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• We use a classifier based on a novel fusion of feature vectors (the VFH-Texton).
• We derive an object-to-object context MRF model based on Flickr label co-occurrence data.
• We investigate the model’s parameters’ convergence as a function of Flickr’s sample size.
• We train the system on the RGB-D Object Dataset and test on the NYU Dataset as well.
• Finally we illustrate an increasing performance through the use of the MRF.
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a b s t r a c t

Recent advances in computer vision on the one hand, and imaging technologies on the other hand,
have opened up a number of interesting possibilities for robust 3D scene labeling. This paper presents
contributions in several directions to improve the state-of-the-art in RGB-D scene labeling. First, we
present a novel combination of depth and color features to recognize different object categories in
isolation. Then, we use a context model that exploits detection results of other objects in the scene
to jointly optimize labels of co-occurring objects in the scene. Finally, we investigate the use of social
media mining to develop the context model, and provide an investigation of its convergence. We
perform thorough experimentation on both the publicly available RGB-D Dataset from the University
of Washington as well as on the NYU scene dataset. An analysis of the results shows interesting insights
about contextual object category recognition, and its benefits.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Recognizing objects in images and videos is a problem that has
been studied in the field of computer vision since its early days.
Several decades of research have resulted in object recognition
methods that are robust to distortions, view-point changes, and
partial occlusion of target objects in controlled environments, but
real-world object recognition remains an open problem. Object
recognition methods typically employ a training phase, in which a
catalog or database of instances of specific objects to be recognized
is created. In the testing phase, one aims towards identifying new
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instances of these objects. Object category recognition refers to
the problem of possibly recognizing previously unseen objects,
given that some objects belonging to the same category were
available during training. For example, to build an object category
detector to detect cars in a street scene, we usually train it with a
number of images of different types of cars. The training aims at
learning features extracted from different types of cars such that
the trained system generalizes well enough to identify previously
unseen models and makes of cars in the test images.

Traditional methods of object category recognition rely on
features extracted from the color image obtained by a typical RGB
camera. The advent of low-cost depth cameras, like the Microsoft
Kinect has opened up a number of possibilities to use depth
information to extract more informative features. Hence, one of
the major research questions when dealing with both color and
depth (RGB-D) information is to investigate which features best
capture the knowledge about the target object category. The first
contribution of this paper is to identify a set of features that are
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able to robustly capture shape as well as color information for
object category detection. When capturing images in a natural
environment, each scene image might contain multiple objects.
The aim of scene labeling is to automatically identify which object
categories are present or visible in the scene and locate them
accordingly.

In natural environments, different object categories usually
co-occur (like car and pedestrian). Hence, when recognizing a
particular object, not only the features extracted from that object
are useful, but also identities of other objects visible in the
scene might be informative. For example, one might often find a
keyboard and a mouse next to a computer monitor; thus, these
objects are often co-occurring, thereby jointly constituting an
object-to-object context. One way of incorporating information
about possibly noisy identities of other objects in the scene is to
jointly optimize the identities of all detected objects using object
classifier’s ranked or probabilistic beliefs about them. The second
contribution of this work is the use of a Markov Random Field
(MRF) model to take into consideration natural or expected co-
occurrences of different objects to refine the results of object
category classifier. Moreover, we investigate social media mining
as a rich source for extracting natural co-occurrences of objects
and analyze its transferability when used to aid scene labeling in
artificially created benchmark datasets.

Furthermore, apart from combined depth-color and object-to-
object context, one more possibility that has come up recently
is to enhance training sets for recognition, by using depth-and-
RGB images or 3D model object databases available online on the
internet (see Appendix A). However, aswe shall see, it is not always
the case that such online information can enhance recognition, as
this highly depends on whether such training sets generalize well
to the specific testing set thatwe are aiming towards. Thus, in order
to tackle the problemof context-aware object category recognition
we intersect and exploit two sources of information: not only a
multi-view RGB-D object dataset but also social media metadata;
and we use them to feed an object category classifier. This is
achieved by processing each source of information independently
and then combining it with a probabilistic graphical model (Fig. 1).

We construct a multi-class feature-based linear classifier. This
classifier is trained with combined visual-shape features from
multi-view instances of an RGB-D object dataset. The probabilistic
output of this classifier is then combined with object co-
occurrence probabilities derived from the statistics of relationships
betweenobject category labels. These twodependencies are jointly
modeledwith aMRF to provide context-aware object beliefs. Thus,
this paper presents several key contributions for contextual object
category recognition. These contributions consist of:

1. We use a classifier based on a novel fusion of feature vectors
(the VFH-Texton), one of which is appearance based, and one is
3D shape based.

2. We furthermore derive a novel object-to-object context MRF
model, based on crowd-sourced Flickr label co-occurrence data.

3. We investigate the convergence of the model’s parameters as a
function of Flickr’s sample size.

4. Finally, we train the system on the University of Washington
RGB-D Object Dataset [1] but then we do not test only on it, as
all other existing work do. Instead, we assess the performance
of our system in the real world: and thus we provide results on
the generalization ability in a much harder real-world dataset,
namely the NYU Indoor Scene Dataset [2], which has seldom
been explored in the literature. Furthermore, we illustrate
enhanced performance through the use of the MRF, which is
highly correlated to the quality of object co-occurrences.
All of the contributions listed above clearly illustrate the power
of our proposed method towards making real-world household
object recognition using economical sensors a reality, which is an
ability thatwould be highly beneficial for a number of applications,
ranging from robotics to assistive devices for the blind and
beyond. This paper is organized as follows. Section 2 provides
background for each component of our contextual object category
recognition system. A description of the extracted visual-shape
feature histogram and details of the classifier are presented in
Section 3. In Section 4, a discussion on learning context from social
media is presented. Details of the MRF context model that uses the
object classifier probabilities are given in Section 5. In Section 6,
the evaluation of our system on both RGB-D Scene Dataset and
NYU indoor scene dataset v2 is described. Finally, we present the
discussion and conclusion of our work in Sections 7 and 8.

2. Background

In this section, we present the state-of-the-art of each
component of our contextual object category recognition system.

2.1. Object category recognition in RGB-D images

In this subsection, we present a review of the state-of-the-
art of combined visual appearance and shape feature descriptors
extracted from RGB-D images and their use in object category
recognition. In the past years, RGB images have been used to
extract visual appearance information from objects and scenes
with the well-known SIFT (Scale Invariant Feature Transform) [3]
and SURF (Speeded Up Robust Features) [4] algorithms. However,
several problems are encountered when applying them on real-
world environments, such as variance in illumination, textureless
objects, occlusion and surface reflectance, which cause these
descriptors to perform poorly. With the release of low-cost RGB-
D sensing devices, such as the Microsoft Kinect and the RGB-
D Camera developed by Primesense, the robotics and computer
vision communities have focused on developing techniques that
exploit both color and depth information from scenes to increase
the capabilities of object recognition and 3Dmodeling tasks [1,2,5].
This is specifically useful for object category recognition in scene
labeling—the representation of an object can be described in terms
of both visual appearance (fromRGB image) and shape (fromdepth
image) information. Recent work covering the challenges of object
labeling in indoor scenes usingRGB-D sensors has been reported by
Ren et al. [6]. The classical object category recognition approach in
the RGB domain is to train classifiers with extracted features from
object models. The main challenge in using RGB-D data for object
category recognition is the combination of the visual appearance
and shape information in a fully descriptive and discriminative
feature descriptor.

A comparative evaluation of 3D features implemented in the
open source Point Cloud Library (PCL) [7] for object and cate-
gory recognition has been presented by Alexandre [8]. One of his
main conclusions was that adding color information to the feature
vector increased recognition performance, naming CSHOT (Color-
SHOT) [9] and PFHRGB [7] as the features with the best recognition
accuracy over all. Figueroa et al. [10] performed a similar evalu-
ation on a smaller set of features from PCL for a 3D registration
application. It was concluded that by exploiting color information,
such as using the CSHOT feature vector, high accuracy 3D registra-
tion results were obtained.More recent research efforts from Blum
et al. [11], Tombari et al. [9], Ren et al. [6] and Lai et al. [12,13] have
also shown that the combination of visual appearance and shape
features result in a more discriminative description of the object
or scene, compared to solely using shape or appearance. In Table 1,
we present a comparison of existingmethods (in the literature) that
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Fig. 1. Proposed system architecture for context-aware object category recognition.
Table 1
Literature overview of combined visual appearance-shape feature descriptors.

