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Abstract

A new random tree model. suitable for analyzing the storage efticiency of region quadtrees, is introduced. For certain
values of parameters this model is proved to be the formal equivalent of an older popular random tree model. A formula that
expresses the average number of nodes in a region quadtree obeying this model is also given and proved in two different
ways.

Kevwords: Data structures, Average storage analysis: Probabilisue models of trees and images

1. Introduction

The region quadtrec (Samet. 1990a; Samet. 1990b) is a very popular hierarchical data structure for the
representation of binary images. We can view such an image as a 2" x 2" binary array, for some natural number
n, where an entry equal 10 O stands for a white pixel and an entry equal to 1 stands for a black pixel. If every
pixel of this image is white (black), its quadtree is made up of a single white (black) node. If, however, the
image is not unicolor, its quadtree is made up of a grey root that points to four children (subtrees). Each of
these subtrees is a quadtree that represents a quadrant of the image. We assume here, that the first (leftmost)
child of the root corresponds to the North-West quadrant, the second to the North-East quadrant, the third to
the South-West quadrant and the fourth (rightmost) child of the root to the South-East quadrant of the image.

An example of an 8 by 8 binary image and its quadtree are shown in Figs. 1(a) and 1(c), respectively. Note
that black (white) squares represent black (white) leaves. while circles represent grey nodes. The unicolor
blocks, into which this image is partitioned by the quadtree external nodes, are depicted in Fig. 1(b). Recall
that the quadtree for a 2" by 2" image is of height n. at most. Let us call such a tree a class-n quadtree. Note
also, that there are 2*"" different images of this size. A node corresponding to a single pixel is at level 0, while
the root is at level n. A node at level i. where 0 < ¢ < n. represents a subarray of 27 x 2! (= 4%) pixels; there
are at most 4'7' nodes at this level.
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Fig. . ta) An 8 by 8 binary image. (b) The partitioning into unicolor quadrangular blocks. (¢) Its quadtree.

The average storage efficiency of quadtrees has been studied in (Mathieu et al., 1987), where analysis is
based on a model of random trees. It has also been studied in (Vassilakopoulos and Manolopoulos, 1993),
where analysis is based on a model of random images and on the assumption that the sizes of internal and
external nodes differ. However, random trees or images are not the only viewpoints for studying the quadtree
storage-requirements. Analogous results for the representation of arbitrary iso-oriented rectangles by quadtrees
appear in (Faloutsos, 1992; Shaffer, 1988) and for the representation of arbitrary curves or regions by quadtrees
in (Burton et al., 1985). Worst-case results for the distribution of black nodes at various levels in a quadtree
appear in (Unnikrishnan et al., 1987).

In the present article we introduce a new random tree model, which is based on a set-theoretic recursive
description of region quadtrees. Among other approaches which use recursive techniques, we note the work
reported in (Flajolet et al., 1993) which gives stochastic divide-and-conquer recurrences analyzing the serching
efficiency of point quadtrees. In this article, also, we prove that, for certain values of parameters, our model
expresses formally the popular random tree model of Shaffer and Samet (1982; 1985). Besides, we prove in
two different ways a formula that gives the average number of nodes for a quadtree obeying this model.

2. Models of randomness

Shafter and Samet have given a descriptive definition of a model of random quadtrees (Samet, 1982; Samet
and Shafter, 1985). According to this model “each leaf node is assumed to be equally likely to appear at
any position and level in the tree”. We characterize this model as a random tree model, since the probabilistic
assumptions concern tree nodes and not image blocks. It is generally considered a very realistic model for
images usually found in practice. It has also been used for the analysis of neighbor finding algorithms (Samet,
1982; Samet and Shaffer, 1985), producing results close to statistics of real tests. However, there has never
been presented a formal equivalent of the above definition.

The random model used in (Mathicu et al., 1987) also assigns probabilities to the nodes of the quadiree.
According to this model a random tree is built by using a branching process that starts at the root (level n). In
general, a level-{ node is colored black or white with probability b; in both cases; otherwise, it is colored grey
with probability | — 25,. In case a node is grey, the branching process continues for each of the four children
of this node. Since single pixels can not be grey, we must have by = 1/2. For nodes at higher levels we must
have 0 € b; < 1/2. Note that according to the definition of this model a grey node may have four children that
are all black or white (the branching process is not restricted so as not to produce four sibling leaves of the
same color). This quadtree variation is of no practical use, since the memory savings introduced by creating
maximal white and black blocks are lost.

