponding known ratings rij of ui from R.
17. compute the average ratings of the users ui and u in R.
18. compute the predicted ratings for the user u using Eq. 12
19. put the top-e items with the highest predicted ratings in E.
20. return E.

Figure 4: Outline of the proposed methodology.

6. EXPERIMENTAL EVALUATION
In this Section, we compare experimentally our approach,

denoted as Social-Union with 3 other algorithms. Our exper-
iments were performed on a 3 GHz Pentium IV, with 2 GB
of memory. All algorithms were implemented in C. To eval-
uate the examined algorithms, we have generated synthetic
data sets And chosen two real data sets from Epinions and
Flixster web sites. In particular, we consider the following
comparison partners:

• user-based CF: User-based CF is applied only on the
bipartite user-items network. We use in our compar-
ison an improved version [6] of the well-known user-
based collaborative filtering algorithm, that weights
similarities by the number of common ratings among
users. This variation of user-based CF weights the sim-
ilarity sim between two users with a parameter γ, as

follows: max(c,γ)
γ

· sim, where c is the number of co-
rated items. The best value of parameter γ, is fixed
at 5 and 3 for the Epinions and the Flixter data set,
respectively.

• FriendTNS: This is a graph-based algorithm [18],
which takes into account only the friendship network.
In particular, FriendTNS defines a similarity measure
that captures effectively local and global graph fea-
tures, introducing transitive node similarity.

• tKatz: This is a truncated version of Katz [19] al-
gorithm that uses information from two networks, i.e.
user-item rating network and user-user friendship net-
work. It mainly counts paths between networks from
different sources, where the heterogeneity of the two
types of links is reduced to a single parameter λ ≥ 0,
that controls the ratio of the weight of friendship to
the weight of item membership. The Katz [10] mea-
sure directly sums over all paths between any pair of
nodes, exponentially damped by length, to count short
paths more heavily (using parameter β). Truncated
Katz (i.e. tKatz) chooses to stop after reaching paths
of length ℓmax. The similarity between two nodes vx
and vy, can be computed by Equation 13:

tKatz(vx, vy) =

ℓmax∑
ℓ=1

βℓ ·
∣∣∣pathsℓvx,vy

∣∣∣ , (13)

where
∣∣pathsℓvx,vy

∣∣ is the number of all length-ℓ paths
from vx to vy.

For Epinions data set, the best values of parameter β, λ,
and ℓmax are fixed at 0.01, 0.3 and 4, respectively. For the
Flixter data set, the best values of parameters are fixed at
0.05, 0.2 and 3.

6.1 Real Data Sets
We used the Epinions1 data set, which is a who-trusts-

whom social network. In particular, users of Epinions.com
express their Web of Trust, i.e. reviewers whose reviews
and ratings they have found to be valuable. It contains 49K
users with 487K edges among them, and 140K items with
665K ratings.

1http://www.trustlet.org/wiki/Downloaded Epinions dataset



Moreover, we use the Flixster2 data set, which is a social
networking service in which users can rate movies and add
other users to their friend list creating a social network. It
contains 1M users with 7M edges among them, and 49K
items with 8.2M ratings.

6.2 multi-Social Generator
In contrast to purely random (i.e., Erdos-Renyi) graphs,

where the connections among nodes are completely inde-
pendent random events, our synthetic model ensures depen-
dency among the connections of nodes, by characterizing
each node with a m-dimensional vector with each element
a randomly selected real number in the interval [-1,1]. This
vector represents the initial user profile which will be used
for the construction of the friendship and ratings profiles.
For the construction of the friendship network, two nodes

are considered to be similar and thus of high probability to
connect to each other if they share many close attributes in
their initial user profile. Given a network size N and a mean
degree k of all nodes, we start with an empty network with
N nodes. At each time step, a node with the smallest degree
is randomly selected (there is more than one node having the
smallest degree). Among all other nodes whose degrees are
smaller than k, this selected node will connect to the most
similar node with probability 1−p, while a randomly chosen
one with probability p. The parameter p ∈ [0, 1] represents
the strength of randomness in generating links, which can
be understood as noise or irrationality that exists in almost
every real system.
For the construction of the user-item rating network, we

follow a similar procedure. In addition, we use the following
parameters: (i) the ratings range, (ii) the mean number of
rated items by all users. Notice that each user can rate
different items from others and has in his profile a different
number of rated items.
Based on the above procedure, we have produced a unipar-