Feature descriptor Data representation Feature extraction method

Convolution k-means [15] RGB-D image Histograms of triangular responses on the image channels
EMK-Spin+ EMK-SIFT [1] RGB+ Depth Concatenate EMK features from RGB and depth images
BRAND [16] RGB+ Depth Encode intensity+ shape change in a binary bit string
CSHOT [9] Textured 3D point clouds Concatenate shape+ color histograms from 3D points using L-1 norm between normals and

color triplets
PFHRGB [17] Textured 3D point clouds Concatenate shape+ color histograms from 3D points using a triplet of angles between

normals and colors
MeshHOG [18] Textured triangular mesh Vertex-based 3D histogram with color information
VOSCH [19] Voxelized textured point clouds Additive histogram from voxelized shape and color features
extract combined feature descriptors from RGB-D data. The differ-
ences between these descriptors are two-fold: (i) the representa-
tion of the RGB-D image (ii) the feature extractionmethod used on
this data representation. We provide more details in [14].

Based on the overview in Table 1, we have proposed a novel
combination which exploits the power of two highly discrimina-
tive global features, i.e. the Viewpoint Feature Histogram [20] and
the texton histogram [21]. The former is a global view-point based
feature histogram extracted from the 3D point cloud representa-
tion of an object and the latter uses oriented Gaussian filter re-
sponses to retrieve texture information. We feed these features to
a multi-class SVM classifier for object category recognition. Fur-
thermore,we augment the classical object category recognition ap-
proach by combining the output of the RGB-D object classifier with
a probabilistic representation of spatial context between objects in
a scene (Fig. 1).

2.2. Context mining from social media analytics

We use social-media metadata to learn object contextual re-
lationships from an ever growing dataset of tagged images from
every-day scenes. Social media have attracted growing research
interest since their emergence [22,23]. Indeed, the great amount
of content along with the readily available metadata constitute a
rich information source for analyzing and extracting useful knowl-
edge, such as tag and user relations, rich related content, trends
and dynamics in the currentworld. Specifically, a number of efforts
utilize contextual information, in Flickr, for photo categorization
regarding a specific object [24], location [25,26] or event [27,28].
These efforts couple object recognitionmethodswith social-media
metadata analysis (the latter is used to improve performance of
the former). In all of the aforementioned approaches, it is shown
that the use of social-media metadata as contextual knowledge
significantly improves the analysis task at hand. It is worth men-
tioning that clustering is applied in most of the aforementioned
approaches as a preliminary step for grouping related content. In
the social-media literature, in general, clustering is a typical pro-
cedure used to tackle the inherent limitations of user generated
content, e.g. ambiguous terms or synonyms [29].

There has been a considerable amount of interest in the re-
search community in analyzing dynamical aspects of social media
for discovering tag usage regularities and patterns. Remarkably,
it seems that, despite the arbitrary tag usage, the tag space in a
social-media platform is not a chaotic landscape; instead stable tag
patterns emerge upon usage. More specifically, Golder and Huber-
man have shown that social tagging systems possess the dynam-
ics of complex systems, exhibiting stable patterns in a resource’s
tag proportions over time [22]. They attributed this behavior to
the dynamics of a stochastic urn model proposed in [30]. Specif-
ically, they simulate the tagging task as a random colored ball se-
lection from an urn and resemble tag reuse to an insertion in the
urn of an additional ball of the same color. Furthermore, the same
authors discovered regularities in tag frequencies, kinds, andman-
ners in which tags are used, as well as burst of popularity of certain
tags. In addition, in [31] it has been shown that tag distributions
describing different resources converge over time to stable power
law distributions. Once such stable distributions emerge, one can
also examine the correlations between different tags. Both afore-
mentioned approaches demonstrate their findings empirically on
data collected from del.icio.us.

2.3. Contextual modeling for object recognition

The idea of using spatial context relies on the fact that certain
objects typically occur in specific environments or are likely to be
close to other specific objects. Therefore, it becomes a necessity to
model these object–object relationships. Recent research efforts in
computer vision (e.g. [32–34]) focus on how contextual relation-
ships may improve object detection and recognition—especially in
indoor environments which is relevant to the topic discussed in
this paper. A classic representation of such spatial knowledge is
through categorical clauses. Alternatively, local features statistics
are exploited to generate contextual cues in vision problems, in
order to identify real-world scenes (global context) and then fo-
cus on specific scene regions where the object is most likely to be
found [35,36]. The notion of context can also be seen as depen-
dencies between random variables, hence there is much work in
modeling such dependencies with probabilistic graphical models
[37,38]. Our work is mostly relevant to [38], where a Markov Ran-
dom Field is used to model the co-occurrence relationships of ob-
jects and the object classifier’s class-wise accuracies.

Other works that also couple object recognition with social-
media metadata usage are [39,40]. In [39] the authors use word
co-occurrence statistics from contextual data in Flickr to estimate
textual query—visual detector similarity, in an effort to tackle the
semantic gap between the detector’s low-level features and the
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query’s high-level semantics. In this work, we provide a detailed
analysis onwhy calculatingword relatedness by usingweb derived
information is better than employing static semantic structures
(e.g. ontologies, dictionaries). In [40], social tags and content from
Flickr are used to train classifiers for object recognition. The results
are promising and demonstrate a relatively easy and less time
consuming way to train classifiers, compared with the manual
training.

Based on the promising results of the social-media contextual
information usage presented in Section 2.2, we propose using
the crowd-sourced derived co-occurrence relationships in Flickr
as parameters in a MRF model, to jointly utilize the RGB-D
object classifiers’ output along with object context for an object
recognition task. To demonstrate the stability of the model, a
convergence analysis of the tag co-occurrence in Flickr is presented
in Section 4. To the best of our knowledge, the dynamics of tag co-
occurrence as a function of the dataset size have not been explored
yet in the literature, which is a crucial factor for exploiting real-
world data and transferring it to synthetic data.

3. RGB-D object category recognition

For object category recognition we use a supervised learning
approach, where feature vectors are extracted from annotated
images of the UoW RGB-D Object Dataset and given to a linear
classifier with their respective ground truth object class labels. The
classifier then learns a model to categorize different object classes,
and is tested on feature vectors extracted from segmented images
of RGB-D indoor scenes (from two datasets: UoW and NYU).

Next, we present our proposed feature vector extraction ap-
proach based on combined visual and shape descriptors and
describe the linear classification problem formulation. Further-
more, we describe the training and testing datasets and the pre-
processing steps needed to use them in our experiments.

3.1. RGB-D feature extraction

In order to facilitate classificationwhilst considering both shape
and appearance of an object, we propose a novel combination of
global appearance and shape-based feature vectors, we call it the
VFH-Texton (Fig. 2).

Our feature vector is based on a highly discriminative and effi-
cient 308-D feature descriptor extracted from the 3D point cloud
representation of the object, the Viewpoint Feature Histogram
(VFH) [20]. The VFH encodes geometry and viewpoint and is ro-
bust to surface noise and discontinuities generated from stereo or
Kinect data. Furthermore, it has been shown to reach higher recog-
nition rates than the well-known Spin Images [20]. This feature
descriptor is constructed by binning geometric relations between
each point p in a point cloud P and the point cloud’s centroid cP .
Additionally, the angle between the translated central viewpoint
direction and the surface normal of each point is also binned, cap-
turing the variance in viewpoint directions. We combine the VFH
with a 539-D texton histogram feature vector which uses oriented
Gaussian filter responses to retrieve texture information [41]. This
feature vector is composed of 14 different features that capture rel-
evant information on shape, color, texture and position of an ob-
ject in the RGB image space [21]. It has been shown to perform
extremely well in multi-class object recognition tasks. Thus, by
combining (through concatenation) these two global feature vec-
tors (VFH and texton), we generate a 847-D feature vector which
represents both visual appearance and shape of the object. For nu-
merical consistency, the VFH histogram is scaled over the total
number of points resulting in a combined histogram with a range
of [0,1].