Another model is based on pixels (Vassilakopoulos and Manolopoulos, 1993) (this is a random image
model). A pixel is black with probability p and white with probability 1 — p, independently of any other
pixel. This means that a block which corresponds to a node at level i is black with probability p™*”, white
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Fig. 2. The four different sets of sub-quadtrecs represented by the notation (MOOO).

J

with probability (1 — p)™* ' and grey with probability 1 — p™*7 = (1 — p)#). When p = 0.5 an image mainly

consists of very small unicolor blocks and a quadtree is not an efficient representation, since it is almost a full
structure (leaf nodes appear almost exclusively at level 0). However, when p differs significantly from 0.5, the
probability of unicolor blocks that are larger than 1 x 1 pixels increases (for one of the colors). This means that
the random image model can express coherence to some extend and represent images found in practice (for
example biological images). We also note reference (Cross and Jain, 1983) which reports an image model,
based on Random Markov Fields. expressing coherence well.

3. A new model of random quadtrees

First, we examine the set-theoretic representation of quadtrees. Note that we can view a region quadtree as
a finite ordered tuple that consists of grey, black and white nodes and corresponds to the preorder traversal of
the tree. With this in mind. we can devise a symbolic way to represent the set of all class-n quadtrees, @, (a
finite set having as elements tuples), as has been done for other trees and combinatorial structures (Vitter and
Flajolet, 1990).

For the sake of simplicity. in this section the symbols O, O and m will denote the sets {O}, {T1} and {m},
respectively. As class-i sub-quadtree we characterize a class-i quadtree that has at least one grey node. We will
use the symbol §; to denote the set ot all class-i sub-quadtrees (n > i > 1). We are interested in a certain
kind of sets of class-i sub-quadtrees: such a set is a cartesian product of O and four other sets, T;1, Ti2, T3
and T, 4, where each of 7. T;», 7,1 and T, 4 is either a subset of S;. or a leaf. We will refer to such a set as
a Cartesian i-Set. A class-i sub-quadtree that belongs in such a cartesian i-set consists of a grey root and its
NW, NE. SW and SE subtrees which belong in T;, 7i;., T3 and T4, respectively. We shall use the notation
(T;1.T;2.T; 3. T;.4) to denote the union of all the cartesian i-sets that are defined as a cartesian product of O and
each one of the distinct permutations of T, y, T;,, 7,3 and T;4. An example showing the four different sets of
sub-quadtrees whose union is represented by the notation (MOCC) appears in Fig. 2. Note that each of these
sets includes only one sub-quadtree. In addition, in the svmbolic equations that follow the + symbol represents
set union. Thus, the set of all class-n quadtrees is:

O, =0-m+S,,
Si=(mO00) + (MECo) + (Eme)

+{8_, 000 = (S WO + (S WD) — (S, mEE)

(S SO0+ (S S ED) (S50 S, )

—(SaSaS O 5SS W S 1SS S ) Vi,
S =m0O00; + (EE00) + (EEmc).

In the tables of Fig. 3 you can see the number of different cartesian i-sets whose union is represented by
each of the () notations above. These are all the possible {) notations of unions of cartesian i-sets in the
sense that any other {} notation is equivalent to one of them. It is not difficult to see that Q, includes all the
possible class-n quadtrees since the definition of Q, 1s a top-down constructive definition where all the possible
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< S,._.,000 > i\ < S;15;.,00 > 6
< mOOC > 4 < S,._,mOoQ > 12 < Sis1 im0 > 12
< WEO0d > | 6 < S_,mm0 > 12 < S;i1S;_mm > 6
< mum0 > i 1 < S_mum > 4 < SiaSi.S.a>1| 4
< S,_,.S',_l.S‘,_I.ﬁ‘l_, > 1 < 548,85 m> | 4

Fig. 3. All possible { @ notations and the number of different subtree sets each one represents.

configurations for the children of a grey node appear (excluding the illegal configuration where all four children
are unicolor leaves).

Note that the above symbolic equations (when fully expanded) define the set of all class-n quadtrees as a
large expression made of union and cartesian product operators and a number of only three initial operands, the
sets O, W and 0. In addition. these symbolic equations describe a branching process by which we can construct
any legal class-n region quadtree. More specifically,

e At the start. we perform the initial branching: we choose between the root being a black node, a white
node or a grey node (the tree being a member of the set of class-n sub-quadtrees).

e At any level i, n = i > 1. for any grey node at this level, we perform a level-i branching: we choose
between 79 different sub-quadtree sets (those of all the three tables of Fig. 3) so that the subtree rooted
at this node belongs to the chosen set.

e Atlevel I, for any grey node at this level, we pertorm a level-1 branching: we choose between 14 different
sub-quadtree sets (those of the leftmost table of Fig. 3) so that the subtree rooted at this node belongs to
the chosen set.