tite user-user (friendship) network and a bipartite user-item
network. They contain 5K users with 125K edges among
them, and 500 items with 250K ratings in the range [1, 5],
and mean number of rated items 50. The parameter p is
fixed to 0.2. We calculated several topological properties
of the synthetic and real data sets for the friendship net-
work, presented in Figure 5a. As shown, Epinions 49K and
Flixter 1M present (i) a large clustering coefficient (LCC)
equal to 0.26 and 0.18 respectively, and (ii) a small average
shortest path length (ASD) equal to 4.0 and 3.16 respec-
tively. These topological features can be mainly discovered
in small-worlds networks. Small-world networks have sub-
networks that are characterized by the presence of connec-
tions between almost any two nodes within them (i.e.high
LLC). Most pairs of nodes are connected by at least one
short path (i.e. small ASD). Moreover, we calculated basic
statistics for the user-item network of the tested data sets,
presented in Figure 5b.

6.3 Experimental Protocol and Evaluation
Our evaluation considers the division of rated items of

each target user into two sets: (i) the training set ET is
treated as known information and, (ii) the probe set EP

is used for testing and no information in the probe set is
allowed to be used for prediction. It is obvious that, E =
ET ∪ EP and ET ∩ EP = ⊘. Therefore, for a target user we

2http://www.cs.sfu.ca/ sja25/personal/datasets/

TOPOLOGICAL PROPERTIES OF FRIENDSHIP NETWORKS:

N = total number of nodes

E = total number of edges
ASD = average shortest path distance between node pairs

ADEG = average node degree
LCC = average local clustering coefficient 
GD = graph diameter (maximum shortest path distance)

GGS = global graph sparsity (number of zero values in adjacency matrix / N2)

Data-Set Type N E ASD ADEG LCC GD GGS

Epinions 49K Directed 49288 487183 4.00 19.77 0.26 14 99.96%

Flixter 1M undirected 1049511 7058819 3.16 13.45 0.18 9 99.97%

Synthetic 5K undirected 5000 125000 2.69 50 0.01 5 99%

(a)
PROPERTIES OF USER-ITEM BIPARTITE NETWORKS:

N = total number of Nodes (users) 

R = total number of Ratings 

I = total number of Items 

MINR = minimum rating value 

MAXR = maximum rating value 

AVGR = average rating value 

GGS = global graph sparsity (number of zero values in matrix / existing users x items) 

Data-Set N R I MINR MAXR AVGR GGS 

Epinions 49K 49288 664824 139738 1 5 3.99 99.98%

Flixter 1M 1049511 8196077 100000 0.5 5 3.58 99.95%

Synthetic 5K 5000 250000 500 1 5 3.00 90% 

(b)

Figure 5: Topological properties of (a) friendship
and (b) user-item networks.

generate the item recommendations based only on the items
in ET .

Real and synthetic data sets do not have time stamps of
the edges. The performance of the algorithms is evaluated
by applying double cross-validation (internal and external).
Each data set was divided into 10 subsets. Each subset (EP )
was in turn used for performance estimation in the external
cross-validation. The 9 remaining subsets (ET ) were used for
the internal cross-validation. In particular, we performed an
internal 9-fold cross-validation to determine the best values
of the algorithms’ needed parameters. We chose as values
for the parameters those providing the best performance on
the internal 9-fold cross-validation. Then, their performance
is averaged on the external 10-fold cross-validation. The
presented results, based on two-tailed t-test, are statistically
significant at the 0.05 level.

For the experimental evaluation of ratings prediction task,
we used the Root Mean Squared Error (RMSE), which has
the nice property [7] to amplify the larger prediction error
i.e. the larger difference between real and predicted rating.
The RMSE is defined as follows:

RMSE =

√∑
(u,j)∈EP (ru,j − r̂u,j)

|EP | (14)

where EP is the set of all pairs (u, j) in the probe set.
For the experimental evaluation of the item recommen-

dation task, we use the classic precision/recall metrics [7],
which measure how well the system can identify items that
the user prefers. For a test user receiving a list of e recom-
mended items (top-e list), precision and recall are defined
as follows: Precision is the ratio of the number of relevant
items in the top-e list (i.e., those in the top-e list that belong
in the probe set EP of items of the target user) to e. Recall
is the ratio of the number of relevant items in the top-e list
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Figure 6: Comparing Social-Union, FriendTNS, and User-based CF with the 5K synthetic data for Precision
vs. fraction (a) of rated items (b) of nodes degree and (c) nodes degree and rated items.

to the total number of relevant items (all items in the probe
set EP of the target user).