The extracted 847-dimensional VFH-Texton feature vector is
used to represent instances of segmented objects for training and
testing of multiple object categories from the selected datasets. In
Section 6.1, our proposed feature vector is evaluated against the
EMK-SIFT + EMK-Spin feature vector proposed by Lai et al. [1].
The experimental results show that the use of our VFH-Texton
increases performance for object classification.

3.2. Problem formulation—linear object classification

Considering our proposed feature vector and our training
dataset (see next section), each object class instance has 847 fea-
tures (VFH-Texton) and each object class has roughly 2000–5000
instances (Fig. 3). The number of instances per object category de-
pends directly on the number of views provided by theUoWRGB-D
object dataset. Our feature instances are extracted from multiple
views of an object spun around on a turntable with the camera
at different heights—this yields roughly 500 views (i.e. feature in-
stances). However, each object category contains several types1 of
objects. Thus, if the coffeemug category has 8 different types of cof-
feemugs it will contain roughly 4000 views, whereas the cereal box
category, which has 5 different types, contains roughly 2500.

Within our framework, we need a classifier that provides a
probabilistic output for classification; i.e. not just labels of the
identified classes but also the probabilistic belief of that label.
In the binary classification scenario, we chose a linear maximum
margin classifier based on Logistic Regression (LR), whose loss
function is derived from a probabilistic model [42]. Given a set of
instance-label pairs (xi, li) where xi ∈ R847 is the RGB-D feature
vector of the ith object, each instance is assigned to a binary
relevant label li ∈ {1,−1} for a each of the K given number of
object classes O = (o1, . . . , oK ) through our model. For multiple
object classification in a scene, we use a one-against-one linear-
kernel multi-class method [43]. We provide more details in [14].

3.3. Training and testing datasets

The dataset used to train our probabilistic classifier is the
RGB-D Object Dataset collected by the University of Washington
(UoW) [1]. This dataset contains color and depth images for 300
objects organized into 51 categories taken from multiple views.
The objects at hand are common household and office related
objects such as fruits, office items, kitchen accessories, etc.

The system is tested on two different datasets. The first one
is the RGB-D Scene Dataset which contains annotated scenes
containing objects from the RGB-D Object Dataset by the UoW
(Section 6). This dataset does not provide per-pixel segmentation
of the annotated objects; only the bounding box of each annotated
object is provided. Therefore, a pre-processing step on the scenes
had to be applied to segment the objects in the color and depth
images (Section 3.3.1). The second dataset is the NYU indoor
scene dataset V2 [2]. This dataset provides per-pixel accurate
object segmentation masks for all of the scenes, therefore no
segmentation is needed. However, it is more challenging than
the RGB-D UoW dataset due to the difference in viewpoint,
appearance, and proximity of the objects (Section 6.4).

3.3.1. RGB-D scene dataset object segmentation
As mentioned previously, the RGB-D scene Dataset does not

provide pixel-accurate object segmentation masks. Therefore, to
test our classifiers on the scene data, we generated ground truth
segmentation masks by combining two sources of information:
(i) ground truth bounding box annotations and (ii) output of 3D
segmentation on the scenes. For example, we use the annotated
RGB image and the 3D representation of the scene as shown in
Fig. 4(a)–(b).

1 In the UoWRGB-D Object dataset instances is used for the different object types
per category [1]. Here, to avoid confusion we use types to represent the different
objects.
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Fig. 2. Feature extraction pipeline: two types of feature histograms (VFH+ Texton) are extracted from both RGB and depth images to generate a 847-D feature vector.
(a) Ball VFH-Textons. (b) Notebook VFH-Textons.

Fig. 3. Superposition of VFH-Textons for two object categories: (a) Ball with 1440 object instances and (b) Notebook with 3175 object instances. Different colors represent
different VFH-Textons. In the horizontal axis of the diagrams, components 1 to 307 correspond to the VFH components, while 308 to 847 correspond to the Texton
components.
The annotated images from the scene do not include all of
the existing objects, and furthermore the bounding boxes cut
off the objects in some cases (i.e. flashlight and cup). Also, the
3D point cloud has its limitations—mainly the discontinuities
on the surfaces of the objects lead to over-segmentation for
some instances. Nevertheless, the following algorithm attempts
to exploit the benefits of each source as much as possible whilst
alleviating the above issues. The segmentation algorithm consists
of the following steps.

1. Planar model fitting: The first step for segmenting the objects
in a scene (with the assumption that they lie on a table) is to find the
table-top area where these objects are located. We use a Random
Sample Consensus (RANSAC [44])-based method to iteratively
estimate from a set of 3D points of the scene parameters of the
mathematical model of a plane, ax + by + cz + d = 0, where
a, b, c are the normalized coefficients of the x, y, z coordinates of
the plane’s normal and d is the Hessian component of the plane’s
equation. The largest fitted plane is segmented from the point
cloud and represents the object-supporting surface (i.e. table or
counter) of the scene (Fig. 4(c)).

2. Object extraction within convex hull of a plane: At this stage,
the plane of the table-top has been identified, however our interest
is extracting the set of points that lie on top of this plane and are
within the convex hull of the plane (Fig. 4(d)).

A 3D convex hull polygon is computed for the set of points
formed by the plane using the Quick Hull algorithm introduced
in 1977 by W. Eddy and in 1978 by A. Bykat. As the table plane
is inclined with respect to the origin of the camera, we must find
the local reference frame of the table in order to locate the 3D
points that are ‘‘on top’’ of the table (i.e. the objects). To simplify
the object extraction procedure, we constrain the local reference
frame of the table to have its z-axis parallel to the surface normal
ni directions of the plane and the plane must be orthogonal to the
z-axis and parallel to the x–y plane of the local coordinate system.
The surface normals ni of every point pi ∈ Pplane of the plane have
the same orientation throughout the whole surface. To achieve
the transformed plane, we need to find the transformation T that
will transform the point cloud from camera world coordinates
to local plane coordinates. Once the point cloud is in the local
reference plane, the objects are easily extracted by offsetting the
2D convex hull in the z-direction of the local reference plane. In
order to construct this transformation matrix T , we find a unique
3D rotation R that will rotate the zdirection of the plane (i.e. the
normal direction) into (0, 0, 1) (z-axis) and the ydirection of the plane
orthogonal to the z-axis. More details can be found in [14]. The
procedure to extract the objects from the full point cloud of the
scene is listed in Algorithm 1.

Algorithm 1 Object extraction procedure
Input: T (rigid transformation), Pplane(point cloud of the seg-
mented plane), Pscene(full point cloud of the scene)

Output: Pobjects (point cloud representing the objects on top of the
table)
P∗plane = T · Pplane
P∗scene = T · Pscene
3DConvexHull← constructConvexHull(P∗plane)
Extruded3DHull← extrude3DConvexHull(3DConvexHull)
P∗objects ← extractPointswithinHull(P∗scene, Extruded3DHull)
Pobjects = T−1 · P∗objects

Initially, Pplane and Pscene are transformed by T so that the plane
is orthogonal to the z-axis. Then, the 3D convex hull polygon of
Pplane is extracted and extruded in the z-direction to create a 3D
bounding shape around the 3D plane of the table top. The points
within this 3D bounding shape are extracted and transformed
back to the original world coordinate system, resulting in a point
cloud containing only the objects on the table top (Fig. 4(e)). We
transform the extracted objects back to theworld coordinate frame
since they have to be projected back to the image plane in step 4
below.
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(a) Annotated RGB image. (b) 3D point cloud.

(c) Convex hull of table plane. (d) Objects within convex hull.

(e) Clustered objects. (f) Projected clusters.

Fig. 4. Six stages of segmentation from an example test scene of the RGB-D dataset: (a) Annotated RGB image, (b) 3D point cloud of the scene, (c) Largest segmented plane
resulting from planar model fitting, (d) Objects lying within convex hull, (e) Clustered objects (each color represents a different cluster), an instance of over-segmentation
is shown within the red bounding box, (f) Projected clusters with annotations.
3. Euclidean clustering: To segment the n-objects from the
resulting point cloud, we extract n-clusters from Pobjects, by
applying Euclidean clustering in 3D coordinates (x, y, z), which
consists of extracting clusters of data that lie within a certain
search radius (r) restricted to a user-defined spatial cluster
tolerance (d), that is computed as a measure in the L2 Euclidean
space. Thus, for every point pi ∈ Pobjects a set of nearest neighbors
nni

k ∈ NN i within a sphere of radius r < d is searched for using a
KD-tree representation of the Pobjects [45]. The neighbors nni

k that
lie within the spatial cluster tolerance are added to the cluster,
if they have not been processed before (i.e. were not a neighbor
for a previous query point pi). This procedure is repeated for all
points pi ∈ Pobjects until all of them are part of a cluster. The
implementation of this approach is found in the open source Point
Cloud Library (PCL) [7]. We provide the algorithmic steps in [14].
The resulting segmentation is shown in Fig. 4(e). As can be seen,
due to major discontinuities in the depth image for some objects
(cup and bowl) an over-segmentation (Fig. 4(e)) is present, to be
dealt with in step 4.