Note that except for the initial branching, where we choose between different colors, at all other branchings we
choose between different sub-quadtree configurations ( we choose the cartesian i-set which the subtree rooted at
the grey node of each branching belongs to). This approach is different to the branching process described in
(Mathieu et al.. 1987), where at each node (starting at the root). we always choose between white, black and
grey colors; if we color a node grey, we continue the process recursively for each one of its children choosing
always between all these three colors.

We can create a probabilistic model for this branching process by assigning probabilities to the different
choices for every branching. This process must be legal under the fundamental probability axioms. Thus, for
every specific branching the probabilities of all the different choices must sum to 1. We would like to find
a simple assignment of probabilitics to the different choices of our branching model that would lead to a
formal definition of Samet and Shaffer’s model. In the rest of this paragraph we present an arbitrary parametric
assignment of probabilities. Remember that at the initial branching we have three choices: the root to be black,
white or grey. We call x the probability each of the first two choices. Then, the probability of the third choice
will be 1 — 2x. Remember also that at all levels above level 1 we have 79 choices. We would like all of them
exceplt for the choice of the cartesian i-set represented by (S;_;S,_15_;5;_|) to be equiprobable (for the sake
of simplicity). We call v, the probability of each of these 78 choices. Since the sum of the probabilities of all
the 79 choices must be 1, the probability of choosing the cartesian i-set represented by (S; 1 S;_1S;_1S;_) will
be | — 78y Accordingly. at level | we would like all 14 choices to be equiprobable.

We can cxpress formally this assignment of probabilities by defining some probability measures. The measure
7 @y — [0, 1] which expresses the probability of a class-n quadiree equals:

X itr=m
m(t) =< x if 1 €0,
(L =2v)e,0n ifre s,

The measure ;0 S, — {O. 1] (n 2/ > 1) which expresses the probability of a class-i sub-quadtree equals:
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v it = (mMO00) + (EwdO0) + (o),
i) ifre {000 + (Moo + (¢ mE0) + (¢ EEl), 1 € Sy,
cilty = v (e, s (00 + 0 nE0) + (HoEm), 1,0 € S0y,
Vit (et e 1) iCre (im0 -+ (nnsm), 0,0 € 5.
vt Cr e (e, (e, (g b= (st oottty € Sio.

Finally, the measure ¢ @ Sy - [0, 1] which expresses the probability of a class-1 sub-quadtree equals:
(1) : re s
v = —. SIS
‘ 14

Let us call this branching process along with this parametric assignment of branching probabilities the “new
random quadtree model”. If we can find values for v and y; in the interval [0, 1] such that the probability of a
black or white node existing anywhere in the tree is constant, then we shall have proved that the new random
quadtree model is cquivalent to Samet and Shaffer’s descriptive model.

Note that

e The set of all class-n quadirees is a probability space. This means that P(Q,) = | and that each class-n
quadtree is a distinct outcome in this space.

e The sct of all class-i sub-quadtrees (n > i > 1) is a probability space. This means that P(S;) =1 and
that cach class-i sub-quadtrec is a distinct outcome in this space.

e The probability of any subset of quadtrees (sub-quadtrees) equals the sum of their probabilities.

e If u grey node has two. three or four children which are sub-quadtrees (not leaves), then these sub-
quadtrecs are independent to cach other (the branching process for any of these sub-quadtrees is inde-
pendent to the branching process for any of its sibling sub-quadtrees)

We can now prove the following proposition:

Proposition 1. /f x = 1.(2n = 2y and v, = 1/52i, the new randonm quadtree model is equivalent to Samet and
Shaffer’s random tree model.

Proof. The case of black nodes is examined. Due 10 symmetry the same arguments hold for white nodes, too.
We denote by A; the set of all class-n quadtrees that include a certain black node z (that is, a black node in
a certain position at level). Let j denote the level of . When 1 > j. we denote by B; the set of all class-i
sub-quadtrees (i > j) that include ;. Note that A is an event of the probability space O, and B; is an event of
the probability space S, (n = { > j). The probability ol A must be constant, equal to a value ¢ (1 2 ¢ > 0)
for any level and position ot z. We shall use the notation

N N
(Tin . T.2.T 5. Ty

to denote the union of all the cartesian i-sets that are defined as a cartesian product of O and each of the
distinct permutations of 7, ;. 7,>. T,x and T, 4 where T, has a certain constant position in these permutations.
In Fig. 4 you can see an abstract example of the branchings we perform at each level when we construct
quadtrees that have a certain node black. The plain dotted rectangles stand either for a black or a white node;
the dotted rectangles that include a circle stand either for a black, a white, or a grey node. Note that at the last
branching a configuration with four black nodes can not exist.
We distinguish the following two cases:
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= Level-n branching