6.4 Social-Union Sensitivity Analysis
In this Section, we test how the performance of Social-

Union , user-based CF and FriendTNS are affected, when
we apply different controllable density in the friendship and
in the user-item rating network, respectively.
For the user-item rating network, we have created in our

5K synthetic data set 5 different density cases (i.e 0.2, 0.4,
0.6, 0.8, 1) by changing the fraction of rated items, as shown
in Figure 6a. y-axis depicts %precision@1, which means
the precision we get, when we recommend one item. As ex-
pected, as the fraction of rated items increases, precision of
Social-Union and user-based CF algorithms increases too.
This is reasonable, since every prediction algorithm is ex-
pected to give higher accuracy for a denser network. Notice
that FriendTNS is stable in all density levels, since it is ap-
plied only on the friendship network, whose density is fixed
to 0.01.
Similarly, for the friendship network, we have tested 5 dif-

ferent density cases (i.e 0.2, 0.4, 0.6, 0.8, 1) by changing this
time the fraction of edges observed, as shown in Figure 6b.
As expected, as the fraction of edges observed increases, pre-
cision of Social-Union and FriendTNS algorithms increases
too. Notice that user-based CF is stable for all density lev-
els, since it is applied only on the user-rating network, whose
density is fixed to 0.1.
Next, we study the performance of Social-Union as we si-

multaneously increase the fraction of rated items and edges
observed in the user-item and friendship networks, respec-
tively. As shown in Figure 6c, Social-Union increases as we
increase the fraction of rated items in the user-item network
and the fraction of edges observed in the friendship network.
We can see there is indeed useful information contained in
both friendship and user-item networks topology.

6.5 Comparison with other Methods
In this Section, we proceed with the comparison of Social-

Union with the other comparison partners i.e. FriendTNS,
user-based CF and tKatz algorithms, in terms of precision
and recall. This reveals the robustness of each algorithm
in attaining high recall with minimal losses in terms of pre-
cision. We examine the top-e ranked item list, which is
recommended to a target user, starting from the top item.
In this situation, the recall and precision vary as we proceed
with the examination of the top-e list.

For the Epinions data set, in Figure 7a we plot a preci-
sion vs. recall curve for all four algorithms. As expected, all
algorithms’ precision falls as e increases. In contrast, as e
increases, recall for all algorithms increases as well. Social-
Union attains the best results with impressive high preci-
sion. The reason is that Social-Union exploits features of
both friendship and user-item networks exploiting also local
characteristics of the graphs such as node structured den-
sity. In contrast, tKatz focuses only on path counts and
does not exploit other local network characteristics. More-
over, FriendTNS exploits only information from the friend-
ship network, missing to capture characteristics of the user-
item graph. Finally, user-based CF does not take into ac-
count information from the friendship network.
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Figure 7: Accuracy performance of algorithms in
terms of precision/recall for the (a) Epinions and
(b) Flixter data sets.

For the Flixter data set, in Figure 7b we also plot a preci-
sion vs. recall diagram. Social-Union outperforms again the
other methods. Notice that the results for Flixter are lower
than the results for Epinions for all methods, possibly be-



cause the latter has more ratings per user (13.4) and bigger
ADEG.
Finally, Table 5 reports the RMSE values of all algorithms

on Epinions and Flixter data sets. Again, Social-Union
clearly outperforms the other algorithms in terms of RMSE.

Table 5: RMSE values for all algorithms on 2 real
data sets.

Algorithm Epinions data set Flixter data set
Social-Union 0.765 0.812

tKatz 0.844 0.885
user-based CF 1.013 1.054
FriendTNS 1.079 1.121

7. CONCLUSIONS
In this paper, we introduced a generalized framework that

exploits multi-modal social networks to provide item recom-
mendations in SRNs. We performed extensive experimen-
tal comparison of our method Social-Union, against existing
well-known item recommendation algorithms, using a syn-
thetic and two real data sets (Epinions and Flixter). We
have experimentally shown that our Social-Union algorithm
yields to more accurate item recommendations. In the fu-
ture, except item recommendations, we indent to apply our
framework also for friend recommendations (i.e. Link Pre-
diction), where the majority of earlier work infers new future
interactions between users by mainly focusing on structural
properties of a single type of network. Finally, except uni-
partite and bipartite graphs, we will extend this framework
by incorporating also other higher-order implicit social net-
works such as tri-partite graphs (e.g. social tagging systems
with users, items and tags).
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