4. Back-projection and annotation matching: The extracted clus-
ters from the point cloud of the scene have no labels, meaning we
do not know what object they are—but we do know that they are
objects. Therefore, to find the matching annotation the clustered
3D points are projected back to the RGB image and overlaid on the
bounding box (Fig. 4(f)).

A binary mask is created for each projected cluster. The
annotated bounding boxes are projected on each binary mask. The
mask that contains a binary component of a minimum area near
the centroid of the bounding box is chosen as the pixel-wise mask
for that specific annotation.
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Fig. 5. Results of the segmentation algorithm: (top row) segmented RGB image, (middle row) pixel-accurate binary mask, (bottom row) segmented point cloud. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
The proposed segmentation algorithm generates three data
sources that describe the segmented object: (i) RGB image
(ii) binary mask and (iii) point cloud. The RGB image is used in
our feature extraction algorithm to compute the SIFT descriptors
which are used for the EMK-SIFT feature. Both the RGB image
and the binary mask are used to compute the texton histogram
and the point cloud is used to compute the VFH descriptor. In
Fig. 5, we show the results of our segmentation algorithm. As can
be seen, for some objects the projection of the segmented point
cloud from 3Dworld coordinates to the image plane is the accurate
representation of the object. Nevertheless, it is possible to generate
masks with a large amount of missing pixels—such as the stapler,
which is not annotated. This happens due to missing pixels in the
depth image generated from reflective materials or external noise.
When objects contain this type of noisy measurements, it presents
a challenge for object category recognition, because the generated
point cloud of the segmented object has missing information
(compared to the point clouds of the soda canmodel from the RGB-
D object Dataset). Furthermore, when over-segmentation occurs,
(such as the coffee mug in the center of the scene or the bowl) our
algorithm considers only the largest segment that is localized in
the center of the bounding box. Morphological operations on the
binary mask could be applied to connect these separated clusters
that describe the same object, however if this is done the risk
of connecting distinct objects is increased—due to the proximity
between them (see coffee mug and cup or bowl and cup). An
idea to overcome this over-segmentation is to pre-process the
depth image in order to smooth out the surfaces and obtain fully
connected segmented objects prior to the back-projection step—
this is being investigated in our current research. Even though
the segmentation is not perfect, it is useful and since our object
classifiers rely not only on shape features but also on visual
features—they are robust to these inconsistencies of segmented
objects, which represent the challenges in real-world applications.

4. Learning context from social media

The ease of sharing and annotatingmultimedia content through
social-media sites feeds the Web with enormous scales of image
and video data along with descriptions of the objects located
within. Indeed, sites like Flickr accommodate image corporawhich
are populatedwith hundreds of user tagged images on a daily basis
Apart from the large amount of content, an important information
source is the contextual data provided by users to describe and/or
annotate such content. Contextual data may be semantic, spatial
and/or temporal descriptors. These additional data associate
images and videos in such sites with specific semantic concepts,
places and/or time periods. Typically, semantic descriptors in
social-media sites are given in the form of tags, i.e. freely chosen
textual descriptions. Research on tag usage has shown that tags
overwhelmingly identify the topics of their referents [22]. In
addition, by analyzing semantic descriptions, which is the focus
of this section, implicit knowledge can be inferred about how
often some object categories co-occur in photos or in videos.
Based on the assumption that if 2 objects co-occur in a photo,
they are located in the same real-world scene, in this section, we
address the problem of extracting object categories’ contextual
relationships in real-world scenes by analyzing tag co-occurrence
in images from social media. For example, in terms of common
everyday objects, ‘‘table’’ is expected to co-occur more frequently
with ‘‘chair’’ rather than ‘‘toothbrush’’. Learning co-occurrence
relations among object categories is expected to improve the
recognition task at hand, since they can be used as prior knowledge
and bias the classifier, after some first detections, towards more
probable object categories, over others not so likely.

In this section, we aim at assessing object categories’ contextual
relationships by analyzing tag co-occurrence in social-media sites,
rather than using a textual corpus (e.g. dictionaries, documents).
Tag co-occurrences capture users’ common perception for objects
when interacting in social-media platforms. Furthermore, tags
constitute a more dynamic indication of word inter-connection,
when compared with the static relationships assigned in a dictio-
nary, like Wordnet. It should be noted that semantic relatedness
alone is not always an indicator of objects actual co-occurrence in
the real environment. For example, ‘‘wheat’’ and ‘‘cereal’’ are se-
mantically related but quite unlikely to co-occur in a same scene,
whereas ‘‘cereal’’ and ‘‘bowl’’ are not semantically close but they
are quite likely to be found together. Assessing contextual relation-
ships via analysis of social content manages to capture such rela-
tionships, as will be shown below. Furthermore, since social media
(like Flickr) accommodate images depicting a huge variety of object
categories, the statistical analysis of contextual relationship among
any of these categories can be inferred. Therefore, in essence, there
is no limitation on the number of object categories used.

Furthermore, to account for the great variance in the users’
tagging habits, we investigate the convergence of the co-
occurrence parameters as a function of the Flickr dataset size used.
To this end,we present a thorough experimental evaluation,where
we check convergence by defining random variables that capture
the context parameter distribution and iteratively calculating and
checking the mean, µ̂, and variance, σ̂ 2, values of these variables
for Flickr datasets of increasing size.
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Fig. 6. Learning object contextual relationships from Flickr tags. In the object
recognition scenario an already detected object serves as input (Object X). The
proposed SMCS measure is used to select objects that are more likely to co-exist
with Object X.

4.1. Problem formulation—learning co-occurrence relationships

Let Oi, i = 1, . . . ,N beN object categories, and oi, i = 1, . . . ,N
be their respective tags (i.e. labels). Given N datasets Di(s), each
of them containing s social-media photos tagged with oi, and
Ds ≡

N
i=1 Di(s), we address the problem of identifying the object

category Oy that is most likely to co-occur with another object
category Ox in an indoor environment through tag analysis in Ds.
Intuitively, based on the large number of photos in social media
sites, we claim that the possibility of observing object categories
Ox and Oy together in a real-world scene is highly reflected on
the degree of the pairwise appearances of their corresponding tags
ox and oy in photo annotations. Hence, we cast our problem as a
tag similarity problem based on co-occurrence in a social-media
derived dataset Ds. We define co-occurrence similarity, CS between
2 tags ox and oy in a Ds as

CSs(ox, oy) ≡
|ox ∩ oy|
|ox ∪ oy|

, (1)

where the numerator expresses the number of images in Ds, in
which tags ox and oy co-occur, whereas the denominator equals to
the number of images that were tagged with either ox or oy.

Then, we apply an exponential kernel on CS to obtain the
following measure named Social Media Contextual Similarity, that
captures the co-occurrence between 2 object categories Ox,Oy in
an indoor environment.

Definition 1 (Social Media Contextual Similarity). Suppose we have
two object categories Ox,Oy and the corresponding tags ox, oy. The
Social Media Contextual Similarity SMCS between Ox and Oy is
defined as

SMCS(Ox,Oy) ≡ e−
CS(ox,oy)

τ ,

where the selection of τ value is made empirically as the average
pairwise CS of a randomly pooled set of tags. This empiricalmethod
has shown promise in kernel-based machine learning tasks [46].