< Level-(n — 1) branching

- Level-{n — 2) branching

——— Level-in — 3) branching

— Level-() 4+ 1) branching

Fig. 4. An abstract example of the branchings we perform when constructing quadtrees with a certain black node.
l. j=n We have P(A;) = x: we must then have
x=c. (D

2. j < n. Wehave A, = B, Since. ¥Vt € A;. (1) = (1 --2x)u, (1) we have P(A:) = (1 —2x)P(B}).
For all levels i > j - 1 the set B; may be partitioned into the following four distinct subsets:

A e T L e v e
e C; =(B_,00C; ~ (B, WO + (B,  MED) + (B, , HEN)
) N . N ey
e Di=(B, 5,200 +(B,_,Si- m0) + (B _,S_ W
- / - v . / N
° El‘ = \B;—I 5, |.S, Oy + ‘:B;_] S: ISI I.:’
N v .
Y FI = (\B"__] S,. |S,.. ].S, |

Obviously. P(B;) = P(C;) — P(D;) + P(E7) + P(F7). Note that in C}, D}, Ef and F} the root of
the child-subtree that belongs in B;_, is part of the path that leads to the black node in question. We have
that

e (; is the union of ¥ cartesian /-sets cach one of which is a cartesian product involving BY | (e.g.
level-(n ~ 1) branching in Fig. 4: cach of the 3 leaves that are not on the path can be black or
white). Since, vr = C]. we have v;(1) = y,r,_(t1), where 11 € B_,, summing up probabilities for
every element of C7 we get P(C;) =8y,P(B;_)).

e D7 is the union of 12 different cartesian i-sets each one of which is a cartesian product involving
B: , and §,_, (c.g. level-(n — 2) branching in Fig. 4: the grey node not on the path can take 3
positions, while cach of the 2 leaves that arc not on the path can be black or white). Since, vt € D},
we have ¢ (1) = v, (11)0; 1 (£2). where 11 € B] | Ar2 € §;_1, summing up probabilities for every
element of D; we get P(D;) =12y,P(B; [ YP(S;_1).

o £° is the union of 6 different cartesian i-sets each one of which is a cartesian product involving
B; | and twice the set S, (e.g. level-(n — 3) branching in Fig. 4: the leaf that is not on the path
can take 3 positions. while at each position it can be black or white). Since, Vr € E}, we have
ety = v (e, (12) e, (£3), where 11 € B; | A 2,13 € §;_, summing up probabilities for
every element of E; we get P(E]) =6y,P(B_|)P(S,-) )2,

e [ is a cartesian /-set which is a cartesian product involving B; | and three times the set §;_; (e.g.
level-n branching in Fig. 4: the 3 nodes that are not on the path are all grey). Since, V¢t € F}, we
have ¢;(t) = v, ytthye 02y e, (13) e, 4 (14), where ¢l € Bi | AN12,13,14 € §;_y, summing up
probabilities for every element of F7 we get P(F7 ) = (1 —78y)P(B]_|)P(Si_) )3.

' i—1
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Since P(Si—1) =1 we get P(B;) = (1 -52y)P(B;_,).

For level i = j + 1 we distinguish two further sub-cases.

(a) j > 0. As we did above for B; we can partition B}TH into four distinct subsets that, apart from the
black node in question. have none, one, two or three children which belong in §;. Each of these
subsets is the union of a number cartesian /-sets. In total, at level-(j + 1) branching there are 26 such
sets, where one specific child is black (e.g. level-(j+1) branching in Fig. 4: each of the 3 nodes that
are not on the path can be grey, white, or black excluding the illegal configuration where all of them
are black). Following analogous arguments as above and making use of the fact that P(S;) =1 we
get P(B}',l) =26y, .

We want P(A;) =c. Substituting the values ol B (n 21> j) we have

(1 =2x)3(1 = 52y (1 = 52y,_1)--- (1 - 52yv.)26y,.0=¢, n—12j21 (2)

(b) j =0. By contains 7 sub-quadtrees (in any of these sub-quadtrees there is one specific child of the
root which is black.) Since, vt € B}, we have (1) = 1/14, we get P(B}) = 1/2.
We want P(A;) =c. Substituting the values of B (n 2 i > j) we have

2

(1 2x)(1 52yl =52y, ) --- (1 - S2v) 1 /2 =c. (3)

t

Egs. (1), (2) and (3) form a system of equations that expresses the conditions under which the new random
quadtree model is equivalent to Samet and Shaffer’s model. This system may be solved as follows: we substitute
the value of ¢ given by Eq. (1) into Eqs. (2) and (3). By induction on v; and Eq. (2) we can show that

l '.
¥ = S nozioe . (4)

For all i > 1, substituting the value of v, from the above cquation into Eq. (3) we find that x = 1/(2n+2).

Substituting this value into Eq. (4) we find that v, = 1/52/. T}

4. Average efficiency of random quadtrees
We can now prove the following proposition.

Proposition 2. Consider quadirees obeving the new random quadtree model with x = 1/(2n+2) and y; =
1/52i. The average number of nodes, N,, of a class-n quadtree obeys the equation

42 3p-7

N, = 5
1 9(n 1) (5)

First Proof. This proof is based on methods appearing in (Vitter and Flajolet, 1990). These methods are
general since they can be applied to a number of combinatorial structures that are defined as sets through
symbolic equations. Lel |7/ represent the number of nodes of 1, where 1 € Q, + 5., Si. We will define two
generating functions. Let

m(z) = Z ()"
1€Qy
and

vi(z) =Zl',(1): Yoo eido 2.

€S,
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The coefficient of 2/ in 7(2) (in ¢,(z)) is the probability of the set of quadtrees (sub-quatrees) that have /
nodes. Note that 77'(1) = N,. Note also that w(1) = | and v;(1) =1, n > > 1. Using Fig. 3, in which we
can see the number of different cartesian i-sets whose union is represented by each of the () notations, and the
definitions of our probability measures we reach the following equations

(c)=2— L)
Tl =< = ——U, ).
2n+2 n+1"
4 . 32, 24 , 8 X 78,
()= =2 — == D)+ —2 (o = —z i () (- =)z, nzi> ],
’ 52i 52 52i gy G (A =z z
z;(:)=:5
Differentiating and sctting - = 1 we get
/ \ n ’
ml) = -+ ).
n+l an=1"
, 4 [0, o
cihy=1=+ = «d——ie, (o nze -1
[ {
z';(l)zi

Setting u; = i(¢[(1)y - Lyonm 2021, we get

() =14+ ——u,.
n+1
;=34 +4du, . =i - I
it =-1.

Making use of induction on u,, 1Uis casily proved that

SR |

/ 3\ |
7l =1 - (lhH
> i

=]

FADYEI RS

Note that 327 (1/4) r= /(1,4 where f(z)=>" 2 =(z"""~2)/(z — 1). This remark leads us to

Lo 0 2n- 16 4" 3 7 -
aly=1+ = . Lo
9~ 1) 9(n—1)

Second Proof. Consider a tree ¢ -~ O, Let L, (¢) denote the number of leaf nodes and N,(g) the number of
both leaf and internal nodes in g. At level i of such a tree (n 2/ > 0) there may exist at most 4"~ nodes.
For all levels, we associate a random variable o cach of these potential nodes. This variable equals 1 when the
related node exists and is a leaf. Otherwise, it equals (. The sum of all these variables for every level gives us
L,(g). Thus, the expected number of leaf nodes, L, in a class-n quadtree equals the sum of the average values
of all the random variables associated with potential nodes. The definition of our random tree model implies
that the average valuc of such a variable equals 1/(n + 1). This means that L, = >/ 1/(n + 1) S4n—i=

(4" — 1)/(3n+ 3). By induction on the number of internal nodes, we can prove that in any class-n quadtree
g we have N, (g) = (4L,(¢) - 1173 Taking expectations we have

S e I SRR B

N, = — R

3 Gin - 1)
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Using the latter proof method it is very easy to develop and prove formulae for the average numbers of
white, black and grey nodes at a specific level of a class-n quadtree.

5. Conclusion

In this paper. we present a new model of random region quadtrees. We prove that for certain values of
parameters this model is the formal equivalent of Samet and Shatfer’s random tree model. We also prove in
two ways a tormula that expresses the average number of nodes in a quadtree. The method followed in the
second proof can be easily uscd for producing further analytic results. Note that the presented model of random
trees can capture coherence of unicolor regions that appears in images of real applications in a very good way,
although, its definition as a branching process is rather complicated.

Future research could provide analogous models for other space dimensions, e.g. in R' a model for segment
trees and in R for oct-trees (Samet. 1990a; Samet. 1990b). In addition, the connection between the presented
random image model and fractals remains to be investigated along the lines of reference (Faloutsos and Kamel,
1994), which cxamines the performance of spatial access methods using this technique. Moreover, future
rescarch could examine more complicated probability assignments for the presented random trec model.
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