Fig. 6 shows the general framework of extracting contextual
relationships from Flickr tags in the object recognition scenario.
More specifically, we query Flickr (via its API) with the object
category label ox, to get s photo annotations that contain ox as
tag, and construct Ds(x). We construct, the same way Ds(y) for
any other object category label oy that can be detected by the
classifier. Based on tag co-occurrence in these Flickr datasets, we
can build a weighted tag graph, in which some tags are tightly
related (high co-occurrence values), whereas others are loosely or
not connected at all (small co-occurrence values). Since Flickr tags
describe, amongst others, scene settings, we expect that tag co-
occurrence captures the object correlation in a real-world indoor
environment. Hence, we use the same graphwith object categories
as nodes and traverse it, to find object categories that are most
likely to co-occur with a detected object category Ox.
However, intrinsic limitations of user generated content, such
as lack of structure, tag ambiguity and use of synonyms, raise
concerns about the quality of knowledge we can extract from
social-media platforms, like Flickr. For example, in the case where
ambiguous tags exist, the dataset will contain photos and co-
occurrence relationships not related to the intended tag sense,
‘‘polluting’’, thus, our measure of co-occurrence. Furthermore, to
reliably use SMCS as a model parameter, we need to check its
stability, i.e. if it converges as the social-media dataset size s
changes. To tackle these issues,we investigate (i) tag co-occurrence
statistical properties as a function of the Flickr dataset size s, and
(ii) purity, where purity, pertains to the extent that the photos in
a Di(s) actually refer to the actual object category Oi. The latter is
related to the ambiguity level of the label oi.

4.2. Social media contextual similarity (SMCS) convergence analysis

In what follows, we describe the datasets used in our experi-
mentation and, then, address SMCS convergence as a function of
dataset size and purity: two fundamental facets that are crucial to
our analysis.

4.2.1. Datasets
Since our object recognition scenario’s training and testing

were built upon NYU [1] and RGB-D [2] datasets, we analyzed
co-occurrence in a Flickr-derived dataset based on the 21 terms
found in common in NYU and RGB-D datasets. Furthermore, to
increase the soundness of the day-to-day object categories co-
occurrence results, we used another Flickr dataset formed by the
75 terms found on the Berkeley dataset which contains common
everyday objects and scenes [47]. Each dataset was created by
querying Flickr an object category tag (term) via its API, to get the
top 15000 image annotations that contain this tag. This resulted
in 587967 images (Berkeley dataset) and 233624 images (RGB-
D+ NYU dataset).

4.2.2. Co-occurrence convergence as a function of Flickr’s sample size
Given a pair of object categories Ox,Oy, we aim at testing

the hypothesis that SMCS(Ox,Oy) converges as the number of
photos in the dataset increases. The problem of estimating a
parameter’s convergence for larger yet unknown datasets is a
difficult analytical problem. It amounts to developing a model
to compute how fast a given parameter ‘‘learns’’ or improves its
‘‘fitting’’ to the data as a function of dataset size. In our case,
this would mean to develop and learn N2 models, where N is the
number of object categories. A natural way to study convergence
as a function of dataset size is by building empirical scaling
models called learning curves [48]. However this method applies
to datasets with ground truth, where we can calculate the model
error and check its convergence. In the problem of studying tag
co-occurrence in social media there is no ground truth, hence no
estimation for error can be realized. An empirical way to study
convergence in this case would be by defining a random variable
Xxy on the tag co-occurrence event of ox, oy and checking whether
Xxy converges to a specific value, as the dataset increases. It holds
that if a variance of a random variable describing the next event
(i.e. co-occurrence of ox, oy in a dataset of increased size) converges
to a small value, then a sequence of essentially random events can
be expected to settle into a pattern [49]. Based on this observation,
we aim at showing Xxy convergence, by following an iterative
process that can be broken down into two main tasks: (i) random
subsampling of photos, to form a dataset Dx(s) ∪ Dy(s), and (ii)
calculation of mean, µ̂ = E[Xxy] and variance σ̂ 2 = E[(Xxy − µ̂)

2
].

We repeat this procedure for a range of dataset sizes s and test if
the variance reduces with s and, at the same time, µ̂ converges.

LetXxy be a randomvariable on the co-occurrence event of ox, oy
(as discussed earlier). Given a social-media derived dataset DT1,
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(a) RGB-D+ NYU dataset. (b) Berkeley dataset.

Fig. 7. The convergence of Xij µ̂ and σ̂ 2 for 2 co-occurrence relationships. The vertical axis denotes SMCS(i, j) values and the horizontal axis dataset size in units of photos
added. (a) RGB-D+ NYUs, (b) Berkeley.
where T1≫ s, we construct by random subsampling 2 datasets of
size s from tags ox and oy and estimate their union, Ds(x) ∪Ds(y).
We repeat this process k times.We calculate SMCS(Ox,Oy) for each
of the k resulting datasets of size s1 < s2 < · · · < sK , respectively,
where sK ≪ T1. Then, we compute the µ̂ and σ̂ 2, that is the mean
and the variance values of Xxy over the K varying dataset sizes.
To verify convergence, we depict how σ̂ 2 and µ̂ values vary over
different dataset sizes.

Fig. 7(a) shows, indicatively, the relationships Keyboard/
Notebook, Banana/Bowl, and Lemon/Plate for various Flickr dataset
sizes. Each curve represents a Xxy; as more tagged photos are
added (horizontal axis), the mean of Xxy, µ̂ converges, while
the variance of Xxy, σ̂ 2 (vertical axis) flattens out. Likewise, in
Fig. 7(b) we observe the same patterns for contextual relationships
Chair/Table, Sofa/Cupboard extracted from the Berkeley dataset:
the co-occurrence values between two object categories tend to
converge when the Flickr dataset reaches a size threshold.2

To determine whether the co-occurrence values between two
object categories are indeed the same for the Flickr datasets above
a specific size, we performed the Kruskal–Wallis test for the Key-
board/Notebook and Lemon/Plate co-occurrence results [50]. For
the first null hypothesis that SMCS(keyboard, notebook) comes
from the same distribution for the Flickr datasets Ds(i)′ with
size = 3000, 5000, 7000, we obtained chi-squared = 2.11, and
p-value = 0.3474 (i.e. Prob> Chi-sq). For the second null hypoth-
esis that SMCS(lemon, plate) comes from the same distribution for
Ds(i)′ with size = 3000, 5000, 7000, we obtained chi-squared =
8.44, and p-value = 0.1338. It is this chi-square statistic that
was actually used to test the null hypothesis that SMCS(Ox,Oy)
converges as the number of photos in the dataset increases. The
extremely high p-values that were obtained by the two implemen-
tations of the Kruskal–Wallis test are a strong indication that we
cannot reject the null hypothesis. Hence, there is no statistical dif-
ference found in pairwise co-occurrence values drawn from Flickr
datasets above a specific size.

4.2.3. Analysis of Flickr dataset purity effect
We refer to the purity of a social-media derived dataset Dj(s)

as the extent to which the dataset contains photos related to the
sense of the tag oj we would like to test. Due to the questionable
tag validity and tag ambiguity in social-media, retrieval in these
systems has, often, been a major issue. To tackle poor retrieval
and obtain pure datasets, clustering has been proposed in the
social-media literature, as an approach to overcome their intrinsic
limitations, mentioned above, and group together related items
around a certain sense [29,51]. Here, we employ a clustering
approach that has been shown to be effective in (i) discovering
different meanings in ambiguous tags, and (ii) grouping together

2 In our experiments this size was shown to be 3000 photos.
tags and resources that refer to the same meaning [51]. In general,
in the case of an ambiguous tag oj, the dataset Dj(s)will contain a
number of photos not related to the intended tag sense. In that case,
the co-occurrence relationshipswill be extracted by considering all
the senses of oj, ‘‘polluting’’, thus, our measure of co-occurrence.
For example, if wewant to test the co-occurrence between ‘‘apple’’
and ‘‘orange’’, due to the fact that ‘‘apple’’ is an ambiguous tag and
refers also to a computer brand (apart from the fruit), the photos
tagged with ‘‘apple’’ and referring to computers will only increase
the denominator of CSs(apple, orange). The decreased values of CS
for ambiguous tags will also cause a distortion on the SMCS values.

An empirical way to tackle this issue would be to define a boost
parameter γ that is applied on CSs(ox, oy) and return a re-enforced
CS ′:
CS ′(ox, oy) ≡ γ ∗ CS(ox, oy),
where the parameter γ can be learned manually by observing in
Dx(s) and Dy(s) of small size s the percentage of annotations in
which the ambiguous tags ox, oy are being used in the sense we are
interested in.

An approach we propose here, to tackle ambiguous tags, is to
employ photo/tag co-clustering [51] in the Flickr datasets, to divide
the photos referring to an ambiguous tag ox into semantic clusters
based on each different meaning of ox. To capture the latent topics
that exist in a tag dataset we apply factor analysis. Factor analysis
is used to find latent variables or factors among observed ones.
Here, it is used to detect the latent meanings of ambiguous tags.
Indicatively, Fig. 8(a), (b) show graphically factor analysis results
for datasets of tags ‘‘keyboard’’ and ‘‘flashlight’’. An illustration
for the analysis in Dkeyboard(s) for the ambiguous tag ‘‘keyboard’’
follows.

Initially, we need to employ a selection process of the most
distinguishing tags in Dkeyboard(s), that will drive the clustering
process, since, in practice, the number of tags in Dkeyboard(s)
may grow in large scale. We chose to use the very popular
Term Frequency–Inverse Document Frequency (TF–IDF) statistic that
reflects how important a tag is in Dkeyboard(s) in relation to the
dataset corpus—i.e. Ds = ∪Di(s), where i is any object category—
by estimating the frequency of a tag in Dkeyboard(s) over the
frequency of the tag in the Ds. Thus, after performing a pre-
processing, during which rare tags are removed, we select the tags
with TF–IDF score above a threshold θ3 to be the observed variables
in Dkeyboard(s) and the attributes in the clustering process. Having
selected the tag attributes, we proceed to the construction of a
correlation matrix among the photo annotations in the Dkeyboard(s)
and the tag attributes. The similaritymetric according towhich the
correlation matrix was built is based both on semantic similarity
(drawn fromWordNet) and tag co-occurrence, as described in [51].
This correlation matrix is the input to the factor analysis process,

3 θ is determined empirically. In our dataset, we used θ = 0.6.
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the results of which are shown in Fig. 8(a). As depicted in the
aforementioned figure, the latent variables in this tag dataset is
2, based on the criterion of having eigenvalues greater than 0.4.
It can be observed that there are two main groups of variables,
each of which is concentrated in a different factor. Running the
co-clustering algorithm [51] with number of clusters to be equal
to the number of extracted factors, we see that the algorithm
manages to identify groups of tags that appear to be near in terms
of their semantic similarity. Indeed, in Fig. 8(a), the tags that
have been assigned in the same cluster have been assigned the
same color. Actually, the two factors could be interpreted as the
two senses of the ‘‘keyboard’’ tag in the dataset, that is music-
related and computer-related. Tags ‘‘piano’’ and ‘‘keyboard’’ are not
colored, since theywerewrongly assigned in the computer-related
cluster. Finally, we set the Dkeyboard(s) to be the photo annotations
contained in the computer-related cluster. This way, we have a
relatively pure Flickr dataset for our object recognition task.

In general, ideally, each semantic cluster corresponds to a tag
sense. Then, the analysis is performed only on the annotations
contained in the cluster that corresponds to the actual object
category. The mapping between extracted clusters and object
categories is basedon cluster topics, as explained in [51]. Clustering
does not generally achieve to separate perfectly the photos, so an
error parameter e can be used in the SMCSmetric, to represent the
information loss, which is learnt upon training.

5. Contextual modeling

In this section, we describe how we use the crowd-sourced
derived co-occurrence relationships (Section 4) as parameters to
a MRF model, to jointly utilize the RGB-D object classifiers’ output
(Section 3) alongwith object context for an object recognition task.
Context powerfully influences how humans recognize and locate
object categories. Contextual information becomes extremely
handy in cases of occluded or not easily seen objects, where
a human visual perception system performs much better than
computer vision systems do.

5.1. Problem formulation—contextual modeling using MRF

At this stage the goal is to combine the knowledge of object-
to-object co-occurrence statistics with the output of a multi-class
probabilistic classifier. In order to model these dependencies it
is natural to use an undirected graph, since there is no clear
directionality between the random variables. More specifically,
with the aid of the graphical model we are interested in estimating
the probability for a set of objects to co-occur in a scene given the
beliefs of a classifier. Thus, we define a normalized distribution
with the aid of an Markov network (MRF), by multiplying the
local factors, and then normalizing it to obtain a valid probability
distribution [52]:
P(o1, o2, . . . , on|b1, b2, . . . , bn)

=
1
Z


i,j

ψ(oi, oj)

i

φ(oi, bi) (2)

where ψ denotes the co-occurrence statistics of the objects oi and
oj, φ the classifier’s probabilistic belief for an object’s detection
and Z is the partition function. The conditional joint probability in
Eq. (2) is used to test the combination of the detected objects in a
scene.

5.2. Computational efficiency

The choice of the MRF defined in Section 5.1, over a wide
range of other probabilistic models, further offers computational
efficiency due to the Markovian assumption. The assumption
reduces the space of all the co-occurrence n-adic combinations to
pairwise relationships.
In order to make the above model and its reduced number of
parameters clearer, the following example is presented. Suppose
that there are 3 objects (o1, o2, o3) in a scene and k discrete
classification categories Xi, i ∈ [1, k]. We want to calculate the
probability that the objects are (X1, X3, X1) given the respective
classifier’s beliefs (X1, X2, X1):
P(o1 = X1, o2 = X3, o3 = X1|b1 = X1, b2 = X2, b3 = X1)

Eq. (2)
=

1
Z


i,j

ψ(oi, oj)

i

φ(oi, bi)

=
1
Z
ψ(o1, o2) ψ(o1, o3) ψ(o2, o3)

×φ(o1, b1) φ(o2, b2) φ(o3, b3).
From the above analysis of the product it is obvious that the
number of ψ-parameters increases if we model more than pair-
wise relationships, whereas the φ-parameters remain constant. To
illustrate this, using the above example of 3 objects and k cate-
gories Nmark = 3k2 ψ-parameters need to be estimated, whereas
without theMarkovian assumption (that is to include the triad too)
the parameters rise up toNnonmark = 3k2k3 = 3k5. For example, for
k = 4, we have Nmark = 248, whereas Nnonmark = 3072. The differ-
ence is obvious even for a small number of categories and objects
within a scene.

5.3. Objects’ co-occurrence selection algorithm

The algorithm generates a set of different possible objects’
combinations within a scene, and chooses the one with the
maximum likelihood. It is natural to extract these combinations
from the classifier’s top beliefs. In order to restrict the exponential
search space two parameters are introduced: (I) k: select the top k
beliefs for each object, and (II) perc: from these top k select those
whose belief is greater than perc. If very strict values are chosen
for the threshold perc, then there is the possibility that no beliefs
will ever pass the threshold. In that case, we complete the set
so that it contains the top k beliefs. The main reason is that the
classifier is highly uncertain for this object, hence all of the possible
decisions should be considered. This choice is meaningful when
the percentage threshold is relatively low, since that would mean
that the top decisions are probabilistically insignificant, and all of
them should be taken into account. The final result is expected to
be more dependent on the co-occurrence statistics. It is important
to note that due to the choice of the possible combinations, the
MRF model will not output radically different decisions from the
initial classifier. In practice, itmakes small changes in the sequence
of the initial belief vectors, which is further confirmed by the
experimental results in Table 4.

6. Experiments and classification results

After having presented promising segmentation results on the
test scenes, an extensive analysis of mining object co-occurrences
from Flickr data and a description of the proposed MRF, we now
present our classification results on the RGB-D and NYU datasets.
The experimental analysis of our recognition (binary and multi-
class) experiments will be presented in Sections 6.1 and 6.2. An
extended set of experiments for ourmulti-class classifierwithMRF
context model are reported in Section 6.3. We have also tested
our multi-class classifier along with the MRF context model on the
NYU scene dataset and we report our numerical analysis of the
results in Section 6.4. Our binary and multi-class object classifiers
(with and without context modeling) were trained with the RGB-
D Object dataset and tested on the RGB-D Scenes dataset [1].
Specifically, we train binary classifiers on two object classes: bowl
and coffee mug. For the multi-class object classifier we train six
object classes that are annotated in the RGB-D Scenes Dataset:
bowl, cup, coffeemug, cereal box, flashlight and soda can. This dataset
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Fig. 8. Factor analysis on tags from (left) Ds(keyboard), (right) Ds(flashlight).
Fig. 9. Example of test scenes from the two datasets. RGB-D dataset: kitchen_small_1 (left), NYU dataset V2: bathroom (right).
contains video sequences of scene types, such as: desk, table,
meeting room, etc. (Fig. 9). For testing our context-aware classifier
approach, we need at least 2 objects in each scene in order to have
co-occurrence. Therefore, only those scenes which contain at least
2 annotated objects are considered. Our approach does not try to
tackle the problem of object recognition of minimal partial views
of objects or objects containing occlusions. We assume an optimal
segmentation of the objects in the scenes, therefore annotations of
minimal partial views of objects are filtered as well. The filtering
steps on the scenes dataset are applied to every 5th frame from
the video sequence of each scene type. We chose to sample every
5th frame to directly compare our classification results from the
ones presented in [1].

6.1. Binary object classification

In this section, we evaluate two binary classifiers and compare
the results with the approach presented in [12]. This section
provides the evaluation scheme, LR parameter selection and the
dataset details. The L2 regularized logistic linear classifier [42]
that we have chosen provides predicted labels and confidence
estimates at its output. We carried out multiple experiments and
derived promising results. What is most important is the relation
between the two ROC curves of the classifiers to be compared; and
more specifically, their precision/recall values for the chosen point
of operation. Given that we do not have an ROC curve from the
other approach (i.e. [12]), we decided to plot ROC curves for our
classifier, and at least compare our full ROC to a single point from
the other classifier. You can see the results in Fig. 10.What becomes
evident is that for the case of the object bowl, our classifier is
superior at that point of operation, and not significantly inferior
for the case of the object coffee_mug. This is evidence that the
performance is certainly comparable, and might well be superior.
In order to fully verify this claim, though, one would need the full
ROC curve from the other method (i.e. [12]), which has not been
provided by the other authors.

6.2. Multi-class object classification

In this section, we evaluate the multi-class classifiers on the
RGB-D sceneDataset.We have trained amulti-class classifier using
6 object categories (bowl, cup, cereal box, coffee mug, flashlight,
soda can) from 51 RGB-D Dataset object categories. To produce a
probabilistic output to themulti-class problemweuse a linear SVM
(from LIBSVM [43]). The results from our proposed RGB-D object
classifier are presented in Table 2. The accuracy of our classification
framework (63.91%) is four times theminimumbaseline generated
by a random guess (16.67%).

The # of objects listed in the table corresponds to the objects
of the 6 categories considered in this experiment. The difference
in performance between scene types is due to the variations in
clutter and viewpoints of the scene. For example, the highest
accuracy achieved (83%) was in the table_1 scene type (Fig. 9,
right)—these scenes present similar viewpoints to those used in
the object dataset. The object dataset was obtained by recording
video sequences of each object as it spun around on a turntable.
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(a) ROC for bowl binary classifier. (b) ROC for coffee_mug binary classifier.

Fig. 10. ROC curves for binary classifier of the following object categories: (a) bowl and (b) coffee_mug. The red point is a precision/recall reported in [12]. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 2
Accuracies of a 6-category object classifier trained on RGB-D objects dataset and
tested on RGB-D scenes dataset. Note that the use of context usingMRF significantly
improves the accuracy of the baseline classifier.

Scene type # of scenes # of objects Accuracy (%) Using Flickr
context (%)

Desk_1 8 17 64.70 70.59
Desk_2 2 4 50.00 50.00
Desk_3 15 36 50.00 58.33
Kitchen_small_1 12 31 35.48 35.48
Table_1 18 100 83.00 83.00
Table_small_1 19 42 52.38 54.76

Overall 74 230 63.91 66.09

The data were recorded with the cameras mounted at one meter
from the turntable at three different heights relative to it, at
approximately 30°, 45° and 60° above the horizon. Thus, on a scene
type like kitchen_small_1 (Fig. 9—left), which presents the lowest
classification rate (35.48%) the viewpoint of the camera is higher
than 60° above the horizonw.r.t. the table. Furthermore, this scene
type presents higher clutter which reduces the performance of the
segmentation algorithm and consequently the classifier.

In order to further validate our system, we decided to also train
on part of the NYU dataset, and test on the remaining part, before
also providing results showing the cross-domain generalization
ability of our system (train in RGB-D, test in NYU) in Section 6.4.
In Table 3 you can see classification results for training and testing
on mutually exclusive subsets of the NYU dataset. Notice that in
the NYU dataset scenes that were used, there were 21 total object
categories for which we also had co-occurrence information. It
is worth noting that many categories have very few instances;
for example, 6 out of 21 have only one instance. It is clear that
with only one instance, one cannot train and test; so reporting
results for this would have been impossible. Furthermore, more
than half of the objects have less than 5 instances; and for these,
one would need to have a 2–3 object training set, which again
would create meaningless results, even more so for the high-
dimensional feature representation that we are using. For this
reason, if one trains in the NYU dataset and tests on a different
part of the same dataset, he would have very few objects with
a large enough number of instances in order to be able to train
our classifiers appropriately. Therefore, we further restricted the
number of objects, in order to have at least 3 instances (for set
NYU15, as mentioned in Table 3), or at least 5 instances (for set
NYU12) or at least 10 instances (for set NYU6). Even though the
number of training pictures is small, as we have achieved overall
Table 3
Accuracy results for the NYU dataset vs. random baseline.

Dataset Top1 Top2 Top3 Top4 Top5 Baseline

NYU6 62.22 88.89 95.56 97.78 97.78 16.67
NYU12 53.85 76.92 86.54 88.46 88.46 8.33
NYU15 51.79 69.64 82.14 83.93 87.50 6.67

classification accuracies reaching all the way up to 90% for the case
of top-2 rank, the results are indeed good.

6.3. Multi-class object classification using context modeling

In Table 2 we also compare the results of using our multi-class
object classifier combined with an MRF context model extracted
from Flickr co-occurrences. Notice that our co-occurrence model
captured by the MRF is based on Flickr, i.e. it is not based on our
training and testing datasets co-occurrences. As our model was
derived from Flickr data, in principle it might have different co-
occurrence statistics than RGB-D or NYU. Nevertheless, from our
results, it is clearly evident that using a context-aware MRF model
for object recognition outperforms the multi-class classifier alone
(from 63.91% to 66.09% overall recognition rate), and for some
scenes there is a large improvement, such as for desk_1 and desk_3.
There exist other scenes however (like desk_2, kitchen_small_1 or
table_1) for which we see that using a Flickr context-aware MRF
does not improve the performance, but it certainly does not de-
crease it. As these scenes are artificial (i.e. specifically constructed
by humans for data collection) some of the co-occurrences are not
so natural. For example, coffeemug and cereal boxmight have a high
co-occurrence probability from the mined Flickr metadata. How-
ever, cereal box and flashlight do not have high co-occurrence in the
Flickr metadata, but they appear together frequently in this spe-
cific dataset. Thus, in a dataset with more natural co-occurrences
the MRF would improve performance even further.

6.4. Cross-domain classification using contextual modeling

To evaluate the applicability of our system as well as its
generalization ability on novel domains, we tested our multi-
class object classifier (trained on the RGB-D Object Dataset) on
the NYU indoor scene dataset version 2 [2]. This Kinect dataset
consists of 1449 RGB-D images containing 26 different scene types,
spanning 849 unique object types. This dataset provides per-pixel
accurate object segmentation masks for all of the scenes, which
are suitable for testing our method. We used a small test set of
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Fig. 11. Segmented objects from NYU dataset V2 scenes (left) bathroom (right) kitchen.
Table 4
Accuracies of a 21-category object classifier trained on RGB-D objects dataset and
tested on NYU scenes dataset. Note that the accuracy significantly drops partly
due to domain change (see Table 2) and partly due to a higher number of object
categories involved in this experiment. However, the MRF context-aware classifier
is still able to bring improvements in accuracy.

Scene type # of scenes # of objects Multi-class
classifier (%)

Using Flickr
context (%)

Bathroom 7 19 21.05 21.05
Bedroom 3 6 16.66 16.66
Classroom 5 11 9.09 9.09
Computer_lab 6 20 25.00 25.00
Dining_room 10 23 8.69 8.69
Furniture_store 12 79 6.32 7.59
Home_office 4 9 11.11 11.11
Kitchen 39 109 10.09 11.01
Office 4 8 37.50 37.50

Overall 90 284 11.61 12.32

scenes which contained at least 2 unique objects that correspond
with the 51 objects categories from the RGB-D Object Dataset.
These scene types contain the following 21 object categories
corresponding to the RGB-D Object Dataset: apple, ball, banana,
binder, bowl, calculator, flashlight, keyboard, lemon, notebook, onion,
orange, peach, plate, potato, scissors, soda can, sponge, stapler,
toothbrush and toothpaste. This experimental setup is a difficult
task, since we attempt to recognize objects trained from one
dataset on a completely different dataset, without considering any
domain-adaptation. Thus, for this experimentwe expect themulti-
class object classifier to perform poorly. As can be seen in Fig. 9,
these natural scene types collected from the NYU dataset are quite
different than the scenes provided by the RGB-D Dataset. Themain
differences are: (i) the position of the sensor when the image
was taken affecting the scale of the objects in RGB (Fig. 11) as
well as in the Depth image which consequently creates different
feature vectors and (ii) these scenes are real scenes taken from
buildings in three cities, and this produces a larger variety of
object category instances which is not seen in the RGB-D object
Dataset. Nevertheless, this experiment is aimed at demonstrating
the gain of combining context-aware modeling with multi-class
object classifiers.

In Table 4 we present the classification results for nine different
NYU dataset scene types. As predicted, the Flickr context-aware
multi-class object classifier does improve the performance of the
initial classifier, however with not as high an improvement as the
one achieved in the first case. This is due to two main reasons.
Firstly, we are searching for a minimal subset of objects from
the wide range of objects that appear in this dataset, namely 21
objects from 849 unique objects in total—merely 2% of the full set
of objects. This causes the variation in different objects within the
scene to be extremely low, and in a number of the scene types
the classifier aided by Flickr-context shows no improvement. But
if we analyze one of the scene types in detail, say the bathroom
scene type, we see that in one scene we have the following objects
{toothbrush, toothbrush, toothbrush, toothbrush}; in another one
we have {toothbrush, toothbrush, toothbrush, toothpaste}, and this
causes a great difficulty for the MRF model to find object co-
occurrences that will boost the results. On the other hand, if we
analyze the kitchen scene type in detail, here we have a scene
with {apple, orange, onion, banana, plate, bowl} and after using the
MRF we had a 1% increase from a mere 10% classification result,
thus the more natural the co-occurrences in a scene the better
the MRF from Flickr data performs. A second reason for the low
increase are the low perceptual classification results, prior to the
MRF application. For example, if the classifier feeds the MRF with
highly erroneous predictions, with the true category being given
very low rank and small confidence, it is very difficult for the
MRF to improve the accuracy by using context. However, our
results illustrate that when having close to natural co-occurrences,
classification with contextual modeling in most cases definitely
improves performance.

Moving on from scenes to objects, we can observe that the
objectswhich get amore frequent improvement in recognition due
to the context model are the following: plate was the top object
for the NYU dataset, while the top object for the UoW dataset was
bowl with 5 cases, soda_can coming second and cup third. Now let
us consider how much the classification output is affected by the
context model. Out of 284 classifiers decisions, in the NYU dataset,
16 of them (i.e. 5.63%) were changed due to the context modeling,
as compared to the multi-class classifier only case. However, not
all of these decision changes led to correct recognition; 12.5% of
them indeed changed the result so that it is correct, whereas the
remaining 77.5% changed the decision, but the new category was
still incorrect. In the UoW dataset, 19 out of 230 decisions were
affected by context, with the 42.11% of them leading to a correct
result. It is worth noting though, that we never had any case of a
change from a correct decision to a false decision; i.e. an orange
that was thought of as an apple might have been thought of as
a banana after the application of the MRF context bias; however,
it was never the case that an orange that was thought of as an
orange ended up being thought of as something else. Thus, at least
in our case, application of the contextual model never deteriorates
the results, but only improves them. Finally, it is worth noting, as
we mentioned before, that the NYU dataset is a considerably more
difficult dataset than RGB-D—and thus this clearly illustrates the
power of the co-occurrence based MRF model for such a case.

7. Discussion and future work

We have started our results by illustrating the convergence of
the co-occurrence statistics obtained by mining Flickr. However, it
is worth noting that there are at least four different target distri-
butions that appear in the bigger picture of our problem setting.
First, there is the real co-occurrence distributions for objects in the
earth at large. Second, there is the co-occurrence distribution for
labeled objects in Flickr. And third, and fourth, correspondingly,
there are the co-occurrence distributions for the training and test-
ing sets in question—in our case, these are coming from sampling
the RGB-D or NYU datasets. Apart from these four nominal distri-
butions, there also exist estimates of the above four, which are cre-
ated when statistics are calculated through subsets (samples) of
the above four sets. By illustrating convergence in Section 4, we
have shown that one can adequately estimate the second distri-
bution (co-occurrence in Flickr) given subsets of workable size, on
the order of 3000 images or so per term. However, this does not
guarantee that our estimated co-occurrence distribution of Flickr
converges to the real co-occurrence distribution of objects in the
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world (the first distribution); and it also does not guarantee that
it converges to the specific distributions that exist in the training
and testing sets under consideration (the third and fourth distribu-
tions).

Nevertheless, the distributions obtained are adequate for
performance improvement, and as a future step, one could
envision using them as an initial estimate which is updated online
with the co-occurrence patterns of the specific environment that
the robot navigates in, so that it can slowly converge to the
actual distribution. As mentioned before, even the distributions
obtained from Flickr alone, as our results illustrate, certainly never
reduce performance—in most cases they contribute to improved
performance.

Most importantly, all the results presented in the paper, with or
withoutMRF contextmodels, are significantly higher than the pre-
vious results reported regarding the RGB-D database, such as [1].
Thus, in short, our novel object recognition method has improved
performance and,most importantly, can accommodate further im-
provements using an appropriately sampled co-occurrence distri-
bution in order to create an MRF combined with our classifiers,
producing highly noticeable results, even in difficult datasets.

Regarding other future steps, we are currently improving our
segmentationmethods, in order to solve the discontinuity and hole
problems that we have sometimes faced. Furthermore, we are in-
vestigating the usage of complete reconstruction of partial-view
3D models accumulated across multiple viewpoints, as they exist
within the camera movement trajectories. Most importantly, we
plan to investigate the question of the relation of recognition con-
fidence as a function of the number and type of views; ultimately
towards creating an active vision model which steers the camera
trajectory in order to minimize uncertainty with minimummove-
ment and time cost. Given that robots and other devices nowadays
usually have some mobility capability, it is highly worthwhile to
utilize this in order to derive even better results.

8. Conclusion

In this paper, we have investigated the use of a new object
recognizer as well as an object context model driving a Markov
Random Field towards object recognition in RGB-D images. The
co-occurrence probabilities for the object context model were
derived from our datasets as well as from the Flickr online
database. After introducing relevant existing literature, we started
by investigating methods and convergence properties for the co-
occurrence distributions. Then, after a description of our system
and experiments, we presented multiple quantitative results as
well as comments and a discussion.

The results are indeed good: our novel combination of
viewpoint histogram features for shape description with standard
color features yielded competitive accuracy for recognizing
categories of isolated objects. Our Markov Random Field based
model for utilizing context information to make more informed
decisions about the possible category of target objects in a
cluttered scene provided further improvements. We showed that
social media mining can be effectively used for computing co-
occurrence probabilities of objects in natural scenes, for example
in the case of the very difficult NYU dataset. The first set of
experiments with the publicly available RGB-D Dataset show
interesting insights into the use of contextual modeling for object
category recognition. The second set of cross-domain experiments
(training the classifier on RGB-D Dataset and testing on NYU
dataset) demonstrates that a significant accuracy gain can be
achieved by utilizing context information in novel domains.

In conclusion, we believe that contextual models are an
important step towards improved real-world object recognition,
and that better understanding of the properties of such models, as
well as of the sources for deriving them, is a prerequisite towards
their successful application. Through ourwork, we have illustrated
how such models can be created and used, so that in conjunction
with cost-effective depth cameras, such as the Kinect, we can get
closer to the ultimate goal of widely available intelligent devices
with real-world scene understanding capabilities.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.robot.2013.10.001.